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Abstract

Image segmentation is a key area of research in computer
vision. Recent advances facilitated reformulation of the
non-convex multi-phase segmentation problem as a convex
optimization problem (see for example [2, 4, 9, 10, 13, 16]).
Recently, [3] proposed a new convex relaxation approach
for a class of vector-valued minimization problems, and this
approach is directly applicable to the widely used classi-
cal Mumford-Shah segmentation model [11]. While the ap-
proach in [3 ] provides the much deserved convexification, it
achieves this at the expense of an increased computational
complexity due to the increased dimensionality of the refor-
mulated problem; however, the algorithm proposed in [3]
can indeed profit from a parallelized implementation. In
this paper, we present a GPU-based implementation of the
convex formulation for Mumford-Shah piecewise constant
multi-phase image segmentation algorithm proposed in [3].
The main goal of this paper is to provide insights into the
way the algorithm has been parallelized in order to obtain
good speedup. We present multi-phase segmentation results
both on synthetic and real images. The speedup of GPU-
based implementation is evaluated on three different GPUs.
For sufficiently large images, the speedup achieved on GTX
285 GPU is around 40, compared to an optimized CPU-
implementation. The speedups obtained from GPU-based
implementation are quite satisfactory. We also made our
CUDA code available online".

1. Introduction

Image segmentation is one of the fundamental problems
in computer vision. It aims at partitioning a given image
into meaningful regions. There exist many approaches and

IThe GPU-based CUDA code can be downloaded from http://
1ts5srv2.epfl.ch/~gorthi/software.html

algorithms to solve the segmentation problem. Many of the
existing algorithms, however, lead to non-convex optimiza-
tion problems. It means that the solution to which those al-
gorithms converge is dependent on the initialization of the
segmentation; thus, convergence to a global solution is not
guaranteed in such cases.

There are significant developments in recent years in re-
formulating the original non-convex multi-phase segmenta-
tion problem as a convex optimization problem [2, 3,4, 5,9,

, 13, 16]. The method proposed in [3], which is based on
[7, 13], achieved the goal of convexifying the multi-phase
region-based segmentation problem, by reformulating the
original problem in a higher dimensional space to remove
the non-convexity. The method proposed by [13] is anal-
ogous in the continuous setting to the approach of [&] that
was proposed for the discrete Markov random field (MRF)
setting. [3, 7] generalized the approach of [13] to vector-
valued problems, i.e., where the unknown to be computed
can be vector-valued rather than scalar-valued.

As we mentioned, while the approach in [3] provides a
convex formulation for region-based multi-phase segmen-
tation, the computational complexity is increased due to the
increased dimensionality. For example, with the new for-
mulation in [3], for an N-dimensional image segmentation,
the dimensionality increases by /N. However, many com-
putations of this algorithm can indeed be parallelized, and
thus, can profit from the GPU-based implementation.

In this paper, we present and analyze GPU-based imple-
mentation of the algorithm in [3] for image segmentation.
In particular, we deal with region-based, piecewise con-
stant, multi-phase segmentation model based on the clas-
sical Mumford-Shah model [11]. The rest of the paper is
organized as follows: In Section 2, we briefly describe con-
vex algorithm of [3]. In Section 3, we present the details
of parallel implementation of this algorithm on GPU, with
CUDA. In Section 4, we present segmentation results on
synthetic and real 2-D images, and evaluate the speedups


http://lts5srv2.epfl.ch/~gorthi/software.html
http://lts5srv2.epfl.ch/~gorthi/software.html

on different GPUs; we also perform a study of the effect of
size of the image on the speedup, and other relevant studies.
Finally, conclusions are presented in Section 5.

2. Convex multi-phase segmentation algorithm

The segmentation method used here is based on the
Mumford-Shah model [11]. This model approximates the
image to be segmented with piecewise smooth regions, and
the functional that it minimizes is given by:
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where I is the input image to be segmented, f is the out-
put segmented image, K is a closed edge set (K C ()
that partitions the image into different phases, and |K| is
the length of the boundary of K; v, u are weighting pa-
rameters (v > 0, u > 0) for the last two terms of the
above functional. With the further assumption (as in [6])
that the image to be segmented has piecewise constant re-
gions (i.e.,V f(z) = 0), the above equation simplifies to:

inf Z/ (ci — I(2))%dx + p|K|,

where c; is the mean value of the intensity for the i phase,
and (); is the region in the output image corresponding to
the i" phase (with Q = U;Q;).

