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I. PROBLEM STATEMENT

Suppose you are given a matrix X ∈ Rn1×n2 with rank
r � min(n1, n2). Moreover, assume this matrix has sparse nonzero
elements so that, due to the column-wise dependencies, they are all
supported on k � n1 number of rows (it can also be column-wise
supported). This matrix wont have many degrees of freedom; If one
knows the position of those k nonzero rows, the corresponding sub-
matrix contains only (k + n2 − r)r degrees of freedom.

Provided by the enormous developments in areas of compressed
sensing and low rank-matrix recovery [1][2][3][4], one may wonder if
it is possible to acquire the whole matrix elements from a very few
number of non-adaptive linear measurements. In this regard, three
questions immediately follow; what should be those measurements?
How to design a computationally tractable algorithm to recover this
matrix from those possibly noisy measurements? And finally, how to
evaluate the performance i.e., how many measurements do we need
to recover exact low-rank and sparse matrix, and does the algorithm
performs stable with respect to matrices that are approximately low-
rank or not exactly joint-sparse but compressible? This paper attempts
to answer the questions above.

II. PRIOR ARTS

Recently a few papers consider rank awareness in data joint-
recovery from multiple measurement vectors (MMV) [5] [6]. More
precisely, sparse MMV inverse problem (also known as simultaneous
sparse approximation), focuses on recovering a joint-spase matrix X
from a set of measurements Y ∈ Rm×n2 acquired as Y = AX .
There, A ∈ Rm×n2 is the measurement matrix that is unique for
compressive sampling signals of all the n2 channels (columns of
X). Davis et al. [5] proposed a specific rank-aware greedy algorithm,
that in case of using a random i.i.d. Gaussian A, is able to recover
(with high probability) an exact k-joint-sparse and rank-r X from its
noiseless MMV, if the total number of measurements scales as,

m = n2m & O
`
n2k(logn1/r + 1)

´
. (1)

III. ORIGINALITY OF OUR WORK

Our work contrasts with prior arts in three main aspects:
1- Let us define the linear map A : Rn1×n2 → Rm and model our

sampling mechanism by y = A(X) + z, for a noise vector z ∈ Rm.
As we can see, this measurement scheme is able to model more
general cases than a uniform sampling matrix for all the channels
e.g., in distributed compressed sensing scenarios, each channel can
be sampled by an independent measurement matrix (rather than a
unique one), or even in non-distributed cases where the sampling
matrix is designed so that each measurement reflects a global average
behavior of the whole matrix rather than a local specific channel.

2- Our recovery algorithm is different and is based on the following
convex minimization,

arg min
X

‖X‖2,1 + λ‖X‖∗ (2)

subject to ‖y −A(X)‖2 ≤ ε.

The l2,1 mixed-norm is defined as ‖X‖2,1 :=
P

i(
P

j X
2
i,j)

1/2

and the nuclear norm ‖X‖∗ is the sum of the singular values of X .
3- Our performance analysis, guarantees stability of our recovery

approach against noisy measurements, non-exact sparse and approx-
imately low-rank data matrices. We prove that, if our measurement
system satisfies a specific restricted isometry property (RIP), the
solution of (2), stably recovers all joint-sparse and low-rank matrices.
In particular, we show that, for certain random measurement schemes,
the number of measurements m sufficient for stable recovery scales
as,

m ≥ O
“
k
`
r + log(n1/k)

´
+ n2r

”
. (3)

Regarding rank of the data matrix, our bound is of a different nature
than (1) i.e., the lower the rank, less measurements are required.
Indeed, in many multichannel signal applications, where (due to the
structure behind) a huge data matrix turns out to have a low-rank
(r � k � n2), our approach outperforms those in the state-of-the-
art, reflecting the importance of a good design for the measurements
A together with the recovery approach benefiting those structures
(i.e., joint-sparse and low-rank).

In the rest of this paper, we develop an algorithm to solve (2)
using proximal splitting methods [7]. A number of simulations on
synthetic data as well as an interesting important application in
Hyperspectral imaging, demonstrate a massive saving of the number
of measurements required to recover data, compared to the existing
methods.
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