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ABSTRACT
GPS devices allow recording the movement track of the mov-
ing object they are attached to. This data typically consists
of a stream of spatio-temporal (x,y,t) points. For application
purposes the stream is transformed into finite subsequences
called trajectories. Existing knowledge extraction algorithms
defined for trajectories mainly assume a specific context (e.g.
vehicle movements) or analyze specific parts of a trajectory
(e.g. stops), in association with data from chosen geographic
sources (e.g. points-of-interest, road networks). We investi-
gate a more comprehensive semantic annotation framework
that allows enriching trajectories with any kind of semantic
data provided by multiple 3rd party sources.

This paper presents SeMiTri - the framework that enables
annotating trajectories for any kind of moving objects. Do-
ing so, the application can benefit from a “semantic trajec-
tory” representation of the physical movement. The frame-
work and its algorithms have been designed to work on tra-
jectories with varying data quality and different structures,
with the objective of covering abstraction requirements of a
wide range of applications. Performance of SeMiTri has been
evaluated using many GPS datasets from multiple sources –
including both fast moving objects (e.g. cars, trucks) and
people’s trajectories (e.g. with smartphones). These two
kinds of experiments are reported in this paper.

Categories and Subject Descriptors
H.2.8 [Database Applications]: [Spatial databases and
GIS, Data mining]
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1. INTRODUCTION
GPS chipsets are being embedded in all kinds of mov-

ing objects (cars, shipments, smartphones etc.), allowing for
large-scale collection of movement data. Such data play an
essential role in a variety of well-established application ar-
eas (e.g., tracking, urban planning, traffic management, geo
social networks). Consequently, research in movement data
analytics is blooming and is increasingly focusing on provid-
ing rich information services tailored for the application at
hand. Most of these services build upon some semantic in-
terpretation of movement data [9][19][15][33]. Therefore, raw
data stream (collected via GPS) is first turned into a set of
application-meaningful units, called trajectories. Trajecto-
ries are then enriched with semantic data from the appli-
cation world. In addition, knowledge extraction techniques
such as data mining and analysis of trajectories are applied
to summarize the detailed data into manageable informa-
tion. Extracting semantic behaviors of moving objects is
an example of the many open research problems currently
being investigated. Many applications indeed are more in-
terested in behavioral aspects than in merely positional data.
Trajectory semantics may be inferred from spatio-temporal
properties of the raw data stream (e.g. when and where
the object stops or moves, its track orientation or movement
pattern), from the geographical information related to the
region traversed by the trajectory (e.g. its road network,
its remarkable features), as well as from application objects
stored in the application databases and related to the trajec-
tory (e.g. the list of company customers visited by company
salespersons).

We developed a framework, called SeMiTri (Semantic Mid-
dleware for Trajectories), whose goal is to support seman-
tic enrichment of trajectories exploiting both the geometric
properties of the stream and the background geographic and
application data. Semantic enrichment materializes as an-
notations embedded into the trajectory data, i.e. additional
data attached to the spatio-temporal positions in the tra-
jectory and encoding extra knowledge about the trajectory.
Examples of annotations include recording the observed “ac-
tivity” of a moving animal (with activity values “feeding”,
“resting”, “moving”, etc.), computing and recording the in-
stant speed of the moving object, inferring and recording the
“means of transportation” used by a moving person (e.g. by
foot, bus, metro, bicycle). The paper presents the semantic
model and annotation framework we adopted in SeMiTri for
describing and managing the movement of an object.



Our model, semantic annotation algorithms and frame-
work are designed to be generic and applicable on the vari-
ous kinds of trajectories created by moving objects of differ-
ent types. SeMiTri is therefore offered as a unified solution
to annotate trajectories with semantic information that can
readily be exploited by applications to make sense (their own
sense) out of movement data.

1.1 Background and Motivation
Data management techniques (data modeling, indexing,

querying) for large spatio-temporal data have been inves-
tigated during the last decade [11][8]. There is also a large
body of work in various techniques for trajectory mining, e.g.
pattern discovery, similarity measures, clustering and classi-
fication [12][17][13]. These studies focus on raw trajectories,
therefore missing the related semantic information contained
in the background geographic and application databases.

A new research branch focuses instead on semantic analyt-
ics of trajectories. The GeoPKDD1 and MODAP2 projects
[1][26] and other recent works [6] emphasize the need to ad-
dress semantic behaviors of moving objects. Work in this
area focuses primarily on semantic models and trajectory
knowledge discovery. Proposed models address different lev-
els of concern, e.g. basic concepts (e.g. data types such as
moving point/region [11][23]), conceptual models [26], and
ontologies [29]. Work in semantic knowledge mining using
geographic data sources mostly focus on specific types and
parts of the data stream (cf. details in §2). For example, the
activity and point-of-interest mining described in [6][32] con-
sider only trajectory parts where the moving object stopped.
On the other hand, map-matching algorithms [4][18][21] fo-
cus on mapping vehicle trajectories to roads, considering
only the parts where the vehicle is moving. Hence, these
works have limited scope for the holistic semantic analysis
of the whole trajectory that SeMiTri intends to support.

Applications do benefit from semantic enrichment of tra-
jectories. E.g., when analyzing people trajectories, rather
than using the GPS data, we can easily imagine that the
application prefers to view a trajectory as the following se-
mantically encoded sequence of triples: (home, -9am, -) →
(road, 9am-10am, on-bus) → (office, 10am-5pm, work) → (road,

5pm-5:30pm, on-metro) → (market, 5:30pm-6pm, shopping) →
(road, 6pm-6:20pm, on-foot) → (home, 6:20pm-, -) (see Fig.
1). Notice that the first and last triples respectively denote
the first (Begin) and last (End) spatio-temporal positions
delimiting the trajectory. In all triples the spatial (〈x, y〉)
location is encoded at the semantic level with labels such
as “home”, “office”, “road”, “market”, expressing the appli-
cation’s interpretation of the location. The second element
denotes the time period where the two other elements remain
constant (i.e., same location, same annotation). The third
element in the triples conveys additional semantic annota-
tion, in this case related to the activity (work, shopping) or
to the means of transportation (on bus, on metro, on foot).
Clearly, abstracting trajectory data to such a semantic rep-
resentation enables a better understanding of the semantic
behavior. Further, analytics on such semantic trajectories
enables contextual and relevant information discovery (e.g.
semantic similarity, semantic pattern mining, mobility anal-
ysis/statistics), significantly empowering applications.

1
Geographic Privacy-aware Knowledge Discovery and Delivery –

http://www.geopkdd.eu/
2
Mobility, Data Mining, and Privacy – http://www.modap.org/

1.2 Challenges
Designing a generic and efficient annotation framework is

non-trivial as many different issues have to be addressed.
(1) The framework should be application-independent while

being able to support the specific requirements of any poten-
tial applications (e.g. traffic monitoring, semantic location
analysis). For example, different levels of granularity are re-
quired to analyze movement of: cars between cities or within
a city, and people between shops in a commercial center. Car
movement is constrained by the underlying road network,
while walking follows unplanned paths through places such
as parks and buildings. Therefore, no application-specific
data should be hard-coded into the framework. Instead,
the framework should have the capability to acquire from
3rd party information whatever geographic or application-
specific data is needed and input it into its algorithms.

