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Chapter One

Self-Organized Robotic Systems:
Large-Scale Experiments in
Aggregation and Self-Assembly using
Miniature Robots

Grégory Mermoud, Amanda Prorok, Loic Matthey, Christopher M. Ciandi,
Nikolaus Correll, and Alcherio Martinoli?

1.1 Introduction

Scientific and technological breakthroughs in the field of nano- and mi-
croengineering have steered the robotics community towards the realm of
extreme miniaturization. Very small robots of a few centimeters in size can
access environments that are beyond the reach of larger robots, with recent
case studies including scenarios such as the inspection of the digestive
tract [Nagy ef al. (2008); Rentschler et al. (2008)] or complicated industrial
machinery [Correll and Martinoli (2009)]. Further miniaturization down
to the micro- or nanoscale holds even more exciting potential in a large
variety of fields [Woern et al. (2006); Abbott et al. (2007); Dong and Nelson
(2007)]. However, miniaturization comes at a price: such robots are likely
limited to minimalist computational, sensing, actuation, and communica-
tion capabilities. These severe restrictions create the need for a collabora-
tive approach towards the solving of tasks by leveraging perception and
action at a collective level.

The need for collective perception and action generally emerges in sys-

I This work was partially supported by SelfSys, a project sponsored by the Swiss research
initiative Nano-Tera.ch.
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tems that involve robots that are several orders of magnitude smaller than
the environment in which they operate, or that have too limited sensori-
motor capabilities for carrying out a given task (which, in nature, is of-
ten mere survival). For instance, in the case of environmental monitor-
ing, sensor nodes of a few centimeters in size must observe an environ-
ment (e.g., a forest, mountain, or city) that might be up to several kilo-
meters in size [Barrenetxea et al. (2008)]. In order to accomplish mon-
itoring and inspection tasks in such scenarios, large-scale systems com-
posed of hundreds or more individual nodes must be deployed [Howard
et al. (2006a,b)]. Successful control schemes for large-scale systems can
range from fully centralized (i.e., control algorithms are essentially car-
ried out by a central computer, which then dispatches precise instructions
to each of the individual robots, perhaps as broadcast probabilistic tem-
plates) [Michael et al. (2008); Milutinovic and Lima (2006)] to fully dis-
tributed (i.e., control algorithms run entirely on-board, local to each indi-
vidual robot) [Christensen et al. (2007)]. Centralized control is easier to
formalize in a theoretical framework, and it often allows for achieving op-
timal performance, but it has usually high requirements in terms of com-
munication bandwidth and computational resources at the central control
unit. Centralized control schemes also suffer from limited scalability in
terms of number of nodes, and are intrinsically characterized by a sin-
gle point of failure (i.e., the central control unit). In contrast, distributed
control is very attractive in terms of scalability and robustness, typically
exhibiting a graceful degradation of system performance in the presence
of one or more unit failures or malfunctions. However, distributed robotic
systems, especially those consisting of a large number of autonomous mo-
bile units, are generally very difficult to design and analyze. The comple-
mentary challenges of synthesis and analysis in such cases have been the
focus of several recent research efforts within the domain of distributed
robotic systems.

1.1.1 Self-Organization

The first objective for this chapter is to review some of the techniques used
for designing and analyzing distributed control strategies for large-scale
systems. One of the coordination mechanisms that has proven very suc-
cessful in addressing this type of problem is self-organization, particularly
for very resource-constrained systems [Nagpal et al. (2006); Pfeifer et al.
(2007); Baldassarre et al. (2006)]. Self-organization is the process by which
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a global pattern emerges from multiple interactions among the lower-level
components of the system, without any external guidance, combined with,
and taking advantage of, the randomness inherent in the system?. The
rules specifying these interactions are executed without explicit reference
to the global pattern, thus allowing the self-organized strategies to be ex-
tremely scalable. We will support the discussion with a series of real case
studies that involve large groups of small mobile robots with minimal ca-
pabilities performing complex tasks (see Fig. 1.1.).

Figure 1.1. Examples of aggregation and self-assembly in real and simulated robotic sys-
tems. (A) Morphology control in a group of swarm-bot robots (10 centimeters in diame-
ter) [Christensen et al. (2007)]. (B) Aggregation-mediated decision-making in mixed societies
of robots and cockroaches [Halloy et al. (2007)]. (C) Self-assembly of Alice robots (2 centime-
ters in size) into chains of controllable size using minimalist local communication [Evans et al.
(2010)]. (D) Clustering of objects in a swarm of mobile robots using only local perception
(see [Martinoli et al. (1999)] and Sec. 1.3.1). (E) A group of networked e-puck robots forming
a distributed lamp that can adapt to its environment (see Sec. 1.2). (F) Aggregation-mediated
decision-making in a group of Alice robots endowed with noisy sensors (see [Mermoud et al.
(2010)] and Sec. 1.3.2). (G) Distributed assembly of heterogeneous parts into planned struc-
tures using stochastic strategies in a swarm of mobile robots [Matthey et al. (2009)]. (H) Self-
assembly of water-floating tethered units, called Tribolon, which are endowed with a vibrator
for controllability purposes [Miyashita et al. (2008)].