It is often assumed that the number of phases is fixed
(= n), and the corresponding optimal mean intensity values
¢; are known apriori. This reduces the above equation to:
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With the level set representation proposed in [15], two
level set functions are sufficient to represent four phases; ex-
tension to even higher number of phases can be done with
just those two level set functions, by using the four color
theorem, as shown in [15]. Hence, without loss of gener-
ality, we consider here a four-phase segmentation problem.
The above equation can be rewritten as follows, in terms of
the two level set functions (denoted by u () and ug(x)):
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+ (e = 1(2))* (1 = wa(2)) uz()
+ (e = 1(x))* (1 = ua () (1 — ua(x)).

The method proposed in [3] reformulated the above non-
convex functional, in a higher dimensional space, to an
equivalent convex relaxation method. Since the goal of this
paper is to present the details of the GPU-based implemen-
tation, we mention here only the final equations; we refer
the readers to [3] for the details of the reformulation. The
final set of equations that are to be solved iteratively are
given by:
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where A is a linear gradient operator, A* is the adjoint of
A, and I1pn is the projection given by:
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Hen (¢") is truncation of ¢" to [0, 1] interval. 7, 7, are
constants related to the spatial step sizes, and ¢" is the re-
formulated version of the function to be minimized, defined
in [3].

Since the reformulated algorithm is convex, the final so-
lution does not depend on the initialization. Hence, we can
start with any arbitrary initialization for each phase. We use
the following convergence condition for the iterative pro-
cess:

™" = (6" e < e,

where k is the number of iterations, and ¢ is the convergence
parameter. From our experiments on a set of images, we
noticed that e = 0.001 is good enough for obtaining stable
segmentation results.

3. Implementation on GPU with CUDA

In order to perform a GPU-based implementation of any
algorithm, the primary step is to identify the portions of the
algorithm that can be processed in parallel, and then map-
ping the algorithm to CUDA (or other similar) program-
ming environment. Each of the data-parallel portion can be
run on separate CUDA kernels. Based on the dependencies
that exist among various kernels (as we shall see in more de-
tail shortly), a synchronization step may be required before
switching from one kernel to the other. In this Section, we
first mention the tasks that we parallelize in the algorithm
of [3], and followed by the important details on the memory
related optimizations; the memory optimizations are found
to be critical in improving the speedup of the GPU-based
implementation.
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Figure 1: Control flow of the kernels for the CUDA imple-
mentation on the GPU.

Regarding the dependencies that exist among the vari-
ables: p, ¢", ¢! at a given iteration, we make the follow-
ing observations from equation-set (1). Notice that, at iter-
ation number (n + 1), the computation of p" depends only
on ¢", ¢! that are already computed during the previous it-
eration (n); also note that (p)"*! value for each pixel can
be calculated in parallel, since it’s computation does not de-
pend on (p)™*! values of neighboring pixels.

Similarly, note that the computation of (¢")"*1 at a
given pixel, requires (7)"! values at the same pixel, as
well as at the pixels in it’s neighborhood. So, when per-
forming the computations at each pixel in parallel, before
starting the computation of (¢")"*! at a pixel, we need to
make sure that the computation of ()" *! is completed for
all it’s neighboring pixels also; thus, an overall synchroniza-
tion step is essential for p, before starting the computation
of ¢,

Regarding (¢" value at each pixel, note that it’s
computation requires only (¢")"+! values at that pixel, and
thus, does not depend at all on any other neighborhood pixel
values. So, even if each pixel is processed in parallel, as
long as ¢" and ¢" are computed in sequence for individual
pixels, there is no need for any overall synchronization step
between ¢" and ¢" (unlike the previous case between p'and
o").