(2) While being generic, the annotation algorithms should
exhibit a good performance whatever the characteristics and
data qualities of trajectories are. Sampling rates and GPS
signal availability influence the quality of raw trajectory data.
E.g., while vehicles mostly enjoy good GPS coverage, GPS
signal may be lost at people’s indoor movement. Trajectories
might lack enough data to precisely locate which building the
person entered. As a result, mapping trajectories to location
artifacts in complex environments such as dense urban ar-
eas is a challenge. The algorithms should be able to handle
variations in data quality while annotating trajectory.

(3) Providing a holistic annotation framework usually calls
for integration of several independent information sources. A
priori, the amount of candidate sources for annotation data is
high and spatially dense. The framework needs to be able to
select the most relevant sources and the most relevant kinds
of annotation data for each trajectory segment. For example,
it does not make sense to annotate a moving car with the list
of restaurants or other location artifacts it quickly passes by,
unless it stops around one for certain activity. Overwhelm-
ing coverage of space is frequently a problem. For example, a
major difficulty in choosing points of interest closest to anno-
tate a given trajectory is not in distance computation but in
relevance evaluation. The location where a person stops for
shopping in a city center may be associated to many shops
in the vicinity. Therefore, we need to infer the exact shop
the person stopped for.

(4) For computational efficiency, annotating each GPS
point may result in information overload. The trajectory
semantic model must offer generic means of semantically
aggregating correlated records and provide their condensed
representation at the semantic level. To summarize, the chal-
lenges we need to address can be stated as:

• To provide a framework that covers the requirements of
a wide range of applications. The framework includes
both the specification of a generic conceptual model,
as well as the specification and implementation of an-
notation algorithms that exhibit a good performance
over a wide range of requirements and data qualities.

• To enable determining which kinds of semantic anno-
tation data should be extracted from available sources
and how to appropriately filter it to match the moving
object at hand.

• To design efficient annotation algorithms, since the avail-
able datasets are large and quickly growing, and anno-
tation data is even required in real-time.



1.3 Contributions
SeMiTri provides a set of software tools that enable pro-

gressively turning raw mobility data into semantic trajec-
tories readily suitable for use by applications. It aims at
maximizing annotation relevance while minimizing the com-
putational cost of data annotation. We define a conceptual
model (Semantic Trajectory Model) that describes a trajec-
tory as a sequence of semantic episodes that correspond to
an application’s interpretation of trajectories. Following a
layered approach, we provide algorithms for semantically
annotating trajectory episodes with geographic and applica-
tion data. SeMiTri first exploits latent motion context (e.g.
spatio-temporal data) to structure trajectories into stop and
move episodes [30]. Next it exploits the geographic context
to annotate stops and moves with the geographic objects (be
regions, lines and points) that, considering the time period
of the stop/move, are relevant to the application. The core
contributions described in this paper are:

• A semantic model and a multi-layer framework en-
abling flexible annotation of trajectories at different
levels of trajectory data abstraction.

• Specification and implementation of suitable algorithms
for trajectory annotation. This requires novel annota-
tion algorithms exploiting contextual geographic and
application information.

• Evaluation of the framework with several vehicle and
people trajectories (more have been studied to demon-
strate the capability of SeMiTri to work with a variety
of datasets of different quality).

2. RELATED WORK
Existing works relevant to our problem are largely piece-

meal, diving into algorithms for matching spatial informa-
tion (semantics in terms of geographic knowledge) to spe-
cific type and part of trajectories. Dedicated algorithms are
independently designed for trajectory annotations with geo-
graphic regions, lines or points. In such case, well segmented
trajectories are assumed given in advance as data inputs.

Regarding trajectory annotation with geographic regions,
studies focus on computing topological correlations (called
spatial predicates) between trajectories and regions. For ex-
ample, Alvares et al. [1] apply spatial joins between trajec-
tories and a given set of regions of interests (ROIs), com-
puting frequent moves between stops - two important tra-
jectory episodes adopted from the work of Spaccapietra et
al.[26]. Other works (e.g., [20]) apply similar algorithms to
cloak user locations for preserving privacy.

Regarding trajectory annotation with geographic lines, one
significant area is developing efficient map matching algo-
rithms to improve matching accuracy with low computing
time. Map matching is aiming at identifying the correct
road segment on which a vehicle is traveling and even to
approximate the vehicle’s position on the segment [24][4].
Map matching methods can be best classified into three cat-
egories: geometric [3], topological [27], or recent advanced
methods [21][18]. Geometric methods use only geometric
information of the underlying road network, applying dis-
tance measurements like point-to-point, point-to-curve (e.g.
perpendicular) and curve-to-curve (e.g. Fréchet). Topolog-
ical methods account for the connectivity and contiguity of
the road networks, rather than only the geometric distances.

The central focus is to create a better global algorithm for
map-matching considering characteristics of vehicle trajecto-
ries. The recent methods are designed for handling ambigu-
ous data (noise, sparseness) [21], low sampling rates [18] etc.
Traditional map-matching techniques target high matching
accuracy, which is usually for movement with unique vehicle
(e.g. car or truck). On the contrary, our focus is on addi-
tional semantic annotation of the move parts of trajectories,
i.e. further inferring transportation mode for each movement
episode, which is based on the results of but more than the
pure map matching.

Complementary research also focuses on identifying mean-
ingful (significant) points of interests (POI) related to trajec-
tories, based on clustering [35][22] or reinforcement inference
techniques (e.g. HITS and PageRank) [6][34]. In addition,
[28] designs a semantic spatio-temporal join method to in-
fer activities from trajectories, based on a small set of pre-
defined activity hotspots. [16] mines periodic behaviors in
trajectories, focusing on brief semantics like home/office.

These prior works focus on situation specific mining and
are applicable to annotate only certain types and parts of
a trajectory [1][22][28][21], e.g. map-matching for vehicle
moves or extracting important POIs for hotspots. None of
these studies consider analysis of complete trajectories which
naturally contain heterogeneous semantics, e.g. the example
of semantic trajectory in §1.1. It is difficult to adapt them
for different types of moving objects (e.g. vehicles, people
trajectory) crossing geographies of different nature. More-
over, extracting such heterogeneous semantics needs multiple
geographic data sources to be combined meaningfully. Our
objective is to create a holistic framework for end-to-end an-
notation of heterogeneous trajectories.

3. SEMITRI APPROACH
We first present the conceptual model of semantic trajecto-

ries that we use within SeMiTri, then discuss the annotation
principles, and finally present the system architecture.

3.1 Model and Definitions
The raw data stream of a moving object, generated by

GPS-alike mobile positioning sensors3, is recorded as a se-
quence of spatio-temporal points, consisting in (longitude,
latitude, timestamp) triples. A trajectory identification step
[30], not discussed here, splits this sequence into a set of finite
subsequences that are meaningful units for the application.
These subsequences are called raw trajectories.

