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Abstract. We investigate the behavior of isotropic invariant subspaces of skew-Hamiltonian
matrices under structured perturbations. It is shown that finding a nearby subspace is equivalent
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1. Introduction. A real 2n × 2n matrix of the form

W =

[

A G
H AT

]

, G = −GT , H = −HT ,(1.1)

with A,G,H ∈ R
n×n is called skew-Hamiltonian. The imposed structure has a num-

ber of consequences for the eigenvalues and eigenvectors of W ; one is that each eigen-
value appears at least twice. Hence, well-known results from matrix perturbation
theory predict that the eigenvectors of W are extremely ill-conditioned, i.e., they may
change drastically under small perturbations. For example, consider the parameter-
dependent matrix

W (ε1, ε2) =









1 0 0 0
0 2 0 0
ε1 ε2 1 0
−ε2 0 0 2









.

The vector e1 = [1, 0, 0, 0]T is an eigenvector of W (0, 0) associated with the eigenvalue
λ = 1. No matter how small ε1 > 0 is, any eigenvector of W (ε1, 0) associated with
λ has the completely different form [0, 0, α, 0]T for some α 6= 0. On the other hand,
W (0, ε2) has an eigenvector [1, 0, 0, ε2]

T rather close to e1. The fundamental difference
between W (ε1, 0) and W (0, ε2) is that the latter is a skew-Hamiltonian matrix while
the former is not.

In this paper we investigate the behavior of eigenvectors of skew-Hamiltonian
matrices under perturbations that are structure-preserving, as in the case of W (0, ε2).
More general, the discussion is concerned with isotropic invariant subspaces, those are
– loosely speaking – the invariant subspaces of W associated with at most one copy of
each eigenvalue. We derive error bounds that allow users of strongly backward stable
eigensolvers [11, 19] to quantify their obtained results. Furthermore, applications that
directly depend on the computation of isotropic invariant subspaces such as certain
Riccati equations [13] and quadratic eigenvalue problems [18] may benefit from these
bounds.
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The perturbation theory given here owes much to the fact that there exist con-
siderably simple condensed forms for skew-Hamiltonian matrices. Section 2 reviews
some of these forms along with other theoretical tools required later on. In Section 3,
the connection between finding a nearby isotropic subspace and solving a quadratic
matrix equation is explained. The solution of this equation is complicated by an ar-
tificial singularity, its lengthy derivation is described in Section 4. The subsequent
section contains the central result of this work, Theorem 5.2 gives an upper bound
for the sensitivity of isotropic invariant subspaces. This will lead us to define a cor-
responding condition number, and Section 6 contains some discussion on how this
quantity can be computed. Finally, in Section 7 a numerical example is presented to
illustrate the use of the derived condition number.

2. Basic tools. Equivalent to the block representation (1.1) a skew-Hamiltonian
matrix W is characterized by the fact that JnW is skew-symmetric, where Jn =
[

0
−In

In

0

]

and In is the n×n identity matrix. In the following we will drop the subscript

n whenever the dimension of the corresponding matrix is clear from its context. A
matrix S ∈ R

2n×2n is called symplectic if ST JS = J . It is easy to show that in this
case JS−1WS is skew-symmetric, thus symplectic similarity transformations preserve
skew-Hamiltonian structures. Moreover, an orthogonal matrix U is symplectic if and
only if it has the representation

U =

[

U1 U2

−U2 U1

]

, U1, U2 ∈ R
n×n.(2.1)

We will call such a matrix orthogonal symplectic. An important property of U is that
its first k ≤ n columns span an isotropic subspace.

Definition 2.1. A subspace X ⊂ R
2n is called isotropic if JX ⊥ X .

Van Loan [19] showed that for any skew-Hamiltonian matrix W there exists of
an orthogonal symplectic matrix U so that

UT WU =

[

Ã G̃

0 ÃT

]

,(2.2)

where Ã is in real Schur form. Moreover, real eigenvalues and complex conjugate
pairs of eigenvalues may appear in any desirable order on the diagonal of Ã. Closely
related to (2.2) is the following characterization of isotropic invariant subspaces of W .

Lemma 2.2. Let W ∈ R
2n×2n be a skew-Hamiltonian matrix and let X ∈ R

2n×k

(k ≤ n) have orthonormal columns. Then the columns of X span an isotropic in-
variant subspace of W if and only if there exists an orthogonal symplectic matrix
U = [X,Z, JT X,JT Z] with some Z ∈ R

2n×(n−k) so that

UT WU =









k n − k k n − k

k A11 A12 G11 G12

n − k 0 A22 −GT
12 G22

k 0 0 AT
11 0

n − k 0 H22 AT
12 AT

22









.(2.3)

Proof. Assume that the columns of X span an isotropic subspace. Then the
symplectic QR factorization [2] can be used to construct an orthogonal symplectic
matrix U = [X,Z, JT X,JT Z]. Moreover, if the columns of X span an invariant
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subspace then [Z, JT X,JT Z]T WX = 0, completing the proof of (2.3). The other
direction is straightforward.

