
Coordination through Querying in the Youtopia System

[Demonstration paper]

Nitin Gupta, Lucja Kot, Gabriel Bender, Sudip Roy and
Johannes Gehrke

Cornell University
Ithaca, NY 14853, USA

{niting, lucja, gbender, sudip, johannes}@cs.cornell.edu

Christoph Koch

EPFL
CH-1015 Lausanne, Switzerland

christoph.koch@epfl.ch

ABSTRACT

In a previous paper, we laid out the vision of declarative data-

driven coordination (D3C) where users are provided with novel ab-

stractions that enable them to communicate and coordinate through

declarative specifications [3].

In this demo, we will show Youtopia, a novel database system

which is our first attempt at implementing this vision. Youtopia

provides coordination abstractions within the DBMS. Users submit

queries that come with explicit coordination constraints to be met

by other queries in the system. Such queries are evaluated together;

the system ensures that their joint execution results in the satisfac-

tion of all coordination constraints. That is, the queries coordinate

their answers in the manner specified by the users.

We show how Youtopia and its abstractions simplify the imple-

mentation of a three-tier flight reservation application that allows

users to coordinate travel arrangements with their friends.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous

General Terms

Design

1. INTRODUCTION
In the long history of humankind (and animal kind, too) those

who learned to collaborate and improvise most effectively have pre-

vailed. — Charles Darwin.

The abstraction of isolation has long been one of the main func-

tionalities provided by a database system. We have developed You-

topia, a system that — in addition to isolation through transactions

— provides Web applications with abstractions that allow users to

coordinate actions. Programs can selectively give up isolation in

order to accomplish a larger task. In particular, our system allows

users to register entangled queries that can only be answered in

conjunction with other entangled queries posed by other users. The

system evaluates sets of such queries jointly in order to ensure co-

ordinated answers. We make this notion of coordination more con-

crete by introducing the example we showcase in our demo.

We will show a travel Web site that enables users to coordinate

flight and hotel reservations. For example, suppose two friends,

Copyright is held by the author/owner(s).
SIGMOD’11, June 12–16, 2011, Athens, Greece.
ACM 978-1-4503-0661-4/11/06.

Jerry and Kramer, plan a vacation together. Each wants to book a

seat on a flight from New York to Paris that satisfies certain date

and price constraints. They also want to be on the same flight.

They would like to coordinate their bookings while still performing

them individually. The idea is to avoid delegating the booking of

both seats to one person, or coordinating out-of-band to choose the

flight and trying to make near-simultaneous bookings. Conceptu-

ally, the two booking queries should run “jointly” even though they

were submitted individually and at different times. The users want

to give up isolation in a principled way in order to achieve coordi-

nation. Youtopia supports this functionality, and it does so within

the DBMS, freeing the developers of the travel website from the

burden of implementing it in the middle tier.

Youtopia supports coordination through entangled queries [2].

These queries use special answer constraints as a means of coordi-

nation. The idea is that the answer to the query is returned through

an answer relation that is shared among multiple queries in the sys-

tem. An individual query can only be answered if the system-wide

answer relation satisfies a postcondition specified with the query

itself. This postcondition can, and usually will, pertain to answers

of other queries in the system. For example, a user can specify an

entangled query that states “please give me the number of a flight

to Paris, but only if my friend’s query about the same subject re-

ceives the same flight number”. A query whose postcondition is

not satisfied is not rejected but waits for an opportunity to retry.

We believe that Youtopia captures coordination at the ideal level

of abstraction [3]. On one hand, entangled queries are simpler to

use than lower-level coordination constructs offered by operating

systems; on the other, they support many interesting use cases.

They also add real power for new applications: In particular, the

functionality of matching and jointly executing entangled queries

is not supported by triggers, nested transactions [4], or sagas [1].

Focus of this demonstration. We will demonstrate Youtopia

and its entangled query evaluation algorithm [2] using the travel

Web application described above, showing how entangled queries

allowed us to build this application with ease. We will also demon-

strate how query matching and execution works inside Youtopia.

2. OUR SYSTEM
In this section, we briefly introduce entangled queries and present

the Youtopia system. A more complete treatment is found in our

associated technical paper [2].

2.1 Entangled Queries
An entangled query has the following syntax. It is essentially a

SELECT statement extended with coordination constraints.