Definition 1 (Raw trajectory – T ). - A sequence of
spatio-temporal points recording the trace of a moving object,
i.e. T = {Q1, . . . , Qm}, where Qi = (x, y, t) is a triple with
the positioning (longitude x, latitude y) at timestamp t.

Raw trajectories T are of varying size, depending on track-
ing time and location update frequency. There may be gaps
in the recording due to several reasons, e.g. signal loss, bat-
tery outage, network disconnections, etc. In addition, mov-
ing objects or users generating trajectories can use various
transportation modes (e.g. walk, metro/bus, bike) which
can bring highly varying trajectory characteristics (e.g. ac-
celeration, velocity). We call all of these diverse trajectories
heterogeneous trajectories – the focus of our annotation task.
3Though there are other location-tracking techniques (e.g. trian-
gulation, GSM), our focus is on trajectories in outdoor environ-
ments, typically captured using GPS.
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As a first move towards a semantic representation of tra-
jectories, we introduce Semantic Places (P) as the semantic
counterpart of the spatio-temporal positions. They denote
geographic objects defined in or inferred from 3rd party in-
formation sources that contain data about the geographic
objects of interest to the application at hand.

Definition 2 (Semantic Places – P). A set of mean-
ingful geographic objects used for annotating trajectory data.
Each semantic place spi has an extent and other attributes
describing the place. The set (P) is partitioned into three
subsets that are defined according to the geometric shape of
their extent4, i.e. P = Pregion

SPline

SPpoint, where (1)
Pregion = {r1, r2, · · · , rn1} is a set of places whose extent is
a region; (2) Pline = {l1, l2, · · · , ln2} is a set of places whose
extent is a line; and (3) Ppoint = {p1, p2, · · · , pn3} is a set
of places whose extent is a point.

Due to the spatial extent associated with these geographic
objects it is possible to couple a spatio-temporal position in
a trajectory with the semantic places whose extent covers
this position. Thus we can annotate each spatio-temporal
position of a trajectory with links to the semantic place ob-
jects that the moving object has (at least we infer so) visited.
This is a specific kind of annotation, the geographic reference
annotations. Another kind of annotations may also need to
be inferred, additional value annotations, which contain ex-
tra semantic values, e.g. “work”/“shopping” for activities at
stops or “bus”/“walking” for transportation modes in moves.
We call Semantic Trajectory (ST ) a trajectory enriched with
annotations of these two kinds.

Definition 3 (Semantic Trajectory). A trajectory
where spatio-temporal positions are complemented with an-
notations. i.e. ST = {Q′

1, Q
′
2, · · · , Q′

m}, where Q′
i = (x,y,t,

A) is a tuple defining a spatio-temporal point (x,y,t) and its
possibly empty set of associated annotations A.

4Region (or area), line and point are standard spatial data types
routinely used in GIS. Their formal definition can be found in e.g.
[10]. Pregion,Pline,Ppoint are also denoted as Regions of Interest
(ROI), Lines of Interest (LOI), and Points of Interest (POI).

Another way of enhancing the knowledge on a trajectory is
to identify specific trajectory segments that are semantically
meaningful for the application. We call episode a maximal
sub-sequence of a trajectory such that all its spatio-temporal
positions comply with a given predicate that bears on the
spatio-temporal positions and/or their annotations. Usually
a trajectory is segmented into a list of episodes of several
types according to a set of predicates, each predicate defin-
ing a type of episodes. For instance, a vehicle trajectory may
be segmented (partitioned) into episodes of two types, “stop”
and “move”, according to the two predicates: (1) for stops:
speed< threshold δ, (2) for moves: speed≥δ. Semantic an-
notation A on episode is much more efficient than directly
annotating each GPS record in the raw trajectory.

A given trajectory may be structured into episodes in
many different ways, i.e. using different sets of predicates.
For example, a trajectory of a person within a city may be
segmented into episodes based on 1) the means of transporta-
tion used, 2) the time periods such as morning, noon, after-
noon, evening, and night, and 3) the zones traveled within
the city. Each annotation attribute may define its list of
episodes e.g. by cutting the trajectory each time the value
of the annotation attribute changes. We call each list of
episodes an interpretation of the trajectory, and a trajec-
tory enhanced with episode annotations a structured seman-
tic trajectory (SST ).

Definition 4 (Structured Semantic Trajectory).
A representation of a semantic trajectory as a sequence of
episodes defined by a set of predicates. SST = {ep1, ep2,
· · · , epm}, such that each episode corresponds to a subse-
quence of the original trajectory and is represented as a tuple
epi = (sp, timein, timeout,A) where sp is a link to a seman-
tic place (sp ∈ P), timein, timeout are the time the moving
object enters and exits sp, and A is a set of other annotations
associated to the whole episode.

In the sequel of the paper we use the term trajectory
(alone) to denote a structured semantic trajectory (Def. 4),
and the terms raw trajectory and semantic trajectory to de-
note non-structured trajectories (Def. 1 and Def. 3).



3.2 Annotation Design Principles
Fig. 1 illustrates the semantic trajectory computation

methodology in SeMiTri. This design is based on the fol-
lowing broad design principles:

1) Exploit Latent Motion Context: Context (e.g. whe-
ther the object is moving or stationary) is exploited in
various ways. First, it plays a role in choosing relevant
annotations (e.g. whether to map a trajectory segment
to a road or to the nearest restaurant). Second, con-
text persistence supports annotating trajectory episodes
rather than annotating each individual GPS point. This
obviously saves storage space. Such context can be ex-
tracted directly from the raw data stream, based on ho-
mogeneous (spatio-temporal) correlations (density, veloc-
ity, direction etc.) present in the stream [30].

2) Layered Approach: SeMiTri follows a layered approach,
carefully designed to support efficient semantic annota-
tion. SeMiTri progressively annotates trajectory episodes
with semantic places P – first provide a coarse-gained
annotation with Pregion; second provide a fine-gained
annotation with Pline and Ppoint, enabling e.g. stop/-
move annotation used for later decision making. Section
4 presents the details of all the annotation layers.

3) Heterogeneity of Semantic Places: SeMiTri provides
algorithms to map trajectory episodes to three categories
of geographic objects: ROIs such as park, administrative
region and landuse cells (residential, industrial); LOIs
such as jogging path, highway and other roads; and POIs
such as bar, restaurant or even a big shopping mall.

3.3 System Architecture
Fig. 2 illustrates SeMiTri’s system architecture, showing

the various layers and the data flow between the layers. Our
system has three main parts, i.e. Stop/Move Computation,
Semantic Annotation and Application Interface.

