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Photonic crystals (PhCs) act on light in two different ways: confinement and modification of propagation. Both
phenomena rely on the complex interplay between multiply scattered waves that can form what is known as a
Bloch mode. Here, we present a technique that allows direct imaging of Bloch modes, both in real space and in
k-space. The technique gives access to the location of the field maxima inside the PhC, the dispersion relation,
equifrequency surfaces, as well as reflection and transmission coefficients. Our key advance is that we retrieve
the desired information comprehensively, without postprocessing or cumbersome near-field scanning tech-
niques, even for modes that are nominally lossless, i.e., below the light line. To highlight the potential of the
technique, we extract the dispersion curve of a coupled cavity waveguide consisting of as many as 100 cavities,
as well as the equifrequency surfaces and polarization properties of a PhC beam splitter. © 2007 Optical So-

ciety of America

OCIS codes: 070.0070, 130.0130, 130.2790, 130.5990.

1. INTRODUCTION

Planar photonic crystals (PhCs) [1] are defined by a peri-
odic modulation of the refractive index, with a periodicity
of order 300—500 nm for applications in optical communi-
cations. The standard characterization technique is to as-
sess their transmission as a function of wavelength [1].
While this technique yields a lot of useful information and
can be combined with interferometric techniques to deter-
mine the group velocity of the propagating wave [2,3], it
does not reveal the complete nature of the propagation in-
side the structure, i.e., it is a type of black box approach.
Furthermore, the two most important tools for describing
PhCs, namely the band structure and the equifrequency
surfaces (EFSs), need to be inferred from numerical cal-
culation. The band structure, i.e., the w-£ relationship of
the allowed states of the system, indicates the presence of
bandgaps, the group velocity of Bloch modes, and their
polarization dependence. The EFSs are derived from the
band structure and describe the direction of propagation
for a given mode at a fixed frequency [4,5]. To fully under-
stand photonic PhCs and their Bloch modes, it is then de-
sirable to extract the band structure and EFS from direct
observation and measurement. This has motivated sev-
eral research groups [6-10] to develop scanning near-field
optical microscopy (SNOM) for this purpose, coupled with
numerical analysis to extract the band structure. The
SNOM can see Bloch modes by probing their evanescent
fields, and achieve high spatial resolution, but the inher-
ent need to perform point-by-point image scanning makes
the method cumbersome and time consuming. Imaging
the Bloch modes directly is much faster and simpler, but
is a technique that has been mainly neglected so far, with
a few exceptions [11-14]. By accessing the focal plane of a
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low numerical aperture microscope objective, Fourier im-
aging has also been used to reveal the band structure of a
square photonic lattice directly [14]. To take this work
further and provide comprehensive evidence for the
power of the direct imaging technique we show how, in
combination with Fourier space imaging based on a high
numerical aperture objective, direct imaging can be used
to fully characterize the properties of Bloch modes. The
characterization includes field distribution, transmission/
reflection coefficients at interfaces, band structures, and
EFSs. We thereby prove that conventional optical meth-
ods can reveal a host of information with remarkable
speed and accuracy. Our technique will open Bloch mode
imaging to a much wider audience and thereby accelerate
the development of PhCs and periodic structures in gen-
eral.

Many original concepts in periodic structures [15] can
be directly observed above the light line, i.e., without the
need for evanescent mode detection, including negative
refraction [16,17], the superprism [18], and focusing ef-
fects [19] as well as self-collimation [20]. In all cases, ob-
servation of the propagation direction, the dispersion
curves, and the EFSs are of primary importance as well
as the finite size of both the PhC and the exciting beam,
as pointed out in [4,5]. For minimal losses application, op-
eration below the light line is more appealing. Even with
devices designed to operate below the light line, truly
lossless propagation is in practice impossible, as most
photonic devices do exhibit finite-size effects, for instance.
From a general point of view, a careful physical investiga-
tion of the losses permits retrieving fundamental infor-
mation about the light propagation in all kinds of photo-
nic devices. To underline this point and to expose the full
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potential of Fourier space imaging, we demonstrate its ca-
pabilities on four different types of nanophotonic struc-
tures: a self-collimating square lattice tile, a polarization
beam splitter operating above the light line, a W1 wave-
guide, and a coupled cavity waveguide made of 100 cavi-
ties operating below the light line.