As the spectral properties of A11 = XT WX and
[

A22 G22

H22 AT
22

]

= [Z, JT Z]T W [Z, JT Z]

do not depend on the choice of bases the following definition can be used to adapt
the notion of simple invariant subspaces to skew-Hamiltonian matrices.

Definition 2.3. Let the orthonormal columns of X ∈ R
2n×k span an isotropic

invariant subspace X of a skew-Hamiltonian matrix W . Furthermore, choose Z ∈
R

2n×(n−k) so that U = [X,Z, JT X,JT Z] is orthogonal symplectic and UT WU has

the form (2.3). Then X is called semi-simple if λ(A11)∩ λ
([

A22

H22

G22

AT
22

])

= ∅ and A11

is nonderogatory, i.e., each eigenvalue of A11 has geometric multiplicity one.
Semi-simple subspaces allow us to block diagonalize W by a simple transforma-

tion. For this purpose, we require two facts about Sylvester equations. The first is a
well-known result, proofs can be found in many places, see e.g. [8].

Proposition 2.4. The Sylvester equation

AP − PB = C

with A ∈ R
n×n, B ∈ R

m×m and C ∈ R
n×m has a unique solution P ∈ R

n×m if and
only if λ(A) ∩ λ(B) = ∅.

The second is concerned with a certain type of singular Sylvester equations that
do not fit into the framework of Proposition 2.4.

Proposition 2.5. The Sylvester equation

AP − PAT = G(2.4)

is solvable for all skew-symmetric matrices G if and only if A is nonderogatory. In
this case, any solution P to (2.4) is real and symmetric.

Proof. This result can be found in [4]. Actually, the second part is not explicitely
stated there but follows easily from the proof of Proposition 5 in [4].

Propositions 2.4 and 2.5 can be combined to successively annihilate the blocks
A12, G12 and G11 in the block representation (2.3) for a semi-simple subspace. To see
this, solve

A11

[

P1 P2

]

−
[

P1 P2

]

[

A22 G22

H22 AT
22

]

= −
[

A12 G12

]

,

and construct the symplectic matrix

SP =









I P1 −P1P
T
2 P2

0 I PT
2 0

0 0 I 0
0 0 −PT

1 I









,

yielding

S−1
P









A11 A12 G11 G12

0 A22 −GT
12 G22

0 0 AT
11 0

0 H22 AT
12 AT

22









SP =









A11 0 G̃11 0
0 A22 0 G22

0 0 AT
11 0

0 H22 0 AT
22









(2.5)
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with a skew-symmetric matrix G̃11. Next, use a solution of

A11Q − QAT
11 = −G̃11(2.6)

to construct

SQ =









I 0 Q 0
0 I 0 0
0 0 I 0
0 0 0 I









.

The matrix SQ is symplectic since Proposition 2.5 guarantees that Q is symmetric.
If the similarity transformation associated with SQ is applied to the right hand side

of (2.5) then the block G̃11 is annihilated. Note that there is a lot of freedom in the
choice of Q as equation (2.6) admits infinitely many solutions. From a numerical point
of view the matrix Q should be chosen so that the condition number of the product
SP SQ is as small as possible.

3. Perturbations and a quadratic matrix equation. Consider an isotropic
invariant subspace X of a skew-Hamiltonian matrix W . Given a skew-Hamiltonian
perturbation E of small norm we now investigate the question whether W +E has an
isotropic invariant subspace X̂ close to X . What follows is in many aspects similar
to the treatment for general matrices by Stewart [14, 15], only that we end up with a
quadratic matrix equation of quite a different nature.

Let the columns of X form an orthonormal basis for X . Apply Lemma 2.2 to con-
struct a matrix Y = [Z, JT Z, JT X] so that Ũ = [X,Y ] is an orthogonal matrix. Note
that ŨT (W +E)Ũ is a permuted skew-Hamiltonian matrix and can be partitioned as

ŨT (W + E)Ũ =





k 2(n − k) k

k W11 WT
23J

T
n−k W13

2(n − k) W21 W22 W23

k W31 WT
21Jn−k WT

11



,(3.1)

where W13 and W31 are skew-symmetric matrices, and W22 is skew-Hamiltonian. For
E = 0, the matrices W21 and W31 are zero and the other blocks in (3.1) correspond
to the block representation (2.3) as follows:

W11 = A11, W13 = G11, W22 =

[

A22 G22

H22 AT
22

]

, W23 =

[

−GT
12

AT
12

]

.