Flights Airlines

fno dest

122 Paris

123 Paris

134 Paris

136 Rome

fno airlines

122 United

123 United

134 Lufthansa

136 Alitalia

(a)

Kramer’s query Jerry’s query

answer tuple: R(‘Kramer’, 122) R(‘Jerry’, 122)

answer relation

constraint: R(‘Jerry’, 122) R(‘Kramer’, 122)

satisfies

satisfies

(b)

Figure 1: (a) Flight database (b) Mutual constraint satisfaction

SELECT select_expr

INTO ANSWER tbl_name [, ANSWER tbl_name] ...

[WHERE where_answer_condition]

We illustrate the semantics of entangled queries with an example.

Suppose Kramer, wants to travel to Paris on the same flight as Jerry.

He can express his request with the following entangled query.

SELECT ’Kramer’, fno INTO ANSWER Reservation

WHERE

fno IN (SELECT fno FROM Flights WHERE dest=’Paris’)

AND (’Jerry’, fno) IN ANSWER Reservation

CHOOSE 1

Reservation is the name for the relation which will contain

the answers to all the current queries in the system. The SELECT

clause specifies Kramer’s own expected answer, or, in other words,

his contribution to the answer relation. This contribution, however,

is conditional on two requirements, which are given in the WHERE

clause. First, the flight number in question must correspond to a

flight to Paris. Second, the answer table must also contain a tu-

ple with the same flight number but Jerry as the traveler name.

Clearly, if this query is evaluated by itself, the answer constraint

cannot be satisfied. However, the query is not rejected, but rather

gets registered in the system for possible later execution.

Suppose now Jerry submits a symmetric query which looks just

like Kramer’s, except that the strings ’Kramer’ and ’Jerry’ are

swapped. Once the system has received both queries and recog-

nized that they “match”, it answers both of them simultaneously in

a way that ensures a coordinated flight number choice. In general,

there may be many different suitable flights, but Kramer and Jerry

only want to make a booking on one of them. The semantics of our

queries is such that each query only receives one answer tuple, as

indicated by the CHOOSE 1 clause. If the database is as shown in

Figure 1 (a), the system nondeterministically chooses either flight

122 or 123 and returns appropriate answer tuples. Figure 1 (b)

shows how the constraints between the queries are satisfied.

2.2 System Description
The system architecture of our demonstration is shown in Figure

2. Note that entangled queries are handled within the Youtopia

system itself. Entangled queries are generated by the middle tier

and submitted to Youtopia. The query compiler processes them and

Figure 2: Demo Architecture

translates them to an intermediate representation inside Youtopia

for processing by the coordination component. The coordination

component runs whenever an entangled query arrives in the system.

The coordination logic accesses regular database tables as well as

other internal tables that store the list of pending queries [2]. The

execution engine evaluates queries on the database as required by

the coordination component, as well as executing any other queries

and updates that may be necessary.

Our demonstration includes three applications that are built on

top of Youtopia. The first application is the travel Web site that

allows users to coordinate travel and hotel reservations with their

Facebook friends. The application itself follows a standard three-

tier architecture. The graphical frontend runs in a browser; it pro-

vides an interface to all the middle tier functionality. At the middle

tier, we have implemented application logic to handle the standard

functionality of a travel Web site such as searching for flights and

hotels, selecting specific flights and hotels, and to create and co-

ordinate new travel reservations based on the user’s list of friends

that is populated using the Facebook API. The application logic

also contains an “account view” where a user can see pending or

confirmed reservations.

Our second application is an SQL command line interface which

allows SQL and entangled queries to be input directly to the system

by the user. The third application is an administrative interface

which allows us to show the internal state of the system and to

visualize the state created by the matching algorithms.

3. DEMONSTRATION OUTLINE
We will demonstrate Youtopia’s support for entangled queries

using the travel plan coordination scenario. Our goal is to show

that entangled queries are a clean, robust and powerful abstraction,

and that they make it easy to implement coordination-driven ap-

plications which would be difficult to program using existing ab-

stractions. We also demonstrate the scalability of our coordination

algorithm by allowing our examples to be run on a loaded system,

where a large number of entangled queries are trying to coordinate

simultaneously.

3.1 Coordinating Travel with Youtopia
We will demonstrate the following scenarios.

Book a flight with a friend. The first example will show how



Figure 3: Choosing a Friend for Flight Coordination

Figure 4: Viewing Friends’ Existing Flight Bookings

a user, Jerry, may use our system to coordinate flight plans with a

Facebook friend, Kramer. He begins the process by logging in to

Facebook so that Kramer’s contact information can be imported.