2. EXPERIMENTAL SETUP

We use a standard end-fire setup to excite the PhC struc-
tures and to obtain their transmission spectra. The setup
consists of a tunable laser diode operating at 1.55 um
with a wavelength resolution AN=0.001 nm, a polariza-
tion controller, microlensed fibers, and an InGaAs power
meter. The light emitted from the PhC top surface is col-
lected by a high numerical aperture (NA=0.9) objective
and is imaged in an intermediate imaging plane (Fig. 1)
prior to detection with an InGaAs camera either in the
near field or in the far field with an angular range of +64°
(blue and green paths in Fig. 1, respectively). Note that
from now on, we will use the terms near-field imaging and
far-field imaging to refer to imaging in real space and in
Fourier space, respectively. The objective O performs the
Fourier transform of the object plane into the Fourier
plane & where an aperture sets the limits in the band-
width of the transmitted spatial frequencies. The lens L;
performs another Fourier transform and creates an image
in the intermediate image plane x, allowing spatial filter-
ing. Switching between the near-field and the far-field im-
ages is accomplished by removing only the optical lens Ly:
either the intermediate image plane x or the Fourier
plane ¢is imaged on the CCD array with and without the
lens Ly, respectively.

3. REAL-SPACE AND FOURIER SPACE
IMAGING OF PhC OPERATING IN THE
SELF-COLLIMATION REGIME

One of the simplest types of planar PhCs, which will serve
as a model system, is a square lattice of holes etched in a
two-dimensional (2D) waveguide. Some of the unique
properties of Bloch waves are already apparent in these
simple tiles. For instance, light can propagate without de-
tectable diffraction over centimeter-scale distances, as re-
cently demonstrated [21]. This is due to the supercollima-
tion effect that is characterized by a square-shaped EFS
(Fig. 2). As the direction of a propagating Bloch mode is

injection

. . :
EIR :
- EAAE i

collection

Fig. 1. (Color online) Experimental setup; O microscope objec-
tive (NA 0.9), L;, Ly, and Lz achromatic lenses and on the left
electron microscopy image of a PhC tile with the access ridge
waveguides. The green path corresponds to the near-field imag-
ing and the blue corresponds to the far-field imaging with L, re-
moved. ¢ and x are the Fourier plane and intermediate image
plane, respectively.
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always normal to the local EFS [21], self-collimation is
achieved when the EFSs are locally as flat as possible. In
Figs. 2(a)-2(d) the infrared light propagating through an
80 period square lattice tile is imaged in the near field
and the far field with high spatial and frequency resolu-
tion. The lattice (lattice parameter a=0.45 um, hole ra-
dius r=0.127 um) is designed to operate in the self-
collimation regime for TM polarized light with X\
~1.55 um. The GalnAsP/InP planar waveguide, made of
a 522 nm Ga,In;_,As,P;_, core layer sandwiched between
two InP cladding layers of thickness 300 (upper) and
600 nm (lower), respectively [22], and the access ridge
waveguides of width d=3 um (see the inset of Fig. 1) are
single mode in the frequency range of interest. For a
wavelength of 1475 nm (normalized frequency parameter
u=a/\~0.305), the mode at the access waveguide output
is diffracted in the 2D plane with an angle 6Og¢~N/(n
X d)~10 degrees, with n the effective index of the planar
waveguide. In this regime, the PhC acts as an isotropic
medium. When the wavelength increases, we enter the
self-collimation regime and the beam propagates without
diffraction at A=1550 nm; ©=0.29. In addition to the self-
collimation effect, the near-field intensity pattern mea-
sured in Figs. 2(a)-2(d) exhibits an intensity modulation
along the X direction whose associated spatial frequency
increases for decreasing normalized frequency u. Based
on Fourier space imaging, we can prove that this modu-
lation arises from the standing wave produced by con-
structive interference between the forward (FW) and the
backward (BW) propagating Bloch waves in the structure.