Now, let

X̂ =

(

X + Y

[

P
Q

])

(I + PT P + QT Q)−1/2,(3.2)

Ŷ = (Y − X
[

PT QT
]

)

(

I +

[

P
Q

]

[

PT QT
]

)−1/2

,(3.3)

where P ∈ R
2(n−k)×k and Q ∈ R

k×k are matrices to be determined so that X̂ =
span(X̂) is an isotropic invariant subspace of W + E. This is equivalent to the con-
ditions QT − Q = PT JP and Ŷ T (W + E)X̂ = 0. In terms of (3.1), the latter can be
written as

[

P
Q

]

W11 −
[

W22 W23

WT
21J WT

11

] [

P
Q

]

+

[

P
Q

] [

JW23

WT
13

]T [

P
Q

]

=

[

W21

W31

]

.(3.4)



PERTURBATION BOUNDS FOR ISOTROPIC INVARIANT SUBSPACES 5

Once we have solved (3.4) the sines of the canonical angles between X and X̂ are the
singular values of

Y T X̂ =

[

P
Q

]

(I + PT P + QT Q)−1/2,

see e.g. [16, Sec. I.5]. We will see that (3.4) may admit infinitely many solutions
satisfying QT − Q = PT JP . In the interest of a small distance between X and X̂ a
solution of small norm should be preferred.

4. A solution of the quadratic matrix equation. Solving (3.4) is compli-
cated by two facts. First, we have to guarantee that the solution satisfies QT − Q =
PT JP and second, the linear part of (3.4) is close to a singular linear matrix equation
if W21 ≈ 0. Unfortunately, it is not easy to see from the present formulation of (3.4)
that this singularity is, due to the special structure of the nonlinearities and the right
hand side, artificial. Both issues can be more easily addressed after a reformulation
of (3.4).

4.1. Skew-symmetrizing the bottom part. Let

R = Q + PT J̃P, J̃ =

[

0 In−k

0 0

]

,(4.1)

then R is symmetric if and only if QT − Q = PT JP . The following lemma reveals a
particular useful nonlinear matrix equation satisfied by (P,R).

Lemma 4.1. Let R = Q + PT J̃P be symmetric. Then the matrix pair (P,Q) is
a solution of (3.4) if and only if (P,R) is a solution of

[

P
R

]

W11 −
[

W22 W23

WT
21J WT

11

] [

P
R

]

+

[

Φ1(P,R)
Φ2(P,R) − PT JW21

]

=

[

W21

W31

]

,(4.2)

where

Φ1(P,R) = W23(P
T J̃P ) + P (JW23)

T P + PW13(R − PT J̃P ),

Φ2(P,R) = (R − PT J̃T P )WT
23J

T P − PT JW23(R − PT J̃T P )T

+(R − PT J̃P )T W13(R − PT J̃P ) − PT JW22P.

Proof. Adding the top part of (3.4) premultiplied by PT J ,

PT JW21 = PT JPW11 − PT JW22P − PT JW23Q + PT JP (JW23)
T P + PT JPW13Q,

to the bottom part of (3.4) yields the transformed equation (4.2) after some basic
algebraic manipulations.

The reformulated equation (4.2) has the advantage that the nonlinear function
Φ2(P,R), the right hand side term W31, as well as the coupling term −WT

21JP −
PT JW21 are skew-symmetric. Hence, these terms belong to the range of the operator
R 7→ RW11 − WT

11R provided that W11 is nonderogatory. This indicates that the
singularity caused by this operator is indeed artificial.
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4.2. Solving the decoupled linearized equation. Linearizing (4.2) around
(P,R) = (0, 0) yields

T̃ (P,R) =

[

W21

W31

]

,(4.3)

where the operator T̃ : R
2(n−k)×k × R

k×k → R
2(n−k)×k × R

k×k is given by

T̃ : (P,R) 7→
[

P
R

]

W11 −
[

W22 W23

WT
21J WT

11

] [

P
R

]

−
[

0
PT JW21

]

.

Note that we sometimes identify (X,Y ) ∼
[

X
Y

]

for notational convenience. It is

assumed that the perturbation E is considerably small implying that W21 is small.
Hence, WT

21JP and PT JW21 can be regarded as weak coupling terms. Let us neglect
these terms and consider the operator

T : (P,R) 7→
[

P
R

]

W11 −
[

W22 W23

0 WT
11

] [

P
R

]

,(4.4)

which allows an easy characterization. In the following lemma, Sym(k) denotes the
set of all symmetric k × k matrices, and Skew(k) the set of all skew-symmetric k × k
matrices.

Lemma 4.2. Consider the operator T defined by (4.4) with domain and codomain
restricted to dom T = R

2(n−k)×k ×Sym(k) and codom T = R
2(n−k)×k ×Skew(k), re-

spectively. Then T is onto if and only if W11 is nonderogatory and λ(W11)∩λ(W22) =
∅.

