*

Further progress in hashing cryptanalysis

Arjen K. Lenstra
Lucent Technologies, Bell Laboratories

February 26, 2005

Abstract

Until further notice all new designs should use SHA-256. Existing
systems using SHA1 or MD5 should confirm that they only need second
pre-image resistance, not random collision resistance. Usage of MD5 in
certificates should be discontinued unless the presence of adequate miti-
gating controls has been verified.

1 New attacks against hash functions

There is a lot of turmoil in the hashing world. First, in August 2004, new
attack methods were presented!2:3:4 that mostly affected hash functions that
were already known to be weak, among others MD4, MD5, and SHA-0. In
February 2005, a similar result was announced® that affects SHA-1, a hash
function that was believed to resist the new types of attack. Furthermore,
independent developments cast serious doubt on the iterative design principle
underlying most current hash functions®:7.

If the security of your design relies on MD4 or MD5 (already known to
be weak since at least 1995) or on SHA-1 (believed to be sufficiently strong

*http://cm.bell-labs.com/who/akl/hash.pdf

1X. Wang, F. Guo, X. Lai, H. Yu, Collisions for hash functions MD4, MD5, HAVAL-128
and RIPEMD, eprint archive 2004/199, http://eprint.iacr.org/2004/199, presented at the
Crypto 2004 rump session, August 17, 2004.

2X. Wang, H. Yu, How to Break MD5 and Other Hash Functions, Eurocrypt 2005, to
appear.

3X. Wang, X. Lai, F. Guo, H. Chen, X. Yu, Cryptanalysis for Hash Functions MDJ and
RIPEMD, Eurocrypt 2005, to appear.

4A. Joux, Collisions for SHAO, presented at the Crypto 2004 rump session, August 17,
2004.

5X. Wang, Y.L. Yin, H. Yu, Finding collisions in the full SHA1, submitted for publication,
February 2005.

6 A. Joux, Multicollisions in iterated hash functions. Application to cascaded constructions.
Proceedings Crypto 2004, Springer-Verlag LNCS 3152 (2004) 306-316.

7J. Kelsey, B. Schneier, Second preimages on n-bit hash functions for much less than
2" work, eprint archive 2004/304, http://eprint.iacr.org/2004/304; Eurocrypt 2005, to
appear.



until February 2005), should you rush out and replace it? Chances are you
don’t, but it depends on what is required for a successful spoofing attempt
given the particular properties of your design. The purpose of the present note
is to describe in which circumstances the new attacks can be exploited. It is
recommended to review each hash application on a case by case basis to decide
if the new attack poses a realistic threat. If so it must be analysed if there are
factors mitigating the vulnerability and to evaluate its associated risk. Finally,
it must be assessed if the potential damages outweigh the replacement cost.

More absolute general recommendations were issued by the U.S. National
Institute of Standards and Technology (NIST)3: usage of MD5 — and thus MD4
— in certificates or for digital signatures should be discontinued, and based on
advances in computer processing capabilities it would be prudent to phase out
SHA-1 by 2010. It can be argued that there are applications where the first rec-
ommendation may be overly conservative because the replacement cost would
not be commensurate with the risk associated with continued usage. Further-
more, the second recommendation may be regarded as overly liberal in view of
the latest SHA-1 developments.

2 Exploiting hash collisions

A widespread application of hash functions is in digital certificates. An existing
digital certificate may contain the hash H(b) of a bitstring b. To spoof that
certificate, the attacker has to find a bitstring b’, different from b, but with
the same hash as b. Given H(b), and possibly b itself, finding a different b’
whose hash value collides with it (i.e., H(b) = H(b")) is still considered to be
sufficiently hard for all common hash functions.

This property of hash functions, that they are hard to invert, is often re-
ferred to as target collision resistance. If b is given it is called second pre-image
resistance. Hash functions with n-bit values are supposed to be designed in
such a way that finding a second pre-image should take on the order of 2" oper-
ations. Unfortunately, that is not the case for iterative hash functions — and all
common hash functions such as MD4, MD5, and all SHA-variants are iterative.
For all these functions, second pre-images can be computed 2* times faster, for
values of k& > 0 that cannot be too large compared to the hashlength n. For
instance k < 55 for SHA-1. However, the computation requires an amount of
memory proportional to 2¥. It is therefore considered to be practically infea-
sible. It was shown recently that this very general result is a straightforward
consequence of Joux’s work (about which more below). For MD4, MD5, and
the SHA functions it was already known for several years. This was never found
to be a point of concern. So, all common hash functions such as MD4 and MD5
(both with n = 128) or SHA-0 and SHA-1 (with n = 160) are still believed
to offer adequate protection against spoofing attempts that require finding a
second pre-image for an existing hash value.