The in-plane component E//=Ex+l€y of the propagating
Bloch mode is directly recorded in the Fourier space im-
ages shown in Figs. 2(e)—2(h) (for more details refer to the
Appendix). We observe a main spot located at -k, and
elongated along the k, direction. It is attributed to a
forward propagating Bloch wave [23]. For short
wavelengths/high frequencies, the measured spot pattern
is crescent shaped, whereas for frequencies in line with
the self-collimation regime, it becomes a straight vertical
line as expected from the theoretical EFS [20,21]. The
length of the curve in the &, direction is inversely propor-
tional to the spatial extent of the Bloch mode, which is di-
rectly related to the access waveguide width. Assuming a
fill factor of f=25% for the experimental structure, the ex-
perimentally deduced dispersion curves w(k) at k,=0 for
the TE and TM polarized modes are in good agreement
with a 2D plane wave expansion (PWE) calculation for a
TE and TM effective index of 3.28 and 3.22, respectively,
as shown in Fig. 3.

The spot symmetrically located at +%, in Figs. 2(e)-2(h)
reveals the presence of a BW propagating Bloch wave,
which results mainly from the reflection at the air-ridge
waveguide interface. The intensity ratio R~0.15 at \
=1.55 um between the -k, and +k, waves is in line with
the fringe visibility of the spatial modulation observed in
real space. Consequently, this modulation, whose period-
icity is directly related to k,, is simply the standing wave
or Fabry—Perot-type effect. The real-space fringe spacing
Ax of 5Xa=2.25 um observed in Fig. 2(b) agrees with the
spatial beating frequency Ak of 0.2X27w/a=27/Ax
=2.8 um™! observed in Fig. 2(f). We would like to stress
that without any reflection, a constant intensity pattern
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Fig. 2. (Color online) (a)-(d) Near-field image of the Bloch wave mode in a square lattice PhC tile of 80 periods for different reduced

energies u. Below each real space image is shown the corresponding far-field image from (e) to (h). The thin black curves in the lower half
space of the far-field frame are the 2D PWE theoretical EFSs starting from »=0.315 in the center and drawn with a step of —0.005. The
far-field image is limited by the maximum propagating wave vector %,,,,=0.2636 X 27/a (the red circle in Figs. 2(e)-2(h) delimits the
output pupil of the objective that defines k,,,,). The corresponding diffraction limited spatial resolution is 0.85 um.

would be measured. As a result, without these interfer-
ences, the phase information and the dispersion relation
curve would be lost in real space. In Fourier space, how-
ever, the spot at position —%, would still be present. Fou-
rier space imaging is therefore a more universal and
straightforward method to retrieve the dispersion rela-
tion than real-space imaging. Moreover, FW and BW
propagating waves cannot be separated in real-space im-
aging as only the intensity of the field is recorded, while
the counterpropagating wave can be filtered in k-space al-
lowing, for instance, recovery of the loss profile of the for-
ward propagating wave.

4. PROBING DISPERSION PROPERTIES
BELOW LIGHT CONE FROM SIZE EFFECTS

The far-field characterization of infinite PhC structures
cannot record information carried by Bloch waves whose
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Fig. 3. (Color online) Dispersion curves for a square lattice PhC
for TE (blue) and TM (green) polarization, plotted versus the
modulus of the wave vector. The points represent the experimen-
tal data whereas the lines are for the theoretical PWE calcula-
tion (f=25%, neTff=3.28, and neTf]fW=3‘22). The dotted line is the
light line of the microscope objective. Two experimental data
points below this light line are highlighted with circle-cross
points. The horizontal error bars are given by the size of the
points while the vertical ones are far below the size of the points.

wave vector lies below the light cone, except if a noninva-
sive local probe or properly designed perturbations con-
vert the evanescent field into radiative fields [24]. Finite
size or light localization implies, however, that the Fou-
rier space spectrum broadens and that some spatial fre-
quencies of such Bloch waves fall within the light cone, as
shown in Figs. 4 and 5, respectively. In Fig. 4, the broad-
ening of the far-field spectrum is highlighted with three
square lattice PhC tiles (with structural parameters iden-
tical to the tile studied in Section 3) operating in the self-
collimating regime (x=0.283) that differ by their size of 9,
18, and 36 um, respectively. The emitted light is dif-
fracted due to the finite size of the tile along the light
propagation direction defined by the PhC line defect. As a
result, the peak signal in Fourier space, which is a § func-
tion along k, for an infinite structure, broadens along this
direction into a sinc function that has secondary maxima
that are located into the light cone. Such secondary
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Fig. 4. (Color online) Experimental Fourier space spectra of