Based on the above mentioned observations, the entire
algorithm is divided into two CUDA kernels?, as illustrated
in Figure 1. The first kernel updates p’ values, and then,
after a synchronization step, the second kernel updates both
¢" and ¢" values; the implementation iterates through these
two kernels until the convergence criteria (mentioned in the
preceding Section) is achieved.

We implemented the above mentioned algorithm with
NVIDIA’s GPGPU (General Purpose computing on Graph-
ics Processing Unit) programming unit, CUDA, version-3.1

n+1
)

2A CUDA kernel is a function, that, when called, is executed N times
in parallel by N different threads, as opposed to only once like regular
C-functions [1].

[1]. We noticed that the most critical task for the GPU-
based implementation of the current algorithm is memory
access. We now present in detail, the main memory related
optimizations that we implemented, which resulted in sig-
nificantly improving the memory access timings.

The first optimization that we do is related to accessing
the global memory space on the GPU. It is important to fol-
low the right access pattern in order to get the maximum
memory bandwidth, especially given how costly accesses
to device memory are. According to CUDA specifications
[1], if a certain set of access requirements (mentioned be-
low) are met, the global memory access by all threads of a
half-warp® is coalesced into a single memory transaction;
it means that, when those specific requirements are met,
the global memory access transactions by all the 16 par-
allel threads (i.e., half-warp) can be coalesced into just a
single memory transaction (instead of the original 16 trans-
actions), and this enhances the throughput significantly. The
exact conditions to be met for this purpose are as follows:

(i) All the 16 words accessed by the half-warp must lie in
the same segment of the GPU’s global memory, and
they must access the words in sequence (i.e., k'™ thread
of a half-warp should access only the k™ word in the
memory segment); however, not all threads need to
participate.

(ii) The starting memory address of the segment should
be a multiple of 16.

(iii) The size of the words accessed by the threads must be
same, and should be of 4, 8, or 16 bytes.

(a) If the size of the word is 4-bytes, all 16 words
must lie in the same 64-byte contiguous segment.

(b) If the size is 8-bytes, all 16 words must lie in the
same 128-byte contiguous segment.

(c) If the size is 16-bytes, the first 8 words must lie in
the same 128-byte segment, and the last 8 words
in any of the following 128-byte segment.

We now illustrate the above conditions in more detail, with
the help of some examples presented in Figure 2. The left
side figure shows two examples of memory access patterns
that result in just a single memory transaction instead of
usual 16 transactions; note that the data type used in them
is 32-bit float, and hence, the size of the words accessed
by the threads is 4-bytes (condition-(iii)); the memory lo-
cation of the segment accessed by the half-warp started at
the address: 112, which is a multiple of 16 (condition-(ii)).
In the example 2(a), each k™ thread is accessing k™ word

3The process of managing, scheduling and executing threads in a group
of 32 parallel threads is called warps; a half-warp is either the first or
second half of a warp [1].
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Figure 2: The left side figure illustrates two types of memory access patterns that effectively result in a single memory trans-
action, and thereby, significantly improves the overall memory access time. On the contrary, the right side figure illustrates
various memory access patterns that cannot profit from such single memory transaction.

in the memory, while in the example 2(b), although some
threads do not participate, rest of the threads still satisfy the
condition-(i) by accessing only their respective k™ words.

On the contrary, the sub-figures in the right side of Fig-
ure 2 (c—f) show examples of memory access patterns that
fail to satisfy one of the three conditions mentioned above,
and thereby, could not profit from such single memory
transaction®. It can be noted that, in the pattern shown Fig-
ure 2(c), the starting memory address is not a multiple of
16, and thus violates the condition-(ii); Figure 2(d) and 2(e)
show patterns that violate the condition-(i) regarding the k"
thread accessing the k™ word; finally, Figure 2(e) shows a
pattern for which the size of the words accessed is not 4, or
8, or 16 bytes, and thus violates the condition-(iii).