Proof. If W11 is nonderogatory and λ(W11) ∩ λ(W22) = ∅ then we can apply
Propositions 2.5 and 2.4 combined with backward substitution to show that T is
onto. For the other direction, assume that T is onto. The nonderogatority of W11 is
a consequence of Proposition 2.5; it remains to show that λ(W11) ∩ λ(W22) = ∅. By
continuity, we may assume w.l.o.g. that there is a nonsingular matrix X so that Λ =
X−1W11X is diagonal with diagonal elements λ1, . . . , λk ∈ C. Then there is a matrix
R̃0 ∈ C

k×k so that every solution of the transformed equation R̃Λ− Λ̄R̃ = X−1W31X
has the form

R̃ = R̃0 +
k

∑

i=1

αieie
T
i , α1, . . . , αk ∈ C.

Inserting this representation into the equation P̃Λ − W22P̃ − W23X
−T R̃ = W13X

leads to the k separate equations

[

λiI − W22 bi

]

[

p̃i

αi

]

= (W13X + W23R̃0)ei,(4.5)

where p̃i and bi denote the ith columns of P̃ and W23X
−T , respectively. Equation (4.5)

has a solution for any W13 ∈ R
2(n−k)×k if and only if [λiI − W22, bi] has full rank

2(n − k). This implies λi 6∈ λ(W22), since otherwise

rank
([

λiI − W22 bi

])

≤ rank(λiI − W22) + 1 ≤ 2(n − k) − 1,

where we used the fact that the geometric multiplicity of each eigenvalue of the skew-
Hamiltonian matrix W22 is at least two [4, Thm. 1]. Thus λ(W11) ∩ λ(W22) = ∅,
which concludes the proof.
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For the remainder of this section only the restricted operator T will be considered
and it will be assumed that this operator is onto. Note that for E = 0 the latter is
equivalent to the assumption that X is semi-simple, see Definition 2.3. The dimensions
of the matrix spaces Skew(k) and Sym(k) differ by k. More precisely, it can be shown
that the set of solutions corresponding to a particular right hand side in the codomain
of T form an affine subspace of dimension k [4]. In view of an earlier remark one should
pick a solution that has minimal norm. Using the Frobenius norm this solution is
uniquely determined as the following lemma shows.

Lemma 4.3. Let T be defined as in (4.4) and let (W21,W31) ∈ codom T . Then
there is one and only one matrix pair (P⋆, R⋆) ∈ dom T satisfying

‖(P⋆, R⋆)‖F = min
(P,R)∈dom T

{

‖(P,R)‖F | T (P,R) =

[

W21

W31

]}

.(4.6)

Proof. Using the second part of Proposition 2.5 the constraint (P,R) ∈ dom T in
(4.6) can be dropped. Let us define

KT := WT
11 ⊗ I − I ⊗

[

W22 W23

0 WT
11

]

,

where ’⊗’ denotes the Kronecker product of two matrices [5, Sec. 4.5.5]. Using the vec
operator, which stacks the columns of a matrix into one long vector, the minimization
problem (4.6) can be written in the form

min
x∈R(2n−k)×k

{‖x‖2 : KT · x = w} ,(4.7)

where w = vec(
[

W21

W31

]

). Well-known results about linear least-squares problems show

that (4.7) has a unique minimum given by K†
T · w, where K†

T denotes the pseudo-
inverse of KT [5, Sec. 5.5.4].

This lemma allows us to define an operator

T † : codom T → dom T

which maps a matrix pair (W21,W31) to the solution of (4.6). A sensible choice of
norm for T † is the one induced by the Frobenius norm,

‖T †‖ := sup
‖(W21,W31)‖F =1

(W21,W31)∈codom T

‖T †(W21,W31)‖F .(4.8)

4.3. Solving the coupled linearized equation. The key to solving the cou-
pled equation (4.3) is to note that T̃ can be decomposed into T − △TW , where
△T : dom T → codom T is defined by

△T : (P,R) 7→
[

0
PT JW21 + WT

21JP

]

.(4.9)

This implies that the composed operator T † ◦△T : dom T → dom T is well-defined,
its norm is again the one induced by the Frobenius norm.

Lemma 4.4. If T is onto and δ := ‖T † ◦ △T ‖ < 1 then

T̃ †̃(W21,W31) :=

∞
∑

i=0

(T † ◦ △T )i ◦ T †(W21,W31)(4.10)
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is a solution of (4.3).
Proof. If δ < 1 then

∥

∥

∥

∞
∑

i=0

(T † ◦ △T )i ◦ T †
∥

∥

∥
≤

∞
∑

i=0

δi‖T †‖ =
‖T †‖
1 − δ

,(4.11)

implying that the infinite sum in (4.10) converges absolutely. Moreover, pre-multi-

plying (4.10) with T −△T shows that T̃ †̃(W21,W31) solves (4.3).
Inequality (4.11) yields the bound

‖T̃ †̃(W21,W31)‖F ≤ ‖T †‖
1 − δ

· ‖(W21,W31)‖F .(4.12)

An upper bound for the quantity δ is clearly given by 2‖T †‖‖W21‖F . It should be

stressed that T̃ †̃ : codom T → dom T does not necessarily give the solution of smallest
norm. However, if ‖△T ‖ is sufficiently small it can be expected to be rather close to
it.