Stop/Move Computation – The raw GPS records are
first processed by the Trajectory Computation Layer, which
performs several data preprocessing operations: (1) remove
GPS outliers and smooth the random errors; (2) identify raw
trajectories from the initial GPS data stream; (3) segment
the raw trajectory into trajectory episodes, based on several
computing policies of spatio-temporal co-relations like den-
sity, velocity, direction etc.5 The output trajectory episodes
express the motion context (e.g. stop/move). This con-
text can help trajectory annotation in choosing suitable ge-
ographic artifacts from 3rd party sources and applying suit-
able annotation algorithms. For example, the stop episodes
need to be annotated with POIs while the move episodes can
be integrated with road networks (LOIs).

Semantic Annotation – We design three annotation lay-
ers. The Semantic Region Annotation Layer receives the
stop/move trajectory and uses a state-of-the-art spatial join
algorithm to pick up regions that the trajectory has passed
through, primarily to form a coarse-grained view of the tra-
jectory. The move episodes are further processed by the
Semantic Line Annotation Layer. We have developed a new
line annotation algorithm that is designed to consider het-
erogeneous trajectories and road networks. Apart from its
basic operation of mapping move segments to road networks,

5Further details of the trajectory computation operations can be
found in [30], though not essential for understanding the semantic
annotation algorithms of SeMiTri.

this algorithm also infers transportation modes exploiting
geometric properties/context of the segment (e.g. velocity,
acceleration) along with semantic content (e.g. which type
of road). The stop episodes are funneled to the Semantic
Point Annotation Layer that computes activity likelihoods
and probabilistic estimates of the purpose behind that stop.
This is based on a hidden Markov model algorithm that
we designed, considering varying spatial densities of possi-
ble POIs for heterogeneous (sparse as well as densely popu-
lated) geographies. Overlapping ROIs and dense POIs have
been traditionally ignored in spatio-temporal data mining
[1][28]. The annotations from the three layers are combined
to produce the annotated trajectory SST . This “Semantic
Annotation” layer is the focus of this paper.

Additional Parts with Application Interface – The
computation and annotation result is stored in the Semantic
Trajectory Store. A Semantic Trajectory Analytics Layer en-
capsulates methodologies that compute statistics about the
trajectories (e.g. the distribution of stops/moves, frequent
stops, trajectory patterns) and stores them as aggregative
information in the store. This data is accessed by appli-
cations. We built a Web Interface [31] that enables user-
friendly queries and visualization of all kinds of trajectories,
both semantic and non-semantic ones.

4. ANNOTATION ALGORITHMS
This section explains the details of annotation, considering

our objective – algorithms should exhibit good performance
over a wide range of trajectories with varying data quality.

4.1 Annotation with Semantic Regions
This layer enables annotation of trajectories with mean-

ingful geographic regions. It does so by computing topolog-
ical correlations of trajectories with 3rd party data sources
containing semantic places of spatial kind regions (Pregion).

The topological correlation is measured using spatial join
between raw trajectory Q and semantic regions Pregion (i.e.
Q �θ Pregion). Several forms of spatial predicates are used
to compute θ, depending on the type of data. These can be
a combination of directional, distance, and topological spatial
relations (e.g. intersection) [5]. E.g. for stop episodes, we
found spatial subsumption (ObjectA is inside ObjectB) as
the most used predicate. For the spatial extent, we use ei-
ther the spatial bounding rectangle of the episode (for move
or stop) or its center (for stop) to perform spatial join. After
finding the appropriate regions (ri), the layer annotates in-
put trajectories with these regions and associated metadata.

The semantic places are either places computed from the
trajectory geometric features (e.g. the bounding box asso-
ciated to an episode) or identifiable places within some ex-
ternal source. Examples include free form regions like the
EPFL campus, a recreation facility with a swimming pool,
both taken from Openstreetmap6, and regions formed from
grids of regular cells of repositories such as the Swisstopo7

landuse and city zones. Fig. 3 shows one person’s trajectory
on Sunday, annotated with semantic places of various kinds
taken from Swisstopo (building area - A, recreational area
- B) and Openstreetmap (EPFL campus - C). By using an
application database (e.g. EPFL’s employee database) an-
notations for this personal trajectory can be expressed as:

6
http://www.openstreetmap.org

7
http://www.swisstopo.admin.ch/



his home → EPFL campus (staying 4 hours) → a swimming
pool (staying 1 hour) → his home.

Fig. 4 illustrates landuse classification categories and sub-
categories that Swisstopo uses to annotate 1,936,439 cells
(100m×100m) covering Switzerland.

A

B 

C 

B

AA

Figure 3: Region Annotation

L1   Settlement and urban areas 
 1.1   industrial and commercial area 

 1.2   building areas 

 1.3   transportation areas  
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L2   Agricultural areas 
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Figure 4: Landuse Ontology

Algorithm 1: Trajectory annotation with ROIs

Input: (1) a raw trajectory Q with its sequence of GPS points
{Q1, · · · , Qn}, (2) a set of semantic regions
Pregion = {region1, · · · , regionn1}

Output: structured semantic trajectory Tregion

begin1
Tregion ← ∅; //initialize the trajectory2
/* compute intersections between Q and Pregion; */3
do spatial joins Q �intersect Pregion;4
/* process each intersection and compute trajectory tuple */5
forall intersected regions do6

group continuous GSP point Qi ∈ Q in the intersection;7
approximate entering time tin and leaving time tout;8
create a trajectory tuple ← (regionj , tin, tout, regtype);9
if current regtype = previous regtype then10
merge the two tuples into a single tuple; else11
Tregion.add(tuple); //add the previous tuple to Tregion;

Tregion.add(tuple); //add the last tuple to Tregion;12
return trajectory Tregion13

end14

Alg. 1 shows the pseudocode of the annotation algorithm
with regions, which directly annotates GPS records with re-
gions. Note that, depending on requirements, the spatial
join can be computed only for selected episodes. We apply
R*-tree index on semantic regions Pregion [2] to improve ef-
ficiency of the algorithm. The complexity of the annotation
algorithm with region is O(n ∗ log(m)), where n is the num-
ber of GPS records (or stop episodes) whilst m is the size of
Pregion. For well-divided landuse data, the complexity can
be even less, i.e. O(n).

4.2 Annotation with Semantic Lines
This layer annotates trajectories with LOIs and considers

variations present in heterogeneous trajectories (e.g. vehicles
run on road networks, human trajectories use a combina-
tion of transport networks and walk-ways etc). Given data
sources of different form of road networks, the purpose is
to identify correct road segments as well as infer transporta-
tion modes such as walking, cycling, public transportation like
metro. Thus, the algorithms in this layer include two major
parts: the first part is designing a global map matching al-
gorithm to identify the correct road segments for the move
episodes of the trajectory Q, and the second one is inferring
the transportation mode that the moving object used.

Map-matching algorithms usually design a distance metric
(e.g. perpendicular distance) to map the GPS points to the

nearest road segment [24]. Though suitable for well-defined
high-way networks, perpendicular distance is not suitable for
dense networks, parallel road-ways and arbitrary crossings.
This is because vertical projections of (x,y,t) points on cor-
responding road segments often do not fall on the segment.
Thus, we apply the point-segment distance, defined as:

d(Q, AiAj) =

j
d(QQ′) if Q′ ∈ AiAj

min{d(QAi), d(QAj)} otherwise

(1)

where Q′ is the projection of the GPS point Q on the line
determined by the two crossings Ai and Aj ; d(QQ′) is the
perpendicular distance between Q and that line; d(QA) is
the Euclidean distance between Q and the crossing A.