square lattice PhC tiles operating in the self-collimating regime
(©=0.283) for TE polarization, with length: 9 (1), 18, (2), and
36 um (3). Thin dark curve: sinc fits. The spatial frequency range
outside the bandwidth of the setup is highlighted in gray. Inset:
log-scale plot of spectrum 2 corresponding to the 18 um long tile.
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Fig. 5. (Color online) (a) Experimental Fourier space spectrum
(log-scale) of a 9.7 um long W1 waveguide (dark curve), analyti-
cal continuation of the experimental spectrum (blue curve), and
theoretical spectrum (red curve) at A=1565 nm (z=0.281). FWi:
Forward propagating Bloch wave in the :"¢ Brillouin zone, BWi:
Backward propagating Bloch wave in the "¢ Brillouin zone. Dot-
ted and dashed lines: light lines of the objective and of air, re-
spectively. (b) Experimental dispersion curve determined from
the analytical continuation of the Fourier space spectrum
(circles), and theoretical dispersion curve (blue curve). (¢c) End-
fire optical transmission through the W1 waveguide. (d) Electron
microscopy image of the W1 waveguide (¢ =440 nm) structure.

maxima can be fitted by the proper sinc function to re-
cover the position of the main peak if this one is outside
the light cone. Note that the sharp decay of the field at
the PhC interface compared to the PhC size guarantees
the quality of the fit. In the case of a localized mode in a
2D PhC cavity, for instance the L3 cavity, the far-field
spectrum is expected to differ strongly from a sinc profile,
as the near-field envelope of the mode is not a square win-
dow function.

In Fig. 5 we illustrate the possibility of using the infor-
mation carried by the secondary maxima with the one-
dimensional (1D) far-field spectrum of a single line defect
(W1) PhC waveguide designed to operate below the light
line. The structure consists of a 9.7 um long silicon-on-
insulator (SOI) W1 waveguide defined in a 220 nm silicon
layer by a line defect of 22 missing holes along the I'K di-
rection in a triangular lattice array (¢ =440 nm) [see Fig.
5(d)]. As highlighted by Fig. 5(a), a structured signal (the
dark curve) is measured in the far field. Such a signal
comes from the partial relaxation of the spatial transla-
tion invariance of the structure. We have taken advan-
tage of the secondary maxima to determine the dispersive
properties of the W1 waveguide below the light line. The
best fit (blue curve) of the experimental signal is obtained
by taking into account the first and second components of
the FW and BW reflected Bloch waves. The outputs re-
sulting from such a procedure are the positions of the
Bloch wave components in the first and second Brillouin
zone, their relative weight, and the actual size of the
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sample. We obtain a good agreement with the theoretical
spectrum (red curve), deduced from 2D plane wave expan-
sion calculations for the positions and relative amplitudes
of the Bloch wave components. The only a priori knowl-
edge is the existence of an internal periodicity and the
fact that the PhC is abruptly limited in size. As a result it
was possible to determine the dispersion curve below the
light cone as shown in Fig. 5(b) (in the same way we have
extended the dispersion curve in Fig. 3 beyond the objec-
tive light line, i.e., the bandwith of the optical setup). A
good agreement is achieved with the theoretical disper-
sion curve inferred from Fabry—Perot interferences in the
PhC transmission calculated with the three-dimensional
(3D) finite-difference time domain (FDTD). At £=1/3
(27/a), the value corresponding to the maximum of the
PhC dielectric band, the dispersion enters a regime where
k remains constant, probably due to the Bloch wave eva-
nescent along the line defect and localized at the PhC in-
put boundary, as also observed with local probe gratings
[24]. The extrapolation of the Bloch wave component lying
in the second Brillouin zone corresponds to an effective
increase of the NA up to 2.5. The noise originating in the
present case from a background scattering due to struc-
tural defects is the limiting factor to extend the band-
width of the reconstructed far-field spectrum. Such an ex-
perimental technique implemented to extend the Fourier
spectrum beyond the bandwidth of the instrument is re-
lated to the theoretical superresolution technique based
on the analyticity of the far-field spectrum in the case of
objects limited in size [25,26].

