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Abstract—Incoherence between sparsity basis and sensing basis
is an essential concept for compressive sampling. In this otext,

In this setting, common strategies focus on uniform random
selection of the indice$,,...,[,,. For signals sparse in the

we advocate a coherence-driven optimization procedure fovari-

able density sampling. The associated minimization probla is
solved by use of convex optimization algorithms. We also ppose
a refinement of our technique when prior information is available
on the signal support in the sparsity basis. The effectiverss of the

Dirac basis, a uniform random selection of Fourier basis
vectors represents the best sampling strategy. IndeeBjthe

and Fourier basis are optimally incoherent. Natural signal

are however rather sparse in multi-scale bases, e.g. wavele

method is confirmed by numerical experiments. Our results ao
provide a theoretical underpinning to state-of-the-art vaiable
density Fourier sampling procedures used in MRI.

bases, not optimally incoherent with the Fourier basis. }Man
measurements are thus needed to reconstruct such signals
accurately. This is for example the case in magnetic resman
Index Terms—compressed sensing, variable density sampling, jmaging (MRI). To reduce the number of measurements, the
magnetic resonance imaging. authors in [3] rely on the fact that the energy of MRI signals i
| INTRODUCTION essentially copcentraﬁed at low frequencies. They .thupqm
to select Fourier basis vectors according to a variableiyens

Compressed sensing demonstrates that sparse signals cagyRgsjing profile selecting more low frequencies than high fr
sampled through linear and non-adaptive measurements & @ncies. This approach was shown to drastically enhamece th
sub-Nyquist rate, and still accurately recovered by medns qajity of the reconstructed signals. This method is howeve
non-linear iterative algorithms. The theory requires e  ogsentially empirical and the reconstruction quality dielseon
ence between the sensing and sparsity bases and a lot of Wagk shape of the sampling profile used. Let us also mention
has thus been dedicated to design such sensing systems [l 5 |ine of justification for VDS was proposed in terms of

In the present work, we concentrate arsparse digi- ihe variable sparsity of the signals of interest as a funatib
tal signals a = (ai);cicn € C¥ in an orthonormal geqje in a wavelet sparsity basis [1], [4].
basis W = (¢1,....¢n) € CV*V. The vectora con- | this letter, we study VDS in the theoretical framework of
tains s non-zero entries and its support is definedas=  compressed sensing. In Section 11, we describe the latest co
{i:]ail >0,1<i< N} We denoteas € C* the vector pressed sensing results for sparse signals probed in bdunde
made of thes non-zero entries obv. This signal is probed othonormal system, and explain how they encompass variabl
by projection ontom vectors of another orthonormal bas'%ensity sampling procedures. In Section Ill, we introduce a

® = (¢1,....¢n5) € CV*N. The indices of the selectedminimization problem for the coherence between the sparsit

vectors are denote® = {l4,...,l,,} and ¢}2 is them x N
matrix made of the selected rows of, where the symbolf

and sensing bases, whose solution provides an optimized
sampling profile. This minimization problem is solved with

stands for the conjugate transpose operation. The measotene yse of convex optimization algorithms. We also propose a

vectory € C™ thus reads as
y = Ag a with Ag = ®l, W e C"* N, (1)

We also denoteA = oW € CM*¥. Finally, we aim at
recoveringa: by solving the/;-minimization* problem

& = argmin ||«a|; subject toy = Aqa.
aeCN
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Yl = > 1<icn lail (|- denotes the complex magnitude).

further refinement of our technique when prior informatien i
available on the signal suppast In Section IV, we illustrate
the effectiveness of the method through numerical siniati

We also provide a comparison of the Fourier VDS profile in
the presence of prior information and corresponding recon-
struction qualities, with the state-of-the-art VDS apmtues
used in MRI. Finally, we conclude in Section V.

Il. VARIABLE DENSITY SAMPLING

In the setting presented in Section I, the compressed ggnsin
theory demonstrates that if the sampling indites. ., [,, are
chosen randomly and independently according to a discrete
probability measure” defined on{1,..., N}, then a small
numberm < N of random measurements are sufficient for
an exact reconstruction ef [2].

Theorem 1 (Theoremd.2, [2]). LetA = &Tw e CV*V and
a € CVN be as-sparse vector such thatgn (ag) € C® is a
random Steinhaus sequence. Assume that the samplingsndice

%sgn (ag) € C* is thes-dimensional vector with entrias; / ||, Vi € S.