Lemma 4.5. Under the assumption of Lemma 4.4 let T̃ † : codom T → dom T
denote the operator that maps a pair (W21,W31) to the minimal norm solution of the
coupled equation (4.3). Then

lim
△T →0

T̃ †̃ = lim
△T →0

T̃ † = T †.(4.13)

Proof. Lemma 4.4 shows that the coupled equation (4.3) has, for a given right
hand side in codom T , a nonempty set of solutions. This set is, according to Propo-
sition 2.5, a subset of dom T . The solution of minimal norm is uniquely defined, for
reasons similar to those that have been used in the proof of Lemma 4.3. Hence, the
operator T̃ † is well-defined. By checking the four Penrose conditions it can be shown

that T̃ †̃ = (T −△T ◦ (T † ◦T ))†. Equalities (4.13) follow from the fact that the ranges
of T −△T ◦ (T † ◦ T ), T̃ and T have equal dimensions [16, Sec. III.3].

We remark that Lemma 4.4 and Lemma 4.5 are not restricted to perturbations
of the form (4.9). In fact, they hold for any △T : dom T → codom T satisfying
‖T † ◦ △T ‖ < 1.

4.4. Solving the nonlinear equation. Using the terminology developed above
we can rewrite the nonlinear equation (4.2) in the more convenient form

T̃ (P,R) + Φ(P,R) =

[

W21

W31

]

,(4.14)

where Φ(P,R) = [Φ1(P,R)T ,Φ2(P,R)T ]T .
Theorem 4.6. Let the matrices Wij be defined by (3.1) and assume that the

operator T defined by (4.4) is onto in the sense of Lemma 4.2. Assume that δ =
2‖T †‖‖W21‖F < 1, where ‖T †‖ is defined by (4.8). Set

γ = ‖(W21,W31)‖F , η =

∥

∥

∥

∥

[

WT
23J

T W13

W22 W23

]∥

∥

∥

∥

F

, κ =
‖T †‖
1 − δ

.

Then if

8γκ < 1, 20γηκ2 < 1,
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there is a solution (P,R) of (4.14) satisfying

‖(P,R)‖F ≤ 2γκ.(4.15)

Proof. We adapt the technique used by Stewart [15, Sec. 3] and solve (4.14) by
constructing an iteration. First, some facts about the nonlinearities are required:

‖Φ1(P,R)‖F ≤ ‖W13‖F (‖P‖F ‖R‖F + ‖P‖3
F ) + 2‖W23‖F ‖P‖2

F ,

‖Φ2(P,R)‖F ≤ η‖(P,R)‖2
F + ‖W13‖F (2‖P‖2

F ‖R‖F + ‖P‖4
F ) + 2‖W23‖F ‖P‖3

F ,

⇒ ‖Φ(P,R)‖F ≤ (1 +
√

3)η‖(P,R)‖2
F + (

√
2 +

√
3)η‖(P,R)‖3

F + η‖(P,R)‖4
F .

Using a rough estimate, we have ‖Φ(P,R)‖F ≤ 4η‖(P,R)‖2
F for ‖(P,R)‖F ≤ 1/4.

Similarly, it can be shown that

‖Φ(P̂ , R̂) − Φ(P,R)‖F ≤ [2(1 +
√

3)η max{‖(P̂ , R̂)‖F , ‖(P,R)‖F }
+4(

√
2 +

√
3)η max{‖(P̂ , R̂)‖F , ‖(P,R)‖F }2

+8η max{‖(P̂ , R̂)‖F , ‖(P,R)‖F }3] · ‖(P̂ − P, R̂ − R)‖F

≤ 10η max{‖(P̂ , R̂)‖F , ‖(P,R)‖F } · ‖(P̂ − P, R̂ − R)‖F ,

where the latter inequality holds for max{‖(P,R)‖F , ‖(P̂ , R̂)‖F } ≤ 1/4. Next, we
define a sequence by (P0, R0) = (0, 0) and

(Pk+1, Rk+1) = T̃ †̃(W21,W31) + T̃ †̃ ◦ Φ(Pk, Rk).