Shttp://www.few.com/few /articles/2005/0207 /web-hash-02-07-05.asp



Thus, the security of existing certificates relies on the fact that for a given
particular bitstring and its hash value it is hard to come up with another bit-
string with the same hash value. But there are also applications of hash func-
tions where the hash value is not given in advance. That gives the attacker a
much larger degree of freedom. For instance, in digital signatures one customar-
ily signs the hash H(d) of a document d (a bitstring). In this scenario an attacker
may construct a pair of different bitstrings d,d’ such that H(d) = H(d'), but
without any further restrictions on the particular value H(d). The attacker then
digitally signs d (using H(d)), but later claims that not d but d’ was signed.
Since H(d) = H(d') there is no way to deny the attacker’s claim. Therefore hash
functions must be collision resistant: it must be computationally infeasible to
construct different bitstrings that hash to the same value.

Collision resistance puts a much heavier demand on the design and length
of hash functions than target collision resistance. This is due to the so-called
birthday paradoz: the probability that among a group of 23 randomly selected
people at least two people have the same birthday is more than 50 percent.
Because this probability is much higher than most people would expect it is
referred to as a paradox — but there is nothing paradoxical about it: it is a plain
fact that can be proved mathematically and verified empirically that if elements
are drawn at random from a collection of N objects (with replacement) then the
expected number of draws before an element is drawn twice is approximately
1.26v/N. In the birthday example N would be 365. In the context of n-bit hash
functions, there are N = 2™ different objects (i.e., hash values). After hashing
about 1.26 x 2/2 randomly selected different bitstrings one may expect (under
reasonable assumptions about the random behavior of the hash function) that
two bitstrings are found with the same hash value. Thus, for the digital signature
application sketched above, the effort required by an attacker to successfully
create a collision is at most on the order of 264 if any 128-bit hash function is
used, and at most about 230 for any 160-bit hash.

From a security point of view collision resistance effectively doubles the
hash length requirement compared to second pre-image resistance. This is a
general fact that applies to all hash functions, past and future. The new hash
cryptanalysis results, however, made clear that for many common hash functions
the situation is much worse with respect to collision resistance. It was shown
that random collisions (not second pre-images) can be found by hand for MD4
and computed in a matter of minutes for MD5. With n = 128, both were
designed to resist an effort of 264 against finding such collisions. For SHA-0
with n = 160, collisions can be found? with effort less than 23, much lower
than the intended design effort 28°. And, last but not least, for SHA-1, also
with n = 160, collisions can be found with effort 26°, somewhat lower than the
intended 28°.

For practical applications this means that MD4, MD5, and SHA-0 should
no longer be used in circumstances where an attacker is free to choose the value

9X. Wang, H. Yu, Y.L. Yin, Efficient collision search attacks on SHAOQ, submitted for
publication, February 2005.



that will be hashed. This is the case even if the values to be hashed have to
meet stringent structural requirements, such as values that are contained in
certificates, because actual hash collisions have been constructed!'® that meet
those requirements. On the other hand, because MD4 and MD5 were already
for a long time known to be weak with respect to collision resistance, and SHA-
0 should never have been used anyway, the impact of the new findings should
be limited. Nevertheless, the cryptographic community was astonished to see
how much weaker MD4, MD5, and SHA-0 turned out to be than anyone had
expected. After these attacks had been announced, NIST wrote!! ‘SHA-1 not
broken’ and ‘Not much reason to expect it will be any time soon’. It remains to
be seen if the 269 random collision attack against SHA-1 will be a real concern.
But given the developments that were taking place in the fall of 2004 it is hard
to imagine that it came as a real surprise. The recent SHA-1 extensions SHA-i
for i = 224,256,384, and 512, are as far as we know now not affected by the
new attack methods.

3 Conclusion

What should be done in practice? For existing applications of affected hash
functions one should consider if the random collision attack scenario applies.
If it does, a proper risk analysis should be carried out. If there are mitigating
factors that may render the likelihood of successful attacks sufficiently low, one
may decide not to take action; otherwise replacement of the hash function may
be in order. For new applications the affected hash functions must not be used.
For the moment this limits the choice of hash functions mostly to the extensions
of SHA-1, not including SHA-1 itself. This is different from the situation before
the new findings were announced because SHA-1 can no longer be recommended.
NIST recommends using SHA-256, and does not seem to be overly concerned
about usage of SHA-1 until 2010.

Is this the end of the story? Should we now all happily use SHA-256 and
hope for the best? Or should we go for an overhaul and total redesign of our
hashing methods and come up with something that is better? Consider the sit-
uation in more detail. All common hash functions, including MD4, MD5, and
SHA-0/1/224/256/384/512, follow the same basic approach, with just a single
relatively minor change setting apart SHA-1 from MD4, MD5, and SHA-0, and
with some additional twists for SHA-224/256/384/512. Until a few weeks ago, it
was hoped that the minor change offers adequate protection against the collision
attacks that were announced in August of 2004. The February 2005 cryptana-
lytic announcement about SHA-1 dashed those hopes. With their predecessors
already completely picked apart, and the apparently unhealthy iterative de-
sign principle to begin with, how long before also SHA-224/256/384/512 are

10A K. Lenstra, B. de Weger, On the possibility of constructing meaningful
hash collisions for public keys, submitted for publication, February 2005; see also
http://www.win.tue.nl/ "bdeweger/CollidingCertificates/

U http://csre.nist.gov/pki/twg/y2004/Presentations/twg-04-14.pdf



affected? Adi Shamir, one of the world’s most dreaded cryptanalysts and most
respected cryptographers, recommends starting afresh, from scratch. Given how
long the Advanced Encryption Standard process took, it may be a while before
a better new hashing standard emerges. For the foreseeable future, however,
SHA-256/384/512 will be the hashes of choice. Given the recent developments,
protocol designers need to provide for changes in hash functions, as many al-
ready do, and when doing so need to ensure that version rollback attacks are
prevented.

Sketch of Joux’s argument. As a final point of interest, independent of
the commotion caused by the various collision attacks, there is a very elegant
and surprisingly simple result by Antoine Joux about the concatenation of hash
functions. If the results of two independent n-bit hash functions are concate-
nated, then according to crypto-folklore the result is as good as a 2n-bit hash
function: finding a second pre-image should take effort 2" x 2" = 227 and
finding a random collision should take effort 27/2 x 27/2 = 27 Tt was shown
that if one of the hash functions is a so-called iterative hash function — and
all common hash functions are iterative — then concatenation leads to hardly
any additional security, thereby not only for all practical purposes refuting the
folklore assumption but also showing a severe weakness in the basic design prin-
ciple underlying most current hash functions. But the most remarkable aspect
of Joux’s result may be that it took so long for such a straightforward argument
to be published, strongly suggesting that hash-research is still in its infancy. A
sketch of Joux’s argument follows.

An n-bit iterative hash function splits the input in a number of fixed size

blocks, say By, Ba, ..., B,.. The hash is calculated in r rounds as a function of
the r blocks and a fixed n-bit initialization vector Ry that depends only on the
hash function: for i = 1,2,...,r a round function is applied to R;_; and B; and

produces an n-bit value R;. The resulting hash is the n-bit value R,.. Thus, in
the ¢th round the round function is applied to the result of the previous round
(or the fixed initial value Ry if ¢ = 1) and the ith input block.

Now construct a collision for an n-bit iterative hash function H: values z11
and w12 with 211 # x12 such that H(x11) = H(x12). This takes at most about
2"/2 operations. Denote H(x11) = H(x12) by Cy. Similarly, it takes at most
about 2"/2 operations to construct a collision for H where its initialization vector
is replaced by C1: 21 and xee with @91 # a2 such that He, (z21) = He, (z22),
where the subscript C7 indicates usage of C; as initialization vector as opposed
to the default initialization vector. It then follows from the way iterative hash
functions work that H applied to the concatenation of x1; and xg;, with 4,5 €
{1,2}, always results in the same value, say Cq, independent of the choices of i
and j.

So, the two pairs (z11,212) and (221,222) result in a four-way collision:
four distinct values x11||@o1, 211]|222, T12||221, and 12||x22 (with ‘|| denoting
concatenation) that all have the same hash value Cy. This four-way collision
can then be concatenated with a newly constructed collision for H¢, resulting
in an eight-way collision to (5, the eight-way collision is concatenated with a



collision for He, for a sixteen-way collision, etc. Repeating this construction
m/2 times we find that a 2™/%-way collision for H can be found after at most
about (m/2) - 2*/2 operations: 2™/2 different inputs that all hash to the same
value under H.

For any m-bit hash function G one may expect, based on the birthday para-
dox, that among those 2™/2 different inputs that collide for H there is a pair
that collides for G as well. This implies that a collision can be found for the
hash function consisting of the n+ m-bit concatenation of the hash functions H
and G. This takes, essentially, only m/2 times the effort to find a collision for
H, plus about 2™/2 applications of G to identify the G-collision. That is much
less than the effort 2("t™)/2 that one would expect for a decent n + m-bit hash
function. Note that the argument works for any m-bit hash function G, and
that only H has to be iterative.