5. COUPLED CAVITY WAVEGUIDE

As a second example of a device operating below the light
line, the high NA Fourier space imaging technique is ap-
plied to a coupled cavity waveguide (CCW). CCWs are of
intense current interest notably because of their potential
capabilities to slow and store light pulses or to strongly
reduce optical interaction lengths and enhance nonlinear-
ity effects [27-30]. In the present case, the CCW com-
prises 100 linearly coupled identical cavities, each of
which consists of a photonic heterostructure based on an
SOI W1 PhC waveguide whose structural parameters are
identical to the previously studied W1 waveguide [31]. As
shown in Fig. 6(a), the supercell of the photonic hetero-
structure contains 11 rows of holes of lattice constant a;
=440 nm (the mirrors) and three rows of lattice constant
a9=460 nm (the core). In Figs. 6(b) and 6(c) the propagat-
ing field is imaged in real space and Fourier space, re-
spectively, for a wavelength of 1535 nm (normalized fre-
quency u=a1/A=0.2866). The intensity in real space is
located at the position of the cavities.

The far-field [Fig. 6(c)] consists of sharp vertical lines,
labeled d;, ds, d3, and d4, and periodically spaced with a
period equal to the reciprocal vector Gy, =27/(11a;+2as)
of the CCW supercell. The spread of the radiated field in
the k, direction is larger than in the self-collimation case
and goes well beyond the objective aperture due to the ex-
treme transverse confinement imposed by the single line
PhC waveguide. This far-field pattern originates from the
constructive interferences of 100 secondary coherent
sources located at the cavity positions as observed in the
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Fig. 6. (Color online) (a) Electron microscopy image of the coupled cavity waveguide, (b) and (c) real space and Fourier space images,
respectively, of the CCW excited at A\=1535 nm (x=0.287). The light radiated from the 100 cavities is observed as bright spots along the
entire waveguide in real space and appears as vertical straight lines in the far field separated by the reciprocal vector G, of the CCW
supercell. (d) Dispersion diagram of the CCW in its first, second, third, and fourth Brillouin zones, plotted versus the modulus of the
wave vector, and with ¢ =440 nm chosen for the normalization. Purple, blue, dark, and green experimental dots: position in k-space of the
d1, d2, d3, and d4 lines, respectively. Square dots: experimental dispersion curve of the 9.7 um long W1 waveguide (see Fig. 3). Gray
curves: theoretical 2D plane wave expansion calculations, with 30% and 2.65 as fitting parameters for the filling factor and the effective
index, respectively. The deviation in the slope of the dispersion curve can be explained by the discrepancy between the idealized 2D model
and the real 3D experiment, and not from the number of plane waves (3411) used in the model. Dotted and dashed lines: light lines of the

objective and of air, respectively.

real space image. Compared with the self-collimating
square lattice, where only a fraction of the first Brillouin
zone is situated within the light cone, the smaller recip-
rocal vector Gy, of the CCW allows us to probe four Bril-
louin zones inside the light cone simultaneously. The fre-
quency dependent %, position of the lines d;, ds, d3, and
d, provides the dispersion curve in the first, second, third,
and fourth Brillouin zones, respectively [Fig. 6(d)]. The
dispersion curves have identical shapes as expected and
are in good agreement with a 2D plane wave calculation.
Note that the intensity of the component lying in the fifth
Brillouin zone of the supercell is more than two decades
larger than the others and that its dispersion curve
(green points) is closely linked with the already measured
W1 waveguide dispersion curve (open squares). As a re-
sult, with respect of the W1 guided modes, the cavities
can be regarded as noninvasive spatially coherent scatter-
ers that fold the dispersion curve of the unperturbed W1
waveguide into the light cone and allow its measurement.
Due to this folding property, our measurement can there-
fore access parts of the W1 dispersion curve that are situ-
ated below the light cone. More generally, Fig. 6(d) re-
veals an important intrinsic property of all coupled
cavities based waveguides: the periodicity of the cavities,
always larger than the PhC pitch, implies that one or sev-
eral associated Brillouin zones are entirely inside the
light cone, and so some of the plane waves associated with

the Bloch mode decomposition will be able to radiate. This
must be considered in the design of the system to keep the
contribution of these waves as low as possible and to
minimize losses. A recent theoretical study by Povinelli
and Fan [32] shows, for example, that the radiation loss of
the coupled system may be lower than that of an indi-
vidual cavity. To summarize, the measurements pre-
sented in Fig. 6 demonstrate that far-field imaging gives
access to the main physical properties of PhC coupled cav-
ity waveguides.