Ranging from the clustering of small objects to collective decision-
making, all of these tasks involve aggregation or the formation of specific
spatial patterns, thus enabling a straightforward visualization and under-
standing of the case study. Although we focus here mainly on engineered

2One could associate other features to the concept of self-organization such as strong emer-
gence or energy dissipation. While these features are commonly observed in many self-
organized systems [Haken (2006)], they are much less relevant to the topic of this chapter,
and therefore we do not discuss them in further details.
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systems rather than on natural ones, we may draw our inspiration from
Nature when it comes to the design of large-scale systems and their con-
trol schemes, in particular when using self-organized strategies. Aggrega-
tion, for instance, is an efficient mechanism exploited by Nature for favor-
ing interactions and information exchange between biological individuals,
and thus enabling the emergence of complex collective behaviors [Gar-
nier et al. (2008)] ranging from predator protection [Parrish and Edelstein-
Keshet (1999)] to collective decision-making [Halloy et al. (2007)]. Sim-
ilarly, a group of robots may exploit random encounters for sharing in-
formation collectively while communicating locally; they may also form
spatial patterns and structures based only on local stochastic rules of inter-
action. This specific type of spatial self-organization is called self-assembly.
Note that self-assembly does not necessarily involve a physical connec-
tion among the building blocks; especially in the context of dynamical
self-assembly, where systems operate far from equilibrium [Grzybowski
and Campbell (2004)]. Although the concept of self-assembly originated
in chemistry, components of any size (from molecules to galaxies) can self-
assemble [Whitesides and Grzybowski (2002)], including engineered com-
ponents such as passive building blocks [Boncheva et al. (2003)] or fully-
fledged mobile robots [Gross and Dorigo (2008)].

Both self-organization and self-assembly usually rely on four funda-
mental ingredients, which we demonstrate here in the specific context of
self-assembly:

(1) positive feedback is, in the context of self-assembly, an attractive force,
or a binding interaction;

(2) negative feedback is generally a repulsive force, or an exhaustion of
the building blocks;

(3) randomness is the property of a process whose realizations do not fol-
low a predictable deterministic pattern, but are rather characterized by
a probability distribution;

(4) multiple interactions is the fact that the different components of the
system interact with each other often enough with respect to the dura-
tion of the process.

Self-organized systems also differentiate based on the substrate and
mechanisms used to share information among the units. For instance, stig-
mergy [Theraulaz and Bonabeau (1999)] is a powerful indirect anonymous
communication mechanism exploited by insect societies and some self-
organized artificial systems reported in the literature [Beckers et al. (1994);
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Martinoli et al. (1999); Agassounon et al. (2004); Mamei and Zambonelli
(2007); Werfel et al. (2006)]. Stigmergy relies on the specific signs left in
the environment by the agents’ actions, which in turn stimulates subse-
quent actions. It mediates the formation of complex structures and spatial
patterns, without need for any planning, control, or even direct commu-
nication between the agents. Section 1.3.1 presents a case study that is
a typical illustration of stigmergic coordination. In that particular case,
the clustering of objects serves as a dynamic environmental template that
guides the action of the swarm. This type of control mechanism is simul-
taneously flexible and scalable, and therefore quite suitable to the control
of large-scale systems.

1.2 From Centralized to Distributed Control: The Case Study
of A Distributed Table Lamp

With recent progress in embedded systems technology, increasing efforts
are going towards the introduction of distributed, miniature robotic sys-
tems into everyday environments, with the ultimate goal of achieving
seamless integration and disappearing technology. By leveraging new
radio technologies, power-aware resource management, and controlled
mobility, networked robotic systems are able to fulfill even more ambi-
tious objectives. Still, as the results here will show, growing application
requirements and system complexity pose challenges to centralized and
distributed control strategies alike. The first case study presented in this
chapter addresses the control and design of a physically distributed table
lamp. This study is performed on a system of networked e-puck mobile
robots, which—due to their small size and robustness—are ideal for pro-
totyping robotic tools for everyday life [Cianci et al. (2008)].