Note that this iteration is well-defined as Φ : dom T → codom T . We show by
induction that the iterates stay bounded. Under the assumption ‖(Pk, Rk)‖ < 2γκ ≤
1/4 it follows that

‖(Pk+1, Rk+1)‖F ≤ κ(γ + 4η‖(Pk, Rk)‖2
F ) < 2γκ.

The operator T̃ †̃Φ is a contraction on D = {(P,R) : ‖(P,R)‖F < 2γκ} since

‖T̃ †̃ ◦ Φ(P̂ , R̂) − T̃ †̃ ◦ Φ(P,R)‖F ≤ 20γηκ2‖(P̂ − P, R̂ − R)‖F < ‖(P̂ − P, R̂ − R)‖F

for all (P,R) ∈ D and (P̂ , R̂) ∈ D. Thus, the contraction mapping theorem [12] shows
that the sequence (Pk, Rk) converges to a fixed point, which solves (4.14).

Corollary 4.7. Under the assumptions of Theorem 4.6 there is a solution
(P,Q) of the quadratic matrix equation (3.4) satisfying QT − Q = PT JP and

‖(P,Q)‖F ≤ 2γκ + 4γ2κ2 < 2.5γκ.

Proof. The result is a direct consequence of the relationship Q = R − PT J̃P .

5. Perturbations bounds and a condition number. From the discussion in
Section 3 it follows that Corollary 4.7 yields the existence of an isotropic invariant
subspace X̂ of W + E close to X , which is an isotropic invariant subspace of the
unperturbed matrix W .

Corollary 5.1. Under the assumptions of Theorem 4.6 there is an isotropic
invariant subspace X̂ of the skew-Hamiltonian matrix W + E so that

√

tan2 θ1(X , X̂ ) + · · · + tan2 θk(X , X̂ ) ≤ 2γκ + 4γ2κ2 < 2.5γκ,(5.1)
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where θi(X , X̂ ), i = 1, . . . , k, are the canonical angles between X and X̂ .

Proof. Inequality (5.1) follows from Corollary 4.7 using the fact that tan θi(X , X̂ ),
i = 1, . . . , k, are the singular values of the matrix [PT , QT ]T .

The catch of this corollary is that it works with quantities that are usually not
known. For example, the operator T , used to define κ, explicitely depends on the
matrix W + E. However, often not the perturbation E itself but only an upper
bound on its norm is given. For this reason, given a partitioning (2.3) let us use the
unperturbed data to define an operator TW : dom T → codom T as follows:

TW : (P,Q) 7→
[

P
Q

]

A11 −
[

P
Q

]





A22 G22 −GT
12

H22 AT
22 AT

12

0 0 AT
11



 .(5.2)

The operator T †
W and its norm are defined in the same sense as T † and ‖T †‖.

Theorem 5.2. Let U = [X,Z, JT X,JT Z] be orthogonal symplectic and sup-
pose that X = span X is a semi-simple isotropic invariant subspace of the skew-
Hamiltonian matrix W so that

UT WU =









A11 A12 G11 G12

0 A22 −GT
12 G22

0 0 AT
11 0

0 H22 AT
12 AT

22









.(5.3)

Given a skew-Hamiltonian perturbation E, let

UT EU =









E11 E12 E13 E14

E21 E22 −ET
14 E24

E31 E32 ET
11 ET

21

−ET
32 E42 ET

12 ET
22









.

Assume that δ̂ =
√

3‖T †
W ‖ · ‖E‖F < 1, where T †

W is defined by (5.2). Set

γ̂ =

∥

∥

∥

∥

∥

∥





E21

E31

ET
32





∥

∥

∥

∥

∥

∥

F

, η̂ =

∥

∥

∥

∥

∥

∥





A12 G11 G12

A22 −GT
12 G22

H22 AT
12 AT

22





∥

∥

∥

∥

∥

∥

F

+

∥

∥

∥

∥

∥

∥





E12 E13 E14

E22 −ET
14 E24

E42 ET
12 ET

22





∥

∥

∥

∥

∥

∥

F

and κ̂ = ‖T †
W ‖/(1 − δ̂). Then if

8γ̂κ̂ < 1, 20γ̂η̂κ̂2 < 1,

there are matrices P and Q satisfying

‖(P,Q)‖F ≤ 2γ̂κ̂ + 4γ̂2κ̂2 < 2.5γ̂κ̂

so that the columns of

X̂ =

(

X + [Z, JT Z, JT X]

[

P
Q

])

(I + PT P + QT Q)−1/2

form an orthonormal basis for an isotropic invariant subspace of Ŵ = W + E.
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Proof. First, note that the semi-simplicity of X implies that TW is onto. The
operator T̃ , defined in Section 4.2, is decomposed into TW − △TW , where △TW :
dom T → codom T is given by

△TW :

[

P
R

]

7→
[

P
R

]

E11 −





E22 E24 −ET
14

E42 ET
22 ET

12

−E32 −ET
21 ET

11





[

P
R

]

−
[

0
F

]

with F = PT
[

ET
32

E21

]

. Hence, ‖△TW ‖ ≤
√

3‖E‖F and Lemma 4.4 implies that

T̃ †̃ =
∞
∑

i=0

(T †
W ◦ △TW )i ◦ T †

W

converges absolutely and satisfies ‖T̃ †̃‖ ≤ κ̂. The remainder of the proof is analogous
to the proof of Theorem 4.6.