In our current implementation, in order to profit from the

4We would like to make a note to the readers that the coalesced mem-
ory transactions described here are based on version-3.1 of CUDA. In the
recently released versions, there are slight modifications to it. In particular,
coalesced memory transactions can be carried out for a warp instead of a
half-warp, and the conditions to be satisfied for a single memory transac-
tion are also made more flexible.

above mentioned single memory transaction for each half-
warp, we do the following: The input 2-D image is repre-
sented as a 1-D array by concatenating the pixels column-
wise, and each column of the image is zero-padded with an
appropriate memory space such that every column starts at
an address that is a multiple of 16; when the original col-
umn width is not a multiple of 16, the new column width
after padding (denoted by N5*) is given by:

. N,
Nf;"d = (ﬂoor (1(?) + 1) 16,

where N, is the number of pixels in each column. Regard-
ing the dimensions of the grid of thread blocks, we have
chosen a dimension of 1 for rows, while the number of
columns is chosen empirically with the constraint that the
number of columns is a multiple of 32, and at least equal to
the number of cores of the GPU; this constraint is based on
the recommendations given in CUDA documentation.

It is easy to notice that with the above mentioned con-
figurations, each half-warp of threads always contains con-
tiguous pixels from a single column; further, since this con-



figuration also satisfies the conditions mentioned earlier, the
access to each of these columns in the relevant variables can
be made with just a single memory transaction.

To further improve the memory access time, we use the
fact that some components of ? are used at the same time,
for the same kind of memory operations (reading or writ-
ing). Notice that for 2-D images, 7 in equation (1) has
three terms, and the operations on the first two terms of
? are similar. Because of this reason, instead of repre-
senting these two terms separately, we represent them us-
ing a built-in vector type of CUDA, called Float2, which
is a structure of floats; with this kind of representation, the
number of coalesced memory transactions are halved com-
pared to representing the two terms separately. Note that
instead of just two terms, although all the three terms of 7
could be represented as a single built-in structure of CUDA,
called Float3, it will not however lead to any improvements;
this because, the size of Float3 structure is 12 bytes, and
hence, this will not satisfy the above mentioned condition-
(iii), which is essential to benefit from coalesced memory
transactions. Finally, we also use texture memory wherever
applicable, since the memory read operations are faster with
texture-memory than with the global memory of the GPU.

4. Results

We first present segmentation results obtained from the
convex multi-phase segmentation algorithm, followed by a
detailed evaluation of the GPU-based implementation. We
present here results for 4-phase image segmentation; as
mentioned earlier, this can be extended to any higher num-
ber of phases using approaches like four color theorem [15].

The segmentation results are presented for a synthetic
image and a real image. The synthetic image used here is
similar to the image from the work of [15] with noise. The
second image is an axial slice extracted from the Magnetic
Resonance (MR) image of the human brain. Each pixel of
the MR image is segmented into one of the four regions,
viz., (i) gray matter (GM), (ii) white matter (WM), (iii) cere-
brospinal fluid (CSF) or (iv) background. For these two im-
ages, the mean intensity values of each region are known
in prior. In case these values are unknown, a standard ap-
proach of alternating the estimation of mean intensity val-
ues and region estimates can be used [0, 15].

The input images to be segmented are shown in the first
column of Figure 3. The middle column shows initializa-
tions made for the respective images. For an easy visualiza-
tion, each phase is represented in different color. The last
column shows the output segmentations. The segmentation
results are found to be independent of the initialization.

For evaluating the improvement in the computational
time from the serial implementation to the GPU-based im-
plementation, we use the quantitative metric: “Speedup”,

Table 1: The details of the CPU and GPUs used in the eval-
uation are described in this Table.

Model Number of
cores used
CPU (Work Station)
Intel Xeon E5520 1
GPUs (NVIDIA)
(1) GT 9800 112
(2) GTX 260 216
(3) GTX 285 240
and it is defined as follows:
Speedup — Time taken on CPU
peedup = Time taken on GPU"

Note that the time taken for GPU also includes the data
transfer times for copying data from CPU to GPU memory,
as well as from GPU to CPU memory. The serial imple-
mentation is run on one of the 4 CPU cores, dedicated ex-
clusively for this task. Notice that, in general, if the speedup
achieved is around 2 — 3 times only, then it is not consid-
ered worth enough to go for a GPU-based implementation.
The details of CPU and GPUs that we use for the evalua-
tion are presented in Table 1. We first study the effect of
size of the input image to be segmented on the speedup.
For this purpose, we fixed the number of iterations to 300.
Figure 4 shows the plots of time-taken (in seconds) ver-
sus “size of the image”. We notice that the time taken for
both serial implementation on CPU, and parallel implemen-
tation on GPUs scale approximately linearly with the image
size. The corresponding speedups are presented in Figure 5.
We notice that for sufficiently large images (approximately
1024 x 1024 size or more), the speedup achieved with GTX
285 is close to 40, and this is quite satisfactory. Out of the 3
GPUs, GTX 285 provided the maximum speedup followed
by GTX 260 and then, GT 9800.