6. LOCAL INVESTIGATION OF A
PHOTONIC CRYSTAL POLARIZATION
BEAM SPLITTER

The engineering of PhC heterostructures offers the possi-
bility of performing a range of optical functionalities,
which will eventually be integrated as local building
blocks in advanced photonic circuits on a chip. Their char-
acterization in such a complex environment requires local
probes capable of measuring their properties without dis-
turbing the overall system. As a third example, a compact
PhC double polarization beam splitter is presented in Fig.
7. The first splitter uses the intrinsic properties of PhC
slabs to project the input beam polarization state on the
TM and TE polarization states of the underlying planar
waveguide. The two corresponding beams are then col-
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Fig. 7. (Color online) (a) and (b) near-field image of the TM and
TE waves, respectively, propagating in the double slab polarizer
beam splitter (color coded: increasing intensity from blue to red)
superimposed with an optical microscope image of the structure
(black and white), (¢) emission diagram of the TE wave imaged in
the Fourier space at A\=1550 nm, (d) same as (c) with the emis-
sion of the second splitter filtered in the intermediate image
plane, (e) reflection coefficient of the first slab deduced from the
far-field pattern measured for different wavelengths as in (c).

lected in two different output ports. The second splitter
reflects the TE beams to collect the two polarizations
through parallel ridge waveguides. Such an integrated
polarizer is useful for implementing polarization diversity
circuits, whereby the two polarizations are separated and
then treated independently. Since the photonic bandgaps
for TE and TM polarizations in a PhC span different
wavelength ranges, it is possible for a given wavelength
range to transmit the TM polarization (no bandgap effect)
and to reflect the TE polarization (with bandgap effect).
Such a splitter has been realized in a square lattice of fill
factor 30% that operates in the self-collimation regime,
with a central, diagonal line consisting of six holes with a
fill factor of 50% acting as the polarization-sensitive
power splitter. In Figs. 7(a) and 7(b) the near-field images
identify the light paths associated with each polarization
for a wavelength of A=1550 nm. The TM polarized field
propagates through the first splitter, as expected,
whereas the TE polarized beam undergoes a reflection at
each diagonal interface.

The transmission and reflection properties of each
splitter cannot be extracted from the near-field images
due to the overlap of incident and backscattered beams
and the out-of-plane scattering signal at the different in-
terfaces, which overlaps partly with the propagating
beams at such small scales. The situation is more favor-
able in k-space. Indeed, k-space imaging provides a natu-
ral spatial selectivity of beams propagating along differ-
ent directions, allowing the measurement of the relative
intensity of each beam. For instance, in Fig. 7(c) the far-
field image associated with the TE polarized beam reveals
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two main spots, one located at (k,=0, k,=0.21), corre-
sponding to the reflected beam propagating downward,
and the other located at (k,=-0.21, k,=0), corresponding
to a superposition of the incident and the exiting beam
that has been reflected twice. The mixing of these last two
beams in k-space induces an interference pattern oriented
along the &, =k, axis. To separate these two contributions
in the Fourier plane and estimate the reflection coefficient
of the first splitter, the near field was filtered in an inter-
mediate real space-imaging plane by blocking the radi-
ated light that corresponds to the exiting beam. The
fringe pattern then disappears in the corresponding far-
field image [Fig. 7(d)], and the intensity ratio between the
incident and reflected waves provides a direct quantita-
tive measure of the beam splitter reflectivity. For the spe-
cific device shown in Fig. 7, we measure a reflectivity of
R=28% at 1.59 um. This closely matches the value of R
=26% obtained with a standard nonlocal end-fire trans-
mission measurement, thus demonstrating the powerful
capabilities available with our technique. Note that the
secondary maxima discussed previously [see Figs. 4 and
5] are also observed in Fig. 7(d) due to the finite size of the
device and as a result could be used to determine the re-
flection coefficient of the polarizing slab if the device
would operate below the light line.