The bound (5.1) on the canonical angles between X and X̂ holds with the quan-
tities γ and κ replaced by γ̂ and κ̂:

‖ tan Θ(X , X̂ )‖F ≤ 2γ̂κ̂ + 4γ̂2κ̂2 < 2.5γ̂κ̂.(5.4)

Similar to the standard notion of the condition number for an invariant subspace
of a general matrix [16], we define the structured condition number cW (X ) for a semi-
simple isotropic invariant subspace X of a skew-Hamiltonian matrix by the quantity
that is approximated by ‖Θ(X , X̂ )‖F /ε as the perturbation level ε tends to zero.
From the bound (5.4) and the expansion of tan(·) around zero we conclude that
cW (X ) satisfies

cW (X ) := lim
ε→0

sup
‖E‖F ≤ε

E skew-Hamiltonian

‖Θ(X , X̂ )‖F

ε
≤ α‖T †

W ‖

for some α ≤ 2. The presence of the factor α in this bound is artificial; a slight
modification of the proof of Theorem 4.6 shows that α can be made arbitrarily close
to one under the assumption that the perturbation E is sufficiently small. This reveals
that ‖T †

W ‖ is an upper bound on cW (X ).

To show that cW (X ) and ‖T †
W ‖ actually coincide we construct skew-Hamiltonian

perturbations E so that

lim
‖E‖F →0

‖Θ(X , X̂ )‖F /‖E‖F ≥ ‖T †
W ‖.

holds. Given a block Schur decomposition of the form (5.3), choose matrices E21

and E31 so that ‖(E21, E31)‖F = 1, ‖T †
W (E21, E31)‖F = ‖T †

W ‖, and consider the
perturbation

E = ε · [Z, JT X,JT Z]

[

E21

E31

]

XT .

By choosing ε sufficiently small, we may assume that there is an invariant subspace
X̂ of W +E satisfying ‖Θ(X , X̂ )‖2 < π

2 . This implies the existence of matrices P and
Q so that the columns of

X̂ =

(

X + [Z, JT Z, JT X]

[

P
Q

])

(I + PT P + QT Q)−1/2
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form an orthonormal basis of X̂ . We have seen that any such matrix pair (P,Q) must
satisfy the nonlinear matrix equation

TW (P,R) −△TW (P,R) + Φ(P,R) = ε

[

E21

E31

]

,(5.5)

where R, △TW and Φ are defined as in (4.1), (4.9) and (4.14), respectively. If we
decompose

(P,R) = (P1 + P2, R1 + R2), (P1, R1) ∈ kernel(TW ), (P2, R2) ∈ kernel(TW )⊥,

then

(P2, R2) = ε · T †
W (E21, E31) + T †

W ◦ [△TW (P,R) − Φ(P,R)].

Since ‖(P,R)‖ = O(ε), it follows that ‖△TW (P,R) − Φ(P,R)‖F = O(ε2) and thus

lim
ε→0

‖(P2, R2)‖F /ε = ‖T †
W (E21, E31)‖F = ‖T †

W ‖.

Combining this equality with ‖(P,R)‖F ≥ ‖(P2, R2)‖F and ‖Θ(X , X̂ )‖F = ‖(P,R)‖F +
O(ε2) yields the desired result:

lim
ε→0

‖Θ(X , X̂ )‖F /ε ≥ ‖T †
W ‖.

6. On the computation of ‖T †
W ‖. The discussion above shows that ‖T †

W ‖
measures the sensitivity of an isotropic invariant subspace. It remains to compute
this quantity. It turns out that ‖T †

W ‖ is considerably easy to compute if k = 1 (real
eigenvectors).

Lemma 6.1. Let λ ∈ R be an eigenvalue of the skew-Hamiltonian matrix W with
algebraic multiplicity two, and let x be an associated eigenvector satisfying ‖x‖2 = 1.
Given a partitioning of the form (5.3) with respect to x it follows that

‖T †
W ‖ = σmin(Wλ)−1,

where σmin denotes the minimum singular value of a matrix and

Wλ =

[

A22 − λI G22 −GT
12

H22 AT
22 − λI AT

12

]

.