As a subsequence of raw trajectory Q, a move episode
also includes a list of spatio-temporal points. Choosing the
candidate road segment for each single point independently
sometimes results in incorrect mapping, specially for non-
perpendicular path ways. Global map matching algorithms
have shown better matching quality [4][24] as they consider
the context of neighboring points. We adopt this with the
point-segment distance, in terms of designing two metrics
(localScore and globalScore) to map move episodes to appro-
priate road segments for heterogeneous road structures.

We consider a global view radius R around candidate points,
with a context window of size 2R. Therefore, mapping re-
sults of point Q depend also on the effects of its neighboring
points (N1 points before and N2 points after in radius R).
For computational efficiency, only the neighboring segments
are considered as candidate road segments candidateSegs(Q).
They can be efficiently accessed with R*-tree index [2]. We
normalize the point-segment distance d(Q, AiAj) as the
localScore between point Q and road segment AiAj .

localScore(Q, AiAj) =

j
dmin(Q)

d(Q,AiAj)
AiAj ∈ candidateSegs(Q)

0 otherwise

(2)
where dmin(Q) is the shortest distance from Q to all pos-

sible candidate road segments AiAj . Based on localScore,
we compute a global measurement - globalScore - between Q
and AiAj considering the context window 2R containing N1

points prior to Q and the forthcoming N2 points.

globalScore(Q, AiAj) =

PN2
k=−N1

wk · localScore(Qk, AiAj)PN2
k=−N1

wk

(3)

wk =

j
exp(− d(Q0Qk)2

2σ2 ) d(Q0Qk) < R
0 otherwise

(4)

where Qk is the kth neighboring point of Q (e.g. Q0 is
Q itself, Q−1 is the previous point whilst Q+1 is the next
point); wk is the corresponding weight determined by a Ker-
nel smoothing function with the Kernel bandwidth σ.

After the first step of the global map matching, each episode
is annotated in terms of a list of road segments, i.e. ep =
{r1, r2, . . . , rl}. We further infer the annotation of trans-
portation mode on each segment (or route), getting the pairs
of 〈ri, modei〉. In our experiment, we did consider four types
of transportation modes, i.e. walking. bicycle, bus and metro.
Such annotation is determined by the characteristics of the
move episode and the matched road segments, including av-
erage velocity, average acceleration, road type etc.



Alg. 2 shows the detailed procedure of the semantic line
annotation algorithm: (1) select candidate road segments,
(2) calculate the point-segment distance, (3) normalize the
distance as localScore, (4) compute the weight and calcu-
late globalScore, (5) determine the map matching segment
for each point based on globalScore, (6) further infer the
transport mode based on the features of the GPS points on
the segment and the road type information.

Algorithm 2: Trajectory annotation with LOIs

Input: (1) a move episode of raw trajectory Q of GPS points
{Qi(xi, yi, ti)}
(2) a set of road segments Pline = {r1, r2, · · · , rm}

Output: semantic trajectory Tline

begin1
preSeg ← ∅, Tline ← ∅; //initialize the trajectory2
forall Qi = (x, y, t) ∈ Q do3

/* select candidate roads for Qi (R*-tree)*/4

candidateSegs(Qi) ← {r(i)
1 , · · · , r(i)

n }; // select only5
neighboring road segments
/* calculate dist., normalize it as localScore */6
compute the distance between point Qi and7

∀r(i)
j ∈ candidateSegs(Qi);

choose the closest segment min{d(Qi, r
(i)
j )} (Equ. 1);8

normalize distance as localScore(Qi, r
(i)
j )9

∀r(i)
j ∈ candidateSegs(Qi) by Equation 2;

/* calculate globalScore: (point, segment) */10
choose global points (Q−N1 , · · · , Q+N2 ) in radius R;11

compute their Kernel smoothing weights by Equation 4;12

compute the globalScore(Qi, r
(i)
j ) for13

∀r(i)
j ∈ candidateSegs(Qi) by Equation 3;

/* compute Q′ with road position (if needed) */14
rank the computed globalScore(Qi, r)15
choose the highest score to match segmentId for Qi;16

compute the corrected position (x′, y′) if needed ;17
/* add road segment as a trajectory tuple */18
if preSeg �= null and preSeg �= segmentId then19

/* infer transportation mode */20
get tranportMode by velocity distribution, road21
information etc.
/* add the semantic episode */22
(segmentId, timein, timeout,mode) → Tline;23
preSeg ← segmentId;24

return structured semantic trajectory Tline25

end26

Since each GPS point considers only the neighboring road
segments as a set of candidate segments (by R*-tree), the
candidate set size is significantly smaller than the total size
of road networks in real-life datasets. This makes the algo-
rithm, besides having better matching quality, also efficient,
with linear complexity on the size of the GPS points O(n).
The global map matching parameters (e.g. radius R and
kernel width σ) are tuned in the experiment.

4.3 Annotation with Semantic Points
This layer annotates the stop episodes of a trajectory with

information about suitable points of interest (POIs). Exam-
ples of POI are restaurant, bar, shops, movie theater etc. For
scarcely populated landscapes, it is relatively trivial to iden-
tify the objective of a stop (e.g. petrol pump on a high-way
or only own home in a residential area). However, densely
populated urban areas have several candidate POIs for a
stop. Further, low GPS sampling rate due to battery outage
and signal losses makes the problem more intricate.

We have designed a Hidden Markov Model (HMM) based
technique for semantic annotation of stops. Unlike most

other algorithms to identify POIs [1][28], an unique nov-
elty of our approach is that it works for densely populated
area with many possible POI candidates for annotation, thus
catering to heterogeneous people and vehicle trajectories. It
also enables identifying the activity (behavior) behind the
stop, thus annotating the trajectory with such information.

HMM is a classical statistical signal model in which the
system being modeled is assumed to be a Markov process
with unobserved state [25]. We consider the temporal se-
quence of GPS stops: S = (S1, S2, · · · , Sn) as the observed
values. Dense urban areas can have several different POIs.
E.g. Milan dataset in our experiments has 39,772 POIs with
largely varying density. Such large number makes it proba-
bilistically intractable to infer the exact POI from imprecise
location records. However, the number of types (or cate-
gories) of POIs usually is tractable. E.g. Milan POI dataset
has five top-categories, i.e. services, feedings, item sale, per-
son life, and unknown. POI categories add significant se-
mantic content to the stop for activity inference (e.g. Sally
stopped for lunch), which becomes a tractable problem.