Q = {ly,...,ln} are selected randomly and independently 4{ !
according to a discrete probability measute defined on 0.8 0.8
{1,...,N}. Lety = Agax € C™ and define :
0.6 0.6
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mutual coherence between the measurement bésiand
the sparsity basi&v. This value depends on the probability 04 0.4 1RARARE
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Let us highlight that with the selection procedure desatibe
in Theorem 1, the number of measurements is exaetly _. _ . , .
. Fig. 1. Top panels: probability of recoveeyof s-sparse signals in the Haar

but one .measuremer‘tlve.Ctor might be SgleCted. more t elet basisy = 1024) as a function of the number of measurementin
once. This characteristic is not always suitable in pratticthe Fourier basis (left panel) and in the Hadamard basikt(rgnel). The dark

applications, such as MRI, particularly in a VDS configusati dashed. dark continuous, and light continuous curves shevpiobability of
recovery with a uniform sampling, an optimized variable signsampling,

Indeed, a sensing ba_-SiS Ve_Ct&lE whose associated PrObabi"tYand the spread spectrum technique respectively. Curvesedeft correspond

of selectionP (i) is high, will be selected multiple times thusto s = 50 and those on the right te = 200. Bottom panels: light curves
i ; ; ; ; ishow the optimized sampling profile fon = 300 obtained with a sampling

reducmg the quantity of information pro_bed. To avoid thl% the Fourier basis (left panel) and in the Hadamard bawjbt(panel). Dark

phenomenon,-we propose an(.)the-r sglectlon process. curves show the valuesiax; < < v | (s, 1b;)|2 for all 1 <i < N.

In the remainder, the sampling indices are selected accord-

ing to an admissible sampling profile far measurements.  minimizing the mutual coherengep). Therefore, we propose

Definition 1 (Admissible sampling profile)A vectorp — © Solve the following optimization problem

(Pj)icj<cn € RY is an admissible sampling profile for a(p g) = argmin ||Bqle + A|p-q— 1|2 st.p e Ky, (6)
numberm of measurements #; € (0,1] for all 1 < j < N, (p,q) ERN %2
and||p|l1 = m. The set of all admissible sampling profiles for

. where) € [0,4+00), 7 € (0,1], K ={p € [r,1]" : |lp|L <
a numberm of measurements is denot . I P T . =
" &m) m}, 1 € RY is the vector with all its entries equals tQ

Let p € P(m) be an admissible sampling profile, thep - g is the entry-by-entry multiplication between the vector
sampling indices are selected by generating a sequemcendgq, || - ||2 and| - |- are respectively thé;-norm and
(61,...,6n) € RN of independent Bernouilli random variables/ . -norn?, andB € CV*V is the diagonal matrix with entries
taking value0 or 1 and such thaty; is equal tol with maxi¢;<n |<¢Z—,1,bj>|2 on the diagonal] < i < N.
probabilityp; for all 1 < i < N. The set of selected indices is In the above problem, the terffp - ¢ — 1||3 ensures that
then defined a§! = {I : 6, = 1}. With the proposed samplingp; ~ 1/¢; for all 1 < i < N. The higher the value of the
strategy, one measurement vector can be selected only opazameten the further this constraint is enforced. In the limit
The constraint thaf/p|l; = m imposes that the number ofwherep - ¢ = 1, we have||B q||« = p?(p) confirming that
measurements i on average over realizations of a sequeng&oblem (6) seeks to minimize the mutual coherence. Note
(61, ...,0n). Note that forN > 1, the variability of the number that the minimization problem imposes thatbelongs to the
of measurements is negligible. set K, which is different from the seP(m). Consequently,

As suggested in [2], one can actually show that the recovese do not have necessarilp||: = m. However, we note that
condition (4) still holds with the coherence in practice the constraintp||; < m is always saturated for
(i, ;)| high enough values of. _

1 To solve problem (6), we adopt the following procedure:

p; 1. Sett =0 andﬁ(o) = (m/N)lgjgm;

The required elements of proof are provided in Appendix A.2: repeat

]N

m

(% ©)

1/2
w(p) ) | nax

3 ¢ —argmingcpy [|Bqlo + AP - q — 1]3;
4: p(t+1)  arg min lp-¢® —12st.pek,;

I1l. SAMPLING PROFILE OPTIMIZATION : f ol gMly,epn [P - q 2>Lp i
5: —t+ 1,

Let us assume that the number of measuremenits fixed.
In order to recover the highest sparsitypossible, Theorem
1 shows that we should use the sampling profile P(m)

6: until convergence

2
¥l = X |75]” and @l = maxi << fa;l.