Proof. The operator TW can be identified with
[

Wλ

0

]

. Hence,

‖T †
W ‖ = sup

‖x‖2=1

‖T †
W (x, 0)‖2 = sup

‖x‖2=1

‖W †
λx‖2 = σmin(Wλ)−1,

using the fact that the space of 1 × 1 skew-symmetric matrices is {0}.
If UT WU is in skew-Hamiltonian Schur form (2.2) then H22 = 0 and A22 is in real

Schur form. Then the computation of ‖T †
W ‖ becomes particularly cheap. Construct

an orthogonal matrix Q so that

WλQ =

[

T11 T12 0
0 TT

22 0

]
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with upper triangular matrices T11 and T22. Since Q can be represented as a product
of O(n) Givens rotations, see [5, Sec. 12.5], the computation of T11, T12 and T22

requires O(n2) floating point operations (flops). In this case, one of the condition
number estimators for triangular matrices [6, Ch. 15] can be used to estimate

∥

∥

∥

∥

∥

[

T11 T12

0 TT
22

]−1
∥

∥

∥

∥

∥

2

= σmin(WλU)−1 = σmin(Wλ)−1

within O(n2) flops.
The case k > 1 is more complicated. A possible but quite expensive option is

provided by the Kronecker product approach that was already used in the proof of
Lemma 4.3. Let

KTW
:= AT

11 ⊗ I − I ⊗





A22 G22 −GT
12

H22 AT
22 AT

12

0 0 AT
11





and let the columns of KSkew form an orthonormal basis for all vectors in vec(codom T ).

Then ‖T †
W ‖ is given by the minimum singular value of the matrix KT

SkewKTW
. Note

that this is an (2nk − k(3k + 1)/2)× (2nk − k2) matrix and thus a direct method for
computing its minimum singular value requires O(k3n3) flops.

Another approach would consist of adapting a condition estimator for Sylvester
equations [3, 9] to estimate ‖T †

W ‖. This would require the application of T †
W (and

its dual) to particular elements of codom T (and dom T ). The efficient and reliable
computation of these “matrix-vector products” is a delicate task, see e.g. [7], and
beyond the scope of this paper.

7. Numerical Example. Algorithms for computing the derived condition num-
bers for eigenvectors of skew-Hamiltonian matrices have been implemented in Fortran
77. They are part of HAPACK [1], a prospective software library for solving eigen-
value problems with Hamiltonian, skew-Hamiltonian or block cyclic structures. Let
us illustrate their use with the following 2n × 2n skew-Hamiltonian matrix:

Wn =

































0 −1 · · · −1 0 1 · · · 1

0 −1 · · · −1 −1 0
. . .

...
...

. . .
. . .

...
...

. . .
. . . 1

0 · · · 0 −1 −1 · · · −1 0
0 · · · · · · 0 0 0 · · · 0
...

... −1 −1
. . .

...
...

...
...

...
. . . 0

0 · · · · · · 0 −1 −1 · · · −1

































.

We computed exact values of ‖T †
W ‖ for the eigenvector e1 of Wn, n = 2, . . . , 30.

Furthermore, we applied the algorithm proposed in Section 6 to produce estimates
of ‖T †

W ‖. These theoretical results were compared with practical observations in the
following way. A skew-Hamiltonian matrix E with random entries chosen from N(0, 1)
had been scaled so that ‖E‖F = 10−10. Using HAPACK routines, we computed
eigenvectors v and w corresponding to two identical eigenvalues of Wn + E that
have smallest absolute value. Let the columns of U form an orthonormal basis for
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Fig. 7.1. Exact, estimated and observed values of ‖T †
W

‖ for the eigenvector e1 of Wn.

span{v, w}⊥. Then the sine of the angle between span{e1} and span{v, w} is given by

‖UHe1‖2. The observed value of ‖T †
W ‖ was taken as the maximum over all quantities

1010 · ‖UHe1‖2 for 500 different samples of E. The results of the computations, which
were performed in a Compaq Visual Fortran environment, are displayed in Figure 7.1.
It turns out that the exact value of ‖T †

W ‖ is underestimated for n = 2 by a factor of
0.88 and overestimated for all other values of n by a factor of at most 2.2. Furthermore,
the exact value is consistently larger than the observed value, by a factor of at most
20.

8. Conclusions. While the change of eigenvalues under structured perturba-
tions has received a lot of attraction, for a recent work in this area see e.g. [17],
invariant subspaces have been much less studied. An extensive perturbation analysis
for (block) Hamiltonian Schur forms has been presented in [10]. However, we are not
aware of any work on perturbation theory for eigenvectors or invariant subspaces of
skew-Hamiltonian matrices. Therefore, we believe that our results are novel. The
obtained condition numbers reflect the actual sensitivity of isotropic invariant sub-
spaces rather well, at least for the numerical example presented in the previous section.
We hope that the integration of these condition numbers in HAPACK [1] will show
whether their usefulness stands the test of practical applications.
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