Finally, we study the effect of “number of iterations” on
the speedup, for a given image size. For this experiment,
we fixed the image size to 512 x 512 pixels. Figure 6 shows
the plots of time-taken (in seconds) versus “number of itera-
tions”. Here also, for both serial and GPU implementations,
the time taken is scaling approximately linearly with num-
ber of iterations. Figure 7 shows corresponding speedups.
The speedups are again around 35 — 40 for GTX 285, for
iterations more than 400.

Recently, in [ 4], GPU-based parallel implementation of
multi-phase segmentation is done for another convex algo-
rithm proposed in [12]. We notice that, on images of size
625 % 391 pixels, for 750 iterations and four phases, on GTX
280, they reported an average segmentation time of 1008.72
ms. When we run our algorithm on GTX 285, with similar
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Figure 3: Segmentation results from the convex multi-phase segmentation algorithm. First column shows the input images
to be segmented. The middle column shows initialization made; for an easy visualization, each phase is shown in different
color. The last column shows the segmentation results.
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Figure 4: Time-taken (in seconds) versus “size of the image” (in terms of number of pixels) for the serial implementation
on CPU, and parallel implementation using CUDA on 3 GPUs. The second figure shows separately the plots only for GPUs
from the first figure.
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Figure 5: Speedup versus “size of the image” (in terms of
number of pixels) for the 3 GPUs (for fixed number of iter-
ations).

parameter values and image size, it took, on an average, 598
ms, and the corresponding speedup is 35.58. But, no defi-
nite conclusions can be drawn from these figures, since the
comparison is not thorough, and is not done on the same
data set, and no quantitative accuracy measures are com-
puted. However, we want to reemphasize that, the main
goal of this paper is to provide insights into the GPU-based
implementation of the convex multi-phase algorithm of [3],
and evaluate the improvements in the computational perfor-
mance, compared to it’s original serial implementation.

5. Conclusions

In this paper, we have presented a GPU-based implemen-
tation of the convex multi-phase algorithm for Mumford-
Shah segmentation model, proposed in [3]. The main con-
tribution of this paper is to provide insights into paralleliz-

40
35
30
25
a
?
T 20
LY
=
wy
15 —
—+—GT9800
10
== GTX 285
5 —te—GTX 260
0 L
0 100 200 300 400 5 600 700
Number of Iteration

Figure 7: Speedup versus “number of iterations” for the 3
GPUs (for a fixed image size).

ing the convex segmentation algorithm of [3]. We have pre-
sented a detailed description on the tasks that can be par-
allelized, and various optimization approaches for speeding
up the memory access. We made our CUDA code available
online at: http://ltsS5srv2.epfl.ch/~gorthi/
software.html.

The speedups achieved with CUDA implementation are
quite satisfactory. As mentioned earlier, [3] provides con-
vex formulation for a class of vector-valued problems, but,
at the cost of increased computational complexity due to
increased dimensionality compared to the original non-
convex model [11]. Hence, GPU-based implementation is
particularly useful in this context as it can compensate for
the increased computational complexity.

Among the 3 GPUs we have evaluated, the latest one
is GTX 285 (available from the beginning of 2009), and it
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provided the best speedups (up to 40) out of the 3 GPUs.
With the rapid developments in GPU technologies nowa-
days, new GPUs can be expected to provide even more sig-
nificant speedups.

One of the computationally expensive task in the CUDA
implementation of the current algorithm on GPU is memory
access. In the recent versions of GPU, a new memory struc-
ture: “surfaces” has been introduced. The speedup may be
further improved by profiting from such structures for re-
ducing the memory access time.
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