Fig. 5 expresses the resultant HMM problem. The initial
input is the raw trajectory Q, i.e. the sequence of (x,y,t)
points; a sequence of stops is computed and forms the real
observation (O); the exact POI data are the superficial hid-
den states, whilst the POI categories are the real hidden
states that we are interested in. Our goal is to identify the
real hidden states and use them to annotate the stops.

(x y t)

S1 S4 S5S3S2

C2

C1 4339  services

7036 feedings

39,772�POI
(x,y,t) 
points

Stops

C3

C4

C5

C2 7036  feedings

12510 item sale

15371 person life

516  unknown

p

POI
C5

Category

Figure 5: HMM formalism for inferring POI category
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Figure 6: Example state transition matrix

Modeling: Let there be n POI categories C1. . . Cm. Typ-
ically, a HMM λ has three major components, i.e. λ =
(π,A,B); where π is the probability of the initial states,
i.e. Pr(Ci), A is the state transition probability matrix
([Pr(Cj |Ci)]m×m), B is the observation probability for each
state Pr(o|Ci).

• Initial Probabilities (π). We approximate the prob-
ability of initial states π as the percentage of POI sam-
ples belonging to each category from the information
source. Therefore, for Milan POI dataset,
π = { 4339

39772
, 7036

39772
, 12510

39772
, 15371

39772
, 516

39772
}.

• State Transition (A). State transition probability
Pr(Cj |Ci) in our formulation represents the possible
stop (activity) sequence of user; i.e. probability to
perform activity in places belonging to category Cj

given his prior activity in places belonging to cate-
gory Ci. Wherever available, activity sequences (e.g.
home→ work → shop or swim→ home) are obtained



through other information sources (e.g. from region
transitions). For trajectories having insufficient his-
tory, we initialize the state transition matrix following
nomenclatures of the POI categories and object type
(e.g. associate high probability for meaningful state
transitions and low probabilities for non-meaningful
state transitions in Fig. 6). Learning dynamic and
personalized transition matrix A is interesting but not
the focus of this paper.

• Observation Probabilities (B). Pr(o|Ci) intuitively
represents the probability of seeing a stop o (as the
observation) in T caused by user’s interest in places
belonging to category Ci. Pr(o|Ci) can be approxi-
mated by the center of the stop Pr(centerxy|Ci) or the
bounding rectangle Pr(boundRectangle|Ci).

Computing B for areas having high POI density is not
easy. Our solution is based on the intuition that influence of
a POI category on a stop is proportional to the number of
exact POIs of that category in the stop area. We model the
influence of a POI as a two-dimensional Gaussian distribu-
tion - the mean is the POI’s physical position (x, y) and the
variance is [σ2

c , 0; 0, σ2
c ], where σc is category specific. Fig. 7

displays an example of 12 POIs’ Gaussian distributions with
the corresponding densities in Fig. 8. By Bayesian rule, we
deduce the lemma to determine Pr(o|Ci) in B.

Figure 7: POIs/Discretization Figure 8: POI densities

Lemma 1. Pr(o|Ci) is proportional to the sum of the prob-
ability of each POI that belongs to this category Ci, namely

Pr(o|Ci) ∝ ΣjPr(o|poi
(Ci)
j ).

Proof. of Lemma 1

Pr(o|Ci) =
Pr(o, Ci)

Pr(Ci)
=

ΣjPr(o, poi
(Ci)
j )

ΣjPr(poi
(Ci)
j )

=
ΣjPr(o|poi

(Ci)
j )Pr(poi

(Ci)
j )

ΣjPr(poi
(Ci)
j )

∝ ΣjPr(o|poi
(Ci)
j )Pr(poi

(Ci)
j )

∝ ΣjPr(o|poi
(Ci)
j )

We employ discretization and neighboring techniques to
improve the efficiency of computing Pr(o|Ci). Using dis-
cretization, we divide the area of POIs into grids (jk) and
pre-compute discretized probability values of Pr(gridjk|Ci),
as the approximation of Pr(centerxy|Ci). Further, for each
gridjk, we consider only neighboring POIs in that box (black
rectangle in Fig. 7), instead of all the POIs in the area.

Inferring Hidden States: Using the above defined com-
plete form HMM λ = (π,A,B), we infer their hidden states

(the purpose behind the stops) HS = {pc1, pc2, · · · , pcn}
from the stop sequence OV = {stop1, stop2, · · · , stopn} avail-
able through the stop/move computation; where pct is the
POI category pct ∈ {C1, · · · , Cm}. This problem can be
formalized as maximizing the likelihood Pr(HS|OV, λ).

We redefine this problem as a dynamic programming prob-
lem, defining δt(i) as the highest probability of the tth stop
caused due to POI category Ci (Equation 5). Equation 6
gives the corresponding induced form of highest probability
at the (t + 1)th stop for category Cj , considering the HMM
state transition probabilities. We record the previous state
Ci that gives the highest probability to current state Cj by
ψt+1(j) (Equation 7).

δt(i) = max
i

Pr(pc1, · · · , pct = Ci, o1, · · · , ot|λ) (5)

δt+1(j) = max
i

{δt(i)Aij} × Bj(ot+1) (6)

ψt+1(j) = argmax
i

δt(i)Aij (7)

Finally, we employ the Viterbi algorithm [7] to solve this
dynamic programming problem for inferring the hidden state
(stop category) sequence. We first recursively compute δt(i),
and deduce the final stop state with the highest probability
in the last stop, then backtrack to the previous stop state by
pc∗t−1 = ψt(pc∗t ). The details of the algorithm for inferring
hidden stop category sequence is described in Algorithm 3.
The output of this layer is a sequence of semantic episodes
describing the stops.

Algorithm 3: Trajectory annotation with POIs

Input: (1) an observation sequence of stops
O = {Stop1, Stop2, · · · , Stopn}; (2) points of interest
POIs = {〈p1, q1〉, · · · , 〈pk, qk〉} where qi ∈ {C1, · · · , C5}

Output: a hidden state sequence about stop behaviors (in terms
of POI categories), i.e.
S = {q1, q2, · · · , qn}, qi ∈ {C1, · · · , C5}

begin1
/* learn the model from POIs */2
λ = (π,A,B)3
/* initialization */4
forall POI category Ci do5

δ1(i) = πiBi(o1), 1 ≤ i ≤ N ; ψ1(i) = 06

/* recursion */7
forall t: 2 to n do8

forall categories Cj do9
δt(j) = max

i
[δt−1(i)Aij ] × Bj(ot)10

ψt(j) = argmax
i

[δt−1(i)Aij ]11

/* termination */12
P∗ = max

i
[δT (i)]; q∗n = argmax

i
[δT (i)]

13

/* state sequence backtracking */14
forall t: n to 2 do15

q∗t−1 = ψt(q
∗
t )16

/* get the semantic trajectory with POI tags */17
S = {〈stop1, q1〉, · · · , 〈stopn, qn〉}18
summarize Tpoint from extracted POI sequence19
(〈stop, tin, tout, tagList〉).
return structured semantic trajectory Tpoint20

end21

5. EXPERIMENT ANALYSIS
We implemented SeMiTri and carried out extensive exper-

iments to annotate large GPS trajectories of heterogeneous
moving objects with varying data qualities – private cars,
taxis and GPS embedded smartphones carried by people.