Subproblems at step 3) and 4) are convex problems. Thi
subproblem at step 3) is solved iteratively using a forward- g
backward algorithm and the one at step 4) thanks to a paralle
proximal algorithm [5]. Both algorithms require the comgut 06
tion of simple proximity operators. The computation of thneo
corresponding td|B - || essentially reduces to a projection
onto an/;-ball (see Appendix B). This projection, as well as 0.2
the one onto thé;-ball of radiusm, can be computed using Y
the method presented in [6]. Note that for both subproblems, 075
the computational complexity at each iteration is esskytia
driven by these projections for which the method in [6] hasfg. 2. Left panel: probability of recovery of a MRI signal as a function

worst-case complexity of)(N log N). For N = 1024, as in ©f the number of measurements. The light dot-dashed, light continuous,
P Y ( 8 ) dark dot-dashed, dark continuous and dark dashed curves stepectively,

the forthcomlng experiments, the overall algorlthm cogesr e probability of recovery obtained with: a uniform profi; the optimized
in at most a few seconds. Our procedure therefore easilgscalrofile obtained with the matri8 (b); the sampling profile proposed in [4]
to IargerN. (e); the optimized profile obtained with the matr (c); the typical MRI
. . . . profile used in [3] (d). Right panel: Optimized sampling pbbtained with
When prior information is available on the S'gnal suppgirt the matrix C for m = 70 (dark continuous curve) in comparison with the
we can refine our technique to find a sampling profile adapteek used in MRI (light continuous curve) and the one propasdd] (light
to this support. Indeed, if the signal suppéttis known in dashed curve).

advance then Theorem 1 applies with the coherence
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o\ 1/2 each liné€ of the brain image into this basis. The resulting
m >jes (@i, 5)] vectors are then hard-thresholdedsat 50. All vectors but
up. S) = SN 1211%\; Di ' ) one are seen as a data set providing prior information on the
supportS of typical MRI signals. The average of the values
We let the reader refer to Appendix A and equation (8) fq:jes (i, 2b;)|?, for eachi in {1,..., N}, serves to create
more details. An optimized sampling profile associated wihe matrix C. The remaining signal, not considered in the
the setS can thus be obtained by substituting the diagonghta set, is considered as the signal under scrutiny, probed
matrix C € RV*N with entriess™' 3. (i, ;)| on the according to relation (1) and reconstructed from different

diagonal,1 < i < N, for the matrixB in problem (6). number of measurements by solving the/;-minimization
problem. For each value ofn, the selected Fourier basis
IV. EXPERIMENTS vectors are chosen using the method described in Section I

In order to evaluate the proposed method in a geneWIIth: a uniform density profile (a); the optimized sampling

i duct t . ts. For the first Eﬁofileﬁ obtained withA = 0.05 and the matriXB (b) or with
Setling, we: conduct two experiments. or the frst one, W, arix ¢ (c); a typical sampling profile used in MRI (d)
choose the Haar wavelet basis as the sparsity basiad the [3]: the sampling profilé proposed in [4] (e)

Fourier ba_sis as the.sensing ba@i;We generate complex Iyzigure 1 shows the probability of recoveeyof s-sparse
s—sp?rse S'?Phals of siz8/ = 1224 Wltth S € E}507200}"fTrr;:| signals as a function of the number of measurements for the
POSIlions Ot the non-zero Coetlicients are chosen uniioraly g, 4o experiments. The probability of recovery obtained
random in{1,..., N}, their phases are set by generating

) ) X 9 Jith the spread spectrum technique is also presented [[/], [8
Steinhaus sequence, and their amplitudes follows a “”'fON”ate that this technique, as for random Gaussian matrices
distribution over[0, 1]. The signals are then probed accordin ’ ’

¢ lati 1 q ructed f i ¢ b as proved to be universal, i.e., the number of measurements
o relation (1) an reconstructed Irom ditierent nNUMbEr G, ¢ recovery of sparse signals is reduced to its minimum
measurements: by solving thel;-minimization problem (2)

: independently of the sparsity basis. One can note that the
with Fhe SPGU toolbox [6]. For each _value oh, the selec_te_d obability of recovery with the optimized sampling is alsa
sensing basis vectors are chosen using the method desirib

Section Il usi ith " densit il h i tter than with the uniform sampling. With a sampling in the
>ection 11 using either a uniform density protile or the ptil e, o, basis, one can also note that the recovery becomes
p obtained by solving problem (6) with = 0.05. Each time,

th bability of B ted ove200 simulati almost optimal. Indeed, the number of measurements needed
€ probability of recoveryls computed OVeLul SIMUIations. 4, raach g probability of recovery is almost the same with

For the second experiment, the same setting is used but V‘(HQ spread spectrum technique and with an optimized profile.

th? Ha((jjamf\ rd ba|5|stas the setr;]5|cr;g E@S'S or inf i _These results confirm our theoretical predictions andtitais
n order to evaluate our method when prior information i, o officiency of variable density sampling.