7. CONCLUSION

The combination of Fourier optics with a conventional
end-fire setup is ideally suited to provide a clear experi-
mental understanding of the physics of Bloch waves in pe-
riodic nanostructures. The excitation of the PhC struc-
tures with a narrow bandwidth laser source allows high-
resolution spectroscopy of the different Bloch modes, both
qualitatively and quantitatively, both above and below
the light line. Fundamental information such as the dis-
persion curves and the EFSs can rapidly be extracted
from the experimental far-field images without sophisti-
cated characterization tools and postprocessing. We envi-
sion that such experimental measurements of the EFSs
on actual devices and of the light propagation or localiza-
tion in nanophotonic structures opens new perspectives
for implementing and developing promising concepts of
nanostructures.

APPENDIX: ANTENNA MODEL APPLIED TO
FAR-FIELD EMISSION FROM PHC
STRUCTURES

The electric field distribution Ek(x) of the TM polarized
Bloch mode can be expressed as Ek(f)=E0uk(F)eik7e‘f”t£,
with u;(r) a periodic function having the very periodicity
of the lattice and E the field amplitude. The correspond-
ing field intensity I = |u,(7)||?> exhibits a spatial modulation
equal to the periodicity of the PhC lattice, which is two
times smaller than the present setup resolution in the in-
frared region. As a result, the spatially resolved modula-
tion in the measured intensity pattern seems initially
surprising. A simple model based on antenna theory can
help to understand such an observation. Using the vol-

ume equivalence theorem [33], the radiated field EO(F) in
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the vacuum from the PhC whose electrical and magnetic
permittivity are respectively € and u(, can be calculated

with the equivalent current J,,(r')=jo(e(r’) - ) E(r)
induced by the Bloch wave E,(r’), with r’ the vector posi-
tion in the 2D plane of the source and ¢, the vacuum elec-

trical permittivity. In the first Born approximation, E k(; "
can be chosen as the Bloch wave solution of the infinite
2D PhC. At a distance r from the sources, the expression
for the radiated electric field from a TM polarized current
can then be simplified as E’O(ﬂz(dkof /1‘)13'(17), with ﬁ'(ﬁ)
=j\to/ €0 X (ko/ 4m)[(Z X 7) X 5]f g oque 0 dr", kg the wave
vector of the radiated wave, S the surface defining the
boundary of the equivalent courant, and v=r/r. This ex-
pression is simply the fundamental antenna formula [34]
(for a TE polarized field the vectorial product differs,
whereas the integral is unchanged). The equivalent cur-
rent is also a 2D propagating Bloch wave with the new pe-

riodic function (e(; - eo)uk(;’). By use of the periodicity of
this function, jequ(r: ') can be represented as an infinite su-
perposition of m plane waves whose in-plane wave vectors
are k,=Fk+ ém, with % the wave vector in the first Bril-
louin zone, ém the reciprocal lattice vectors, and m an in-
teger. According to the expression of ﬁ'(ﬁ), only the m
plane waves, for which there exists a wave vector %, sat-
isfying the conservation of the in-plane wave vector %,,,
generate a signal in the radiated field, %, being limited by
the light cone. The observed light can then be interpreted
as a coherent emission radiated from the holes whose
emission direction results from the phase coherence de-
fined by the 2D propagating Bloch wave inside the PhC.
The PhC corrugation plays two major roles: (1) it acts as a
distributed antenna, and (2) it distributes the energy car-
ried by the propagating field among m plane waves whose
k-components lie in the different Brillouin zones of the
structure [35]. The setup aperture filters the plane waves
whose £, falls in the light cone of the microscope objec-
tive. In the current example we expect that an FW propa-
gating Bloch wave would generate only one spot in the
Fourier space corresponding to its only component %; ly-
ing in the first Brillouin zone of the periodic lattice. The
resulting image in the real space should then be a con-
stant intensity without spatial modulation.
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