5.1 Implementation Setup
We implemented and deployed SeMiTri on a Linux oper-

ating system - Ubuntu 9.10, with the Intel(R) 2×3.00GHz
CPU and 7.9GiB memory. The context computation and
semantic annotation algorithms are implemented in Java 6;
PostgreSQL 8.4 with spatial extension PostGIS 1.5.1 is used
for implementing the different database stores. The raw GPS
records and geographic information from 3rd party sources
are loaded into the databases in different tables and queried
by different layers during execution time (Fig. 2).

The main output of SeMiTri – the structure semantic tra-
jectories (Def. 4) is stored in the Semantic Trajectory Store.
Dedicated tables are designed for GPS records, trajectories,
stops/moves, and annotations with geographic data, with some
new datatypes we defined in Postgis. This is expected to be
queried by several trajectory applications. In our experi-
ments, since the datasets are huge, we highlight large-scale
aggregated results through the Semantic Trajectory Analyt-
ics Layer. This layer computes additional statistical infor-
mation on the trajectories at all the different abstraction lev-
els. In addition, we have developed a Web Interface as a pi-
lot application using Apache 2.2.12 Web Server and Tomcat
6.0.26 Application Server. This provides trajectory querying
and visualization services to users/applications [31].

Our experiments focus on vehicle (taxi, private cars) and
people trajectories. While transportation mode of vehicles
is trivial (vehicle type), people can take different choices in
several or even one trajectory. Note that trajectories might
have varying semantic annotations due to varying amount
of 3rd party sources available. For some scenarios, SeMitri
produces partial annotations. Our objective here is to bring
out the individual performance of each layer, which results
in the collective annotation of the overall trajectory. To do
this, we present annotation performance of each layer with
different sources tuned to test the layers individually.

5.2 Vehicle Trajectories
The dataset of vehicle trajectories is shown in Table 1.

• Trajectories: We consider (1) 3 millions GPS records
of two Lausanne taxis, collected over 5 months by Swiss-
com8; (2) 2 millions GPS records of 17,241 private cars
tracked in Milan during one week from the GeoPKDD
project; (3) a GPS trace of 2-hour drive of a private
car in Seattle, provided by Krumm9 for testing map
matching in line annotation.

• Place Data Sources: We use (1) the landuse data of
Switzerland on the taxi data to validate the Semantic
Region Annotation Layer; (2) a large POI dataset of
Milan on the Milan private car data for the Semantic
Point Annotation Layer; (3) the benchmark dataset

8
http://www.swisscom.ch/

9
http://research.microsoft.com/en-

us/um/people/jckrumm/MapMatchingData/data.htm

containing the road network of Seattle as well as the
ground truth path for validating and tuning the Se-
mantic Line Annotation Layer.

The Trajectory Computation Layer produces 172 daily tra-
jectories with 1,824 moves and 1,786 stops over the Lausanne
taxi data. Based on this, the Semantic Region Annota-
tion Layer annotates the raw trajectories and the trajectory
episodes (stops/moves) with the landuse data. Fig. 9 shows
the detailed landuse category distribution over taxi trajec-
tories. Landuse has 4 large categories and 17 sub-categories
(from 1.1 to 4.17, see Fig. 4). We observe that most of
the taxi GPS records are in building areas (1.2) (46.6%) and
transportation areas (1.3) (36.1%), nearly 83% GPS points
belonging to these two categories (see the trajectory column
in Fig. 9). The move part covers 79.25% of the taxi lan-
duse area, whilst the stop part only covers 20.75%. Due to
the high-level abstraction into region-based movements, the
resultant semantic trajectory Tregion representation achieves
almost 99.7% storage compression (e.g. 3M GPS records can
be annotated with only 8,385 cells).

Map-matching (in Semantic Line Annotation layer) is ap-
plied on the move episodes of trajectories in our experiments
wherever road network data is available (for vehicle and
people trajectories). To measure the efficiency of our ap-
proach, we perform a sensitivity analysis of the algorithm
using Krumm’s benchmark dataset. We first tune the global
view radius (R) and the kernel width (σ) for the input data
source. Fig. 10 shows the effect of different σ and R on
matching accuracy. We observe that small values of R (=2)
and σ(=0.5R) produce very high matching accuracy, similar
to the recent results on this dataset [21], confirming the ef-
ficiency of the algorithm in fast computation. Nevertheless,
the focus of our Semantic Line Annotation is not only on
the map matching accuracy, but also on the determination
of transportation modes in heterogeneous trajectories. This
is illustrated through people trajectories in §5.3.

We analyze the performance of the HMM-based Semantic
Point Annotation algorithm using the POI data in Milan.
The 39,772 POIs are divided into 5 categories: 4,339 services,
7,036 feedings, 12,510 item sale, 15,371 person life and 516
unknown (Fig. 11 - first column). The 3rd party sources have
a high density of POIs in this area. Traditional one-to-one
match methods like [28] are not suitable here. Our Semantic
Point Annotation layer enriches the stops computed from
the GPS tracks of the private cars and extracts the most
probable POI category for each stop. In Fig. 11 (second
column), we observe most of the stops (about 56.3%) belong
to item sale (shopping, groceries etc.) with the next one
being person life (e.g. sport) (about 24.2%), which makes
intuitive sense for private cars trajectories. Through well-
defined rules, SeMiTri is able to perform analytics over the
extracted semantic trajectories. For example, Fig. 11 (third
column) also shows the trajectory category, which is defined

Table 1: Datasets of Vehicle Trajectories

Dataset # objects # GPS records Tracking time Sampling frequency

(1) Lausanne taxis 2 3,064,248 5 months 1 second
(2) Milan private cars 17,241 2,075,213 1 week avg. 40 seconds
(3) Seattle drive 1 7,531 2 hours 1 second

semantic places
(3rd party geographic sources)

(1) Lausanne (Switzerland): landuse - 1,936,439 cells
(2) Milan: points of interest - 39,772 POIs
(3) Seattle network (Krumm’s benchmark): 158,167 road lines
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as: the category of T is the category which has the maximum
stop time (Equation 8). This can be considered as a semantic
classification of the raw trajectories.

trajectorycat = argmax
Ci

X
stop.cat=Ci

(stop.timeout − stop.timein)

(8)

Note that the distribution of trajectory categories is sta-
tistically similar to the distribution of stop categories (see
Fig. 11). This is because the dataset has only 1.7 stops per
trajectory on the average – 2M GPS records of 77,694 tra-
jectories have 133,556 stops, thereby resulting in a similar
distribution. This is co-incidental and depends largely on
the trajectory data in applications.

5.3 People Trajectories
The dataset of people trajectories is shown in Table 2.

• Trajectories: This dataset [14] is provided by Nokia
Research Center, Lausanne. They distributed smart-
phones (Nokia N95) to students/researchers in Lau-
sanne, collecting several people sensing data including
GPS feeds. We analyzed 185 users, with 23,188 daily
trajectories with 7.3M GPS records from this data. Ta-
ble 2 also describes the details of 1,077 daily trajecto-
ries of 6 specific users we know.

• Place Data Sources: We use the swiss landuse data.We
also extract additional geographic data from Open-
streetmap – a publicly available and free editable map
site that includes regions, POIs, road networks of sev-
eral types, and load them into our PostGIS data store
(using Osm2pgsql 10).

People trajectories are far more non-homogeneous than ve-
hicle trajectories: (1) Many phenomenon can result in GPS
data loss, such as the limited power of smartphones, battery
outage, and indoor signal loss. (2) Non-stationary sampling
rates due to on-chip power saving software modules that
monitor the sensor; (3) Compared to vehicles, users in peo-
ple trajectory can take complicated on-road/off-road routes,
and choose diverse transportation modes (e.g. walk, bicycle,
bus, metro) during their daily movements. Therefore, capa-
bilities of SeMiTri are well established through systematic
semantic enrichment of such trajectories.

Through trajectory episode (stop/move) computation, the
7.3M GPS records are abstracted as 46,958 moves and 52,497

10
http://wiki.openstreetmap.org/wiki/Osm2pgsql

stops in 23,188 daily trajectories. To understand the type
of knowledge inference possible, Fig. 12 shows the loglog
plot of the length (i.e. the number of GPS records) of ex-
tracted trajectories, stops and moves. It shows that most of
moves/trajectories have similar patterns, with a large num-
ber of GPS records (say more than 103), whilst the num-
ber of GPS records in stops largely stay between 102 and
500, decreases from 102 to 101, and has few unusual cases
in [500, 103]. In addition, Fig. 13 shows the details of stops
and moves for the selected 1,077 daily trajectories of 6 users.
Note that the number of GPS records for each user in Fig.
13 is divided by 100, for better representation purposes, and
to bring out the storage compression achievement.

Through results of the semantic region annotation layer,
we observe a large bulk of stops and moves occur in the build-
ing areas (1.2) (33.3%) and the transportation areas (1.3)
(28.6%). However, while 83% of stops/moves in taxi tra-
jectories (Fig. 9) are in these areas combined, only 61%
of people trajectories fall in these. This is likely and intu-
itive, showing people trajectories have much more variations
in their movements and areas covered. To discover further
insights, Fig. 14 shows the precise distribution of the six
people selected (with the list of top-5 categories for each
user). We observe, user3 has much higher percentage of lo-
cation records in lake area (3.12) because his accommodation
is close to the Geneva lake; user4’s house is in commercial
center area (1.1); and user2 does a lot of hiking and skiing
in wooded areas (3.10) - different from other users.

Apart from performing map-matching, people trajectories
in Semantic Line Annotation are enriched to determine the
transportation mode (e.g. metro, bus, walk etc). Our Se-
mantic Line Annotation Layer considers the underlying net-
work information along with the velocity/acceleration distri-
bution for each road segment from the initial map-matching
results to determine the transportation mode. For example,
Fig. 15 shows a typical home-office trip of user4, who walked
a few blocks from home, then took the Metro line, and fi-
nally walked from the Metro stop to his office: sub-figure
(a) shows the original GPS points; (b) displays the initial
map-matched road segments for these GPS points; (c) fur-
ther infers the corresponding different transportation modes
such as metro or walk; finally (d) summarizes the trajectory
in terms of meaningful road sequences stored in the semantic
trajectory store. In addition to taking the metro as shown in
Fig. 15, user4 has taken three other transportation modes:
bus, bike or walk. In Fig. 16, the left subfigure (a) shows an
example of using bike for going home to office; whilst in sub-



Table 2: People Trajectory Data from Mobile Phones

All dataset user-id from-date to-date #days-with-gps #GPS semantic data

185 smartphone users
23,188 daily trajectories
7,306,044 GPS records
from date: 2009-02-01
to date: 2010-08-16

1 2009-02-17 2010-04-27 191 50,274 landuse:
1,936,439 cells
swiss-map:
109,954 points
344,975 lines
233,896 regions

2 2009-02-25 2010-05-16 330 200,418
3 2009-09-14 2010-05-16 166 62,272
4 2009-11-19 2010-05-16 161 66,304
5 2009-12-18 2010-05-16 140 69,467
6 2010-01-25 2010-05-16 89 45,137
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computation (distribution)
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Figure 14: Landuse category distribution
and top-5 categories of people trajectories

figure (b) the user took the bus, with walking as well during
the beginning and ending parts of the home-office move, for
getting on/off the buses.

Our POI dataset of Lausanne area is sparse at the mo-
ment, and does not reflect the real-life POI density of the
area (compared with the much more complete Milan city
data). We will apply the semantic point annotation method
when more POIs with well-defined categories are available.
We are currently building such dataset for EPFL campus.

5.4 Discussion
The above experiments validate the semantic annotation

part of SeMiTri – ability to annotate heterogeneous trajecto-
ries comprehensively, creating structured semantic trajecto-
ries, by exploiting available 3rd party geographic information
sources.

In [31], we developed a Web Interface for query and vi-
sualization of the annotation results from SeMiTri. This
enables users to easily query their raw GPS traces, trajec-
tory episodes, as well as semantic trajectories through a web
browser with Google Earth Plugins. Fig. 15 and Fig. 16
also exhibits some examples of such trajectory visualization
(KML files), that are retrieved from the trajectory stores.

Finally, we analyzed the run-time performance of SeMiTri.
Fig. 17 summarizes the latency distribution of SeMiTri for
processing phone trajectories. We observe that computa-
tion and annotation latencies are much lower (both map-
matching and landuse) than the storing time (write the re-
sults into our semantic trajectory store). For all the six users,
the average time for computing episodes, storing episodes,
map matching annotation, storing matched results, landuse
annotation for a daily trajectory are respectively 0.008, 3.959,
0.162, 0.292, and 0.088 seconds. Latency distributions for
vehicle trajectories are also similar.

6. CONCLUSION
This paper presented SeMiTri’s multi-tiered approach to-

wards semantic enrichment of raw trajectories, exploiting
context in the stream and geographic data from 3rd party
sources. It can significantly enrich trajectory semantics via
annotation algorithms.

SeMiTri is designed to work on heterogeneous trajectories,
different types of moving objects with varying behaviors (e.g.
activities, transportation modes). Algorithms for integrat-
ing information from geographic objects (with the spatial
extent of point, line or regions) were carefully designed to
be generic and accommodate most existing geographic in-
formation sources. By virtue of the design, latent context
in the stream is exploited to determine when to apply which
algorithm with what sources – resulting in improving the an-
notation efficiency of the overall system as well as avoiding
information overload. Our experiment demonstrated the ef-
fectiveness and efficiency of SeMiTri to act as a semantic
platform for diverse trajectory applications. The future re-
search focus is on further enriching the semantic trajectory
analytics layer for people trajectories on a large scale.
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