available on the supporf, we perform a simplified MRI As illustration, Figure 1 also shows optimized sampling

e?<pe2r|5rgent2.5l6n this pers_pedctlve,aeglr_l vllvo brain |msa_ge of profiles obtained for the two sensing bases and= 300 as
Sizé X was acquired on esla scanner ( IEMENS, vell as the corresponding values of the diagonal entries of

Erlangenz Germany). AS. suggestec_j in [3_]’ we COr'Sidertl’?le matrixB. One can note that the shapes of the sampling
Daubechiest wavelet basis as sparsity basis and decompose

SLines without any signal (background) are withdrawn. Aftds operation,
4Code available at http://www.cs.ubc.ca/labs/scl/spgll 151 lines are left.
SPerfect recovery is considered if tiig-norm between the original signal  “Note that the intrinsic parameters the sampling profilesafj (e) are
x and the reconstructed signat satisfies:|z — x*||2 < 1073||z||2. manually chosen to obtained the best reconstructions.



profiles are highly correlated to the values in the maBix =~ Rademacher sequence independentyef...,dx) andp > 2,
Figure 2 shows the probability of recovetyof the MRI  thenE|[Y[|? <2PE[ >, .,y e;0:ala,||?. Noticing thatAgs
signal as a function of the number of measurements. Ohas at most rank, using Fubini’s theorem, Rudelson’s lemma

can note that with the uniform sampling (a), the signal isee Lemma5.18, [2]) conditional on(éy,...,dn), and the
recovered with probability only whenm = N. The results Cauchy Schwarz inequality yields

are slightly improved with the optimized profile (b) obtaihe /2
with the matrix B. The sampling profiles (c), (d), and (e)g|y(» < 23/4+7 g (E)p \/E|AI2SAQS|:DE {max ||@i||§P]_
drastically enhance the performance. Our optimized pr(djle € #0:=1

obtained with the matriX performs better than the profile (€)The previous equation is identical to equatitn6) in the
and similarly to the profile (d) typically used in MRI. Theseyrqof of Theorent.3 in [2]. We can follow the same remain-

results provide a theoretical underpinning to VDS proceeluring steps of this proof to terminate ours. We still need havev
used in MRI. It also shows that the refinement proposed fQJ provide a bound omnax;.s,_; ||a||2. If the supportS is

our technique can drastically enhances the performancefQtd and known in advance, we have
compressed sensing in practical applications. 9
For illustration, Figure 2 also shows the sampling profileg,, l@:]2 < max Zjes [{¢i, ;)] _ ﬂﬂ(p’ $)2. (8)
(c), (d), and (e) form = 70. One can notice that the profilesi:d:=1 1<iKN Pi m
(c) and (d) are very similar to each other. This explainsragain the general case whet®is unknown, we can write
the effectiveness of VDS profiles commonly used in MRI. (s ¢_>|2 SN
i g

~ 112 2
12 < DT = 2 up)t (9
max [laill; < s gmax T —u(p) 9)

V. CONCLUSION

In the aim of optimizing variable density sampling profiles
in the context of compressed sensing, we have introduced a APPENDIXB
minimization problem for the coherence between the sparsit The proximity operator ofy|IB - ||oc, ¥ > 0, is the unique
and sensing bases. This problem is solved with the use of cgBtytion of prox. g .. (q) = argming gy 1/2]q — z||? +
vex optimization algorithms. We have also discussed a refing|g || ...
ment of our technique when prior information is available on - N NxN ]
the signal support in the sparsity basis. The effectiveattie PToPosition 1. For any ¢ € RY, with B € R™*™ defined
method is confirmed by numerical experiments. In particuldtS aPove, we haverox g (q) = g — yproje(q/7),
for signals sparse in a wavelet basis and probed in the FouMd€reC = {z € RY :||B~ [l < 1} and proj. denotes the
domain, simulations show that our technique leads to optinffojection onto the set.
recovery. Indeed our technique gives similar probabdiidé Proof: From Theorem14.3 in [5], we have q =
recovery as the spread spectrum method recently prqve_d tOP%XwHB-_Hx (q) + 7 PrOX, -1 g1, (q/7), for all ¢ € R.N‘ In
optimal. Our results also provide a theoretical underpigno  the previous relationB -||*, denotes the Fenchel conjugate of

VDS procedures used in MRI. B -||o- As B is a bijection (it is a diagonal matrix with strictly
positive entries), one can show tH#B - ||o.)* = tc(-) where
APPENDIXA tc denotes the indicator function of the s@t(Proposition

20, [5]). Finally, we haveprole”B,”;O = prox,

() =

The proof of this theorem follows exactly the method uset - | _ ! )
Combining the last result with the first relation termi-

to prove Theoremt.2. in [2]. The only difference resides in P*°Jc:

the estimate of the singular values of the operadttAas nates the proof. u
s L
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