Next, Jerry chooses Kramer from his list of friends; this is shown

in Figure 3. He can now specify that he wants to fly in an adjacent

seat to Kramer, or just that he wants to travel on the same flight.

He submits his request, and the system translates it into an entan-

gled query which is processed by Youtopia. Once the system is

able to find a flight booking which allows him to coordinate with

Kramer as he requested, it makes a flight reservation for him. Jerry

is notified of the success of his request via a Facebook message.

Jerry may also follow an alternate path to achieve the same goal.

He can browse for flights first and find out if any of his friends

already have bookings on them. This is shown in Figure 4. If

he decides he is able to choose a flight based on this information,

he can go ahead and make his own booking directly through the

system.

Book a flight and a hotel with a friend. In this scenario, Jerry

is coordinating with Kramer on flight plans as before, but he also

requests to stay in the same hotel. To accomplish this, Jerry begins

by performing his flight coordination request as before. Next, he

uses a very similar interface and mechanism to also specify a ho-

tel coordination request with Kramer. Once he has completed both

parts of his request, he submits an entangled query to the system

that contains constraints on both the flight and the hotel. We will

then show how Kramer can log into the system and submit a match-

ing request. On submission of this second request, Youtopia jointly

executes the entangled queries and obtains answers, which are then

communicated to the users of our application via a Facebook mes-

sage.

Multiple simultaneous bookings. Next, we will demonstrate

how our system works when multiple users are concurrently trying

to coordinate flight and hotel reservations together. This is a sce-

nario analogous to the previous case, except that it involves multi-

ple pairs of users trying to coordinate with each other.

Group flight booking. Users may wish to coordinate travel

plans in groups larger than two. We demonstrate how a group of

four friends can jointly specify that they wish to travel on the same

flight to their joint destination. Each individual specifies their re-

quest through a process analogous to Jerry’s workflow in the first

example; however, instead of choosing just one friend, they se-

lect the entire group of friends that will be taking part in the trip.

Again, the system processes their requests to make coordinated

flight reservations for them.

Group flight and hotel booking. We show how a group of

friends can coordinate not just on flights, but on hotels as well,

just as in the two-person case.

Ad-hoc examples. Finally, we will demonstrate how other ad-

hoc coordination scenarios can be created and supported in Youtopia.

Arbitrary groups of users are able to coordinate on their travel

and/or hotel reservation plans, in flexible ways. For example, it

is possible to have a group of three friends, Jerry, Kramer and

Elaine, where Jerry and Kramer coordinate on flight reservations

only, whereas Kramer and Elaine coordinate on both flight and ho-

tel reservations.

3.2 User Interfaces
In addition to the visual interface described above, we also have

an administrative (“debugging”) interface to Youtopia with a com-

mand line. The command line allows us to show how we can di-

rectly input SQL code into the system, specifying entangled queries

on our travel database. Any of the above examples can be executed

in this way, as well as any other arbitrary queries the user may care

to specify.

Furthermore, the administrative interface has a special mode that

enables visual inspection of the state of the system. This allows us

to show to the audience facts about the system state such as the set

of queries pending to be entangled and their representation in the

system.

4. ACKNOWLEDGMENTS
This research has been supported by the NSF under Grants IIS-

0534404 and IIS-0911036, by a Google Research Award, by NYS-

TAR under Agreement C050061, and by the iAd Project of the Re-

search Council of Norway. Any opinions, findings, conclusions or

recommendations expressed in this paper are those of the authors

and do not necessarily reflect the views of the sponsors.

5. REFERENCES
[1] H. Garcia-Molina and K. Salem. Sagas. SIGMOD Rec.,

16(3):249–259, 1987.

[2] N. Gupta, L. Kot, S. Roy, G. Bender, J. Gehrke, and C. Koch.

Entangled queries: enabling declarative data-driven

coordination. In SIGMOD, 2011.

[3] L. Kot, N. Gupta, S. Roy, J. Gehrke, and C. Koch. Beyond

isolation: Research opportunities in declarative data-driven

coordination. SIGMOD Record, 39(1):27–32, 2010.

[4] N. A. Lynch and M. Merritt. Introduction to the theory of

nested transactions. Theor. Comput. Sci., 62(1-2):123, 1988.


