Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Krylov subspace methods for linear systems with tensor product structure
 
research article

Krylov subspace methods for linear systems with tensor product structure

Kressner, D.  
•
Tobler, C.
2009
SIAM Journal on Matrix Analysis and Applications

The numerical solution of linear systems with certain tensor product structures is considered. Such structures arise, for example, from the finite element discretization of a linear PDE on a d-dimensional hypercube. Linear systems with tensor product structure can be regarded as linear matrix equations for d = 2 and appear to be their most natural extension for d ≥ 2. A standard Krylov subspace method applied to such a linear system suffers from the curse of dimensionality and has a computational cost that grows exponentially with d. The key to breaking the curse is to note that the solution can often be very well approximated by a vector of low tensor rank. We propose and analyze a new class of methods, so-called tensor Krylov subspace methods, which exploit this fact and attain a computational cost that grows linearly with d. Copyright © 2010 Society for Industrial and Applied Mathematics.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

tensorrevision.pdf

Access type

openaccess

Size

339.47 KB

Format

Adobe PDF

Checksum (MD5)

b665dfd9b181b36795e41d0ae6c0bcb9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés