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It is well known that the standard single line least squares problem for n points in the
plane is solvable in linear time. We consider two generalizations of this problem, in which
two lines have to be constructed in such a way that, after a certain assignment of each point
to one of the lines, the sum of squared vertical distances is minimal. Polynomial time
algorithms for the solution of these problems are presented.

1. Introduction

Given a set P {(x1, )I x1, y ER, j = 1,.. ., n} of n points in the plane, the
single line least squares (iLLS) problem is to find a line

l(x)= ax+b

such that

(l(x)—y)
(x,y)€P

is minimized. As is well known, the solution is given by

n xy —2 x 2
a= P P P

,

n2x2_(2x) P P

P P

and the line I can thus be determined in 0(n) time.
In this paper we shall study two variations on this problem, in which two lines
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have to be constructed in such a way that, after a certain assignment of each
point to one of the lines, the sum of the squared vertical distances is minimal.

The first and most obvious variation, the two lines least squares (2LLS)
problem, is to find a set Q C P and two lines

2 (l(x) y)2 + 2 (12(X)
—

(x,y)EQ (x,y)EQ

Another variation, the bent line least squares (BLLS) problem, is to find a
breakpoint x and a bent line

Iai(x_x*)+b (xx*),l*(x)=
a2(x_x*)+b (x>x*)

2 (l*(x)_y)2
(x,y)EP

is minimized (cf. Fig. 2). Note that the bent line 1* is continuous in the
breakpoint x’.

These types of problems may well arise in many situations in applied
statistics, e.g., biometrics and econometrics. If the observations belong to either

Fig. 2. BLLS.

of two regression regimes, with little or no classifying information being

available, a two lines or bent line model may be more appropriate than the

single line one.
The 2LLS problem occurs for example in the case of markets in dis

equilibrium, where data are available on prices and supply or demand, while it

is not known whether each particular observation is generated by the supply

curve or by the demand curve. This problem was considered by Fair and Jaffee

[3], who suggested to obtain a solution by exhaustive search over all sets

Q C P; this approach requires exponential time. In Section 2 we develop a

polynomial algorithm to minimize (1) in 0(n3) time.

The BLLS problem arises when, in the above situation, the observations

correspond to the minimum of supply and demand. This is an example of a

class of problems where the regression parameters may change as an in

dependent variable increases. In this area an extensive literature has appeared;

see [13] for a bibliography. The seminal paper on the BLLS problem is by

Hudson [10], who also considered several generalizations involving multiple

breakpoints. In Section 3 we use his results to minimize (2) in 0(nlog n) time.

Finally, in Section 4 we comment on the statistical properties of our

estimators, on related previous work, and on possible extensions of our

algorithms.

To solve the 2LLS problem, we start by observing two obvious properties of

an optimal solution. First, the lines l and 12 are the ordinary iLLS solutions for

the sets 0 and 0 respectively. Secondly, the set Q ç P evidently satisfies

such that

li(X) = a1x + h1, 12(x) a2x + b2

Two lines least squares

is minimized (cf. Fig. 1).
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Fig. 1. 2LLS.

such that

(2) 2. The two lines least squares problem

0 = {(x, y) I l(x)
— I 12(x)

— I} (3)
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iLLS problems for each of them, and by selecting a solution for which the

optimality criterion has minimal value.

What is the total number of different partitions of P of the type charac

terized by (4)? We may assume (if necessary, after a small perturbation) that

no two points from P have the same x-coordinate and that no three points

from P lie on the same line. First, it is clear that P can be separated into two

subsets by a vertical line in n different ways, corresponding to the choices

x1 (j 1• . , n). Secondly, we claim that there is a one-to-one cor

respondence between separations of P by an arbitrary line and pairs of points

from P, where the latter can be chosen in n(n — 1) different ways. It follows

that we have to consider no more than — 1) different partitions of P.

To see why the above claim is true, consider a separation of P into 0 and 0

by an arbitrary line 1. Let C(Q) and C(O) denote the convex hulls of 0 and O
respectively. Since 1 also separates C(Q) and C(Q), there exists a unique line 1

such that
(a) y 1o(x) for all points (x, y) in one of the convex hulls, say C(Q),

(b) y 10(x) for all points (x, y) in the other convex hull C(0),

(c) there are two points p’ = (x’, y’) C(Q) and ‘ = (i’, ‘) 6 C(Q) with

x’ >1’ such that y’ = 10(x’) and ‘ 1(’)

(cf. Fig. 4); l is obtained from 1 by turning 1 counterclockwise until 1 is tangent

to both C(Q) and C(Q). Moreover, the assumption that no three points from P lie

on the same line implies that p’ 6 0 and j3’ 6 0.

This establishes one part of the correspondence. Conversely, consider two

points p” = (x”, y”)E P and “ (i”, ‘) 6 P with x”> f’. Let 1 denote the line

through p” and p”. A separation of P into 0 and 0 is now obtained by

defining

••QZO

The partition of P into Q and Q, given the lines 1 and 12, is therefore
characterized by the set Q0 C 2 of points for which equality holds in (3):

00 = {(x, y) Ili(x)— I 12(X)— y}
= {(x, y) li(X)— y l2(X)— y} U {(x, y) l1(x)— y = —l2(x)+ y}
= {(X, y)} U {(x, lo(x))}

where

ifa1a2,
a1 — a2

X0 =

+oo if a1 = a2, b1 < b2,

—0° ifaj=a2,b1b2,

lo(x) = (l(x) + 12(X)).

Thus, the set 00 consists of two lines: the vertical line through the x-coordinate
x0 of the intersection of 1 and 12, and the median 1 of 11 and 12. Under the
assumption that a1 a2, the set 0 can now be rewritten as

0 = {(x, y) x x0, y lo(X)} U {(x, y) ( x x0, y lo(x)} (4)

(cf. Fig. 3).
We conclude that we may restrict our attention to feasible solutions for

which the partition of P into 0 and 0 is defined by a value x0 and a line 1 as
in (4), and that a solution that is optimal with respect to such a partition is
given by the iLLS solutions for 0 and Q. (Note, however, that solutions
satisfying (4) do not necessarily satisfy (3).) It follows that the 2LLS problem
can be solved by generating all partitions of the above type, by solving two 0 = {(X, y) I y > lo(x)} U {(X”, y”)},

= {(, y) y < 1o(t)} U {(i”,

(5)

Fig. 3. The sets Q (the heavy lines) and Q (the open points). Fig. 4.
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with respect to this separation, 1 satisfies the conditions (a), (b) and (c) with
p’ = p” and j5’ =

If we start from a separation of P by an arbitrary line, apply the first
transformation to find a pair of points and next apply the second trans
formation to this pair, we obtain the same separation once again. Thus, the
correspondence is one-to-one, as claimed.

Our 2LLS algorithm can now be described as follows.
First, we renumber the points from P according to increasing x-coordinate in

0(nlog n) time.
Secondly, we consider all pairs of points {(x”, y”), (i”. with x”> 1” in

succession. For each such pair, we start by determining the sets Q and 0 as in
(5), calculating the partial sums

2x, .y, 2x2, xy, (6)
0 Q 0 0

and solving the iLLS problem for Q and 0; next, for j 1 n — 1, we
repeat this procedure for the partition induced by the vertical separation
corresponding to x0 = x1. The sets Q and 0 and the partial sums can be
determined according to (5) and (6) in 0(n) time, and they can be adjusted for
each successive value of x0 in constant time. Given the partial sums (6), each
iLLS problem is solvable in constant time. It follows that this step requires
0(n) time for each pair of points, and 0(n3) time overall.

Finally, we select the solution for which the optimality criterion achieves its
minimal value. The entire procedure requires O(n3) time.

There are various ways in which the implementation of this algorithm can be
improved that do not, however, reduce the running time by more than a
constant factor. We note that, in general, it is impossible to generate all pairs of
points from P in such a way that the partial sums (6) for a given separation can
be derived from those for the preceding separation by interchanging a single
point.

3. The bent line least squares problem

To solve the BLLS problem, we first renumber the points from P according
to nondecreasing x-coordinate in 0(nlog n) time. We now reformulate the
problem as follows: determine an index k 6 {l n — 1} and two lines

11(x) = a1x + b1, (2(x) = a2x + b2,

subject to a constraint on the x-coordinate of their intersection:

is minimized. Since the breakpoint x has to be located in one of the intervals

[Xk, Xk1l, both formulations are clearly equivalent.

We shall show how, after an 0(n) initialization, the determination of 11 and 12

for any given value of k can be carried out in constant time. To select the

optimal value of k, this has to be done for k = 1,.. . , n — 1, and the entire

procedure requires O(nlog n) time, as announced. Note that, apart from sorting

the set F, our BLLS algorithm requires linear time off-line, whereas the iLLS

problem is solvable in linear time on-line.

We start by calculating the partial sums

for k = 1,. . . , n in 0(n) time. Next, for a given value of k, we solve the

ordinary iLLS problem for {(x1,y1)Jj = 1, . .., k} and for {(x,, yj)jj = k + 1,

• .., n} to find two lines l and 1 respectively; in view of the availability of

the partial sums (8), this requires constant time.

In the x-coordinate of the intersection of R and 1 lies in [Xk, xk+1j or if 1 =

the pair (li, 1) defines a feasible and optimal solution with respect to the given

value of k, and we are finished.

If this is not the case, we claim that the optimal pair of lines has its

intersection on either x,, or Xk+1, i.e., one of the inequalities in (7) has to be

satisfied as an equality (cf. [101). To see why, compare the infeasible pair (1, l)

to any feasible solution (1k, 12) for which both inequalities in (7) are strictly

satisfied. Suppose that 1 12 and that these lines intersect in a point p (cf. Fig.

5). Then any line 1 through p whose direction is between the directions of 1

and 12 yields an improvement over 12, since the iLLS optimality criterion is

quadratic and convex in the parameters a and b of a line ax + b and since l is

closer than 12 to the optimal line 1. If moreover the x-coordinate of the

intersection of 11 and 1 lies in [Xk, xk+lj, the pair (li, l) defines a feasible

solution that is better than (li, 12), and the latter solution cannot be optimal.

The argument is easily extended to the case that 1 and 12 are parallel.

such that

xx+i ifa1a2, (7)

b1=b2 ifa1=a2,

± (l(x1)—y,)2
j=1 j=k+1

k k

2xjyj
j=1 j=1

(8)
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All we have to do in this case, therefore, is to determine two optimal bent
lines 1* with fixed breakpoints x Xk and x’ = Xkl respectively and to select
whichever of the two is best. The determination of 1* for a given value of x
can be carried out in constant time, as follows. Starting from (2), we rewrite the
optimality criterion as

2(ai(xj_x*)+b_yi)2+ 2 (a2(xj_x*)+b_y1)2.
j=1 j=k+l

Taking first derivatives with respect to the parameters a1, a2 and b, we obtain
the following linear equations:

k k k

ai2(_x*)2+b 2(xj_x*)= 2(x_x*)yj,
j=1 j1 j=1

a2 2 (xj_x*)2+b 2 (xj_x*)= 2 (xj_x*)y1,
j=k+1 j=k+1 j=k+1

a1(xj_x*)+a2(xj_x*)+bn=y1.
j=1 jk+1 j=1

Given the partial sums (8), this system is solvable in constant time to yield the
required values of a1, a2 and b.

It is again an easy matter to conceive of various improvements in the
implementation of this algorithm, when the above system has to be solved 0(n)
times with only slight intermediate changes in the coefficients (cf. [10]). The
worst case running time, however, will be affected by no more than a constant
factor as a result.

4. Concluding remarks

The 2LLS and BLLS problems have so far been taken to be purely
detçrministic problems. Keeping in line with regression analysis tradition, we
now assume that the parameters to be determined (Q, a1, a2, b1, b2 in 2LLS,
x’, a1, a2, b in BLLS) have true but unknown values that are to be estimated
and raise the question what the statistical properties are of the outcomes of the
minimization problems. With respect to the stochastic nature of the data
generating process, we make the simple assumption that the x1 are non-
stochastic and that the observations (xi, y1) satisfying the unknown linear
relations are subject to vertical disturbances which are drawn from a normal
distribution with zero expectation and constant variance. Under this inter
pretation, our least squares estimators are also maximum likelihood estimators.

The estimators in the 2LLS problem do probably not have any other
desirable statistical properties. The following simple example shows that they
are not in general consistent (which is not to say that consistent 2LLS
estimators do not exist). Suppose that the true model is given by

yi=l+u, y2=—1+u,

where u has a standard normal distribution with expectation 0, variance 1 and

density function , i.e., a1 a2 = 0, b1 = 1, b2 —1. Suppose further that the
independent variable x assumes at least three equidistant values, and that,

when n goes to infinity, either regime accounts for half of the data with an

equal number of data for each value of x. Then it is easy to see that the

estimators a1, a2, b, b2 of a1, a2, b1, b2 satisfy

where

plim a1 = a1,

plim a2 a2,

plim l = b1 + c,

plim b2 b2 —

c = f(2u — 2),b(u)du =0.167

In this situation, the estimators of b1 and b2 are bounded away from the true

values, due to persistent misclassification. (The assertion by Fair and Jaffee [3,

p. 500] as to the consistency of the 2LLS estimators is incorrect. They neglect

the implicit presence of dummy variables assigning observations to regimes.

The fact that the number of such variables goes to infinity with n invalidates
standard maximum likelihood theory.)

Statistical properties of the estimators in the BLLS problem follow from

Fig. 5.
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results due to Feder [4], who considered the case of multiple breakpoints and a
more general functional specification for the regression segments. As the finite
sample distribution of the estimators is intractable, he concentrated on their
asymptotic distribution. His results imply that, if a1 a2, the estimators of x’,
a1, a2, b are consistent and have a certain multinormal asymptotic distribution
[4, pp. 71, 77]. Feder and Sylwester [5] already established the asymptotic
normality of the estimator of xK. Hinkley [9] showed that the asymptotic
distribution is not a good approximation of the small sample distribution and
presented an alternative that performs better in small samples.

Due to its combinatorial nature and the statistical intractability of its
estimators, the 2LLS problem has not spawned much research. Mustonen [121
and Hermann [8] considered the multidimensional case, in which two hyper
planes [8] or, more generally, two functions of a given form [12] have to be
constructed. In view of the nonlinearity of the optimality criterion, they
suggested to obtain an approximate solution by iterative numerical methods.
We conjecture that our combinatorial approach can be extended to yield an
optimal solution in polynomial time, as long as the dimension and the number
of hyperplanes are constants. However, this generalization is likely to be
extremely intricate.

Another reason for the relative neglect of the 2LLS problem is that, as far as
disequilibrium econometrics is concerned, economic theory can be invoked to
further model the regime choice mechanism. Fair and Jaffee [3] made several
additional assumptions, the simplest one being that a price increase points to
an excess demand regime and a price fall to an excess supply regime. A huge
literature has developed in this direction (e.g. [7, 2]), a common trait being the
use of nonlinear rather than combinatorial optimization methods. Estimators
with favorable asymptotic properties have been derived (e.g. [11]).

It has been mentioned that the BLLS problem in which multiple breakpoints
are allowed has been considered by Hudson [10]. In contrast to his analytical
approach, Bellman and Roth [1] proposed a dynamic programming recursion to
obtain a solution which is approximate in the sense that the breakpoints are to
be chosen on a grid. The running time of their method depends heavily on the
grid width; it is linear in the number of breakpoints, but only pseudo-
polynomial [6] in the data (xj, y). For the many variations on and extensions of
the BLLS problem, the reader is again referred to the bibliography in [13].

The purpose of this paper has been to analyze the computational complexity
of two combinatorial optimization problems arising in statistical analysis. Other
results of a similar nature can be found in the work of Shamos [14]. These
examples should serve to demonstrate the potential value of research in this
interface area.
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