The goal of this project was to explore the opportunities and challenges
encountered in the development of a specific application—an interactive
distributed table lamp. The intrinsically distributed nature of the system,
embodied by a group of individual robots, exposed the system engineers
(roboticists and interaction designers in close collaboration) to one essen-
tial challenge—what are the design choices to be made, in order for the
system to be efficient (i.e., fast) and robust? In the following sections, we
take the reader through the various elements of the system, and progres-
sively show how this question was answered.
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Figure 1.2. (a) A networked multi-robot system forms a reconfigurable interactive table
lamp, assuming various configurations based on user activity or input. (b) Interaction setup.
Robot and user positions are tracked using two different tracking systems. The information
is then combined and sent via radio packets to the robots, which take action accordingly.

1.2.1 The Configuration Problem

Each of the robots in the system is equipped with a light, and the group is
given the task of assuming various configurations as a function of user ac-
tivity or instructions (see example in Fig. 1.2.(a)). There are several ways in
which one could imagine approaching this type of coordination: through
local rules for self-assembly [Klavins et al. (2006)], potential fields [Song
and Kumar (2002)], or environmental templates [Correll and Martinoli
(2006)]. In order to be effective, all of these methods will require some
degree of coordination among the agents and with the user. Here, we
focus on the inter-agent organization, and assume that the agent-user in-
terface is handled by an independent process. Thus, the general objective
of the system can be narrowed down to a configuration task, which con-
sists of compelling the multi-robot system to move from a spatial pattern
(e.g., randomly scattered, ordered configuration for a given activity) to
another one (e.g., an ordered configuration for another activity). While
the speed of the configuration process and the final accuracy of the con-
figuration are the ultimate goals, our specific solution addresses robust-
ness in particular, due to the typical resource boundedness of miniaturized
robotic systems.

The setup consists of a collection of e-puck robots fitted with lamp tur-
rets, a table with marked boundaries for them to interact on, an overhead
camera for tracking the positions of the robots (using the SwisTrack multi-
agent tracking software [Lochmatter et al. (2008)]), and a human-computer
interface which senses and indicates which regions of the workspace are
currently occupied (see Fig. 1.2.(b)). The target configuration of the dis-
tributed lamp is controlled through crude position and attitude tracking
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of users around the table. User and robot tracking are then integrated in
software, and configuration and positioning information is then sent to the
robots.

The goal of the multi-robot system is to reach a specific organized state
as quickly and accurately as possible. More formally, let p; € P be the
position of robot i, C a goal configuration with c; the individual place-
ments, Tyy the maximum time-to-completion allowed, and € a precision
parameter. Then , for N robots, the aim is to find tc < Tyax such that
Vt > tcVi=1...N, 3¢; € C such that the actual position lies within
acceptable error bounds, i.e., distance(p;(t), c;) < e.

1.2.2 System & Algorithms

Absolute position messages are sent to the robots at approximately 1Hz,
enabling the local computation of target positions. The position messages
also enable a re-calibration of the local odometry, increasing the accuracy
of robot maneuvers at the individual level. Although certain global knowl-
edge is available to the robots, the approach implemented for this project
involves no explicit path planning.

In an intuitive approach towards simplifying the design of the algo-
rithm, we decompose the configuration task into a set of independent
subtasks, namely position allocation, collective motion, and low-level control.
While each of the subtasks can be solved separately, the overall group
behavior converges to the desired outcome. This resulting algorithm is
given the name Layered Nearest-Neighbor Control. From a general perspec-
tive, the algorithm relies on two complementary ingredients: layered en-
vironmental templates broadcasted to each robot and local inter-robot in-
teractions. This combination of centralized, broadcast-based control and
local distributed control allows for both fast execution owing to the cen-
tralized commands, and enhanced robustness, mainly achieved through
the anonymousness of robots (i.e., any robot is replaceable by a teammate
in a given configuration) and local noisy interactions (avoidance of dead-
locks) [Michael et al. (2008); Milutinovic and Lima (2006)].

Position allocation: The robots are assigned to their final positions
within the configuration, which may be fixed or agreed upon at the begin-
ning of the run or dynamically re-allocated during the run. This subtask is
governed by a nearest-neighbor allocation algorithm: each robot attempts
to move towards the closest unfilled position in the target configuration.
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This strategy may result in allocating more than one robot to the same des-
tination within a given target configuration, however, once the position is
filled the other robots will be automatically reassigned (low-level control
handles the case where two robots arrive simultaneously).

Collective motion: Certain configuration architectures may lead to po-
tential deadlock situations resulting from unfilled interior positions which
may no longer be accessible due to other already placed robots. Thus, a
collective motion directive is established by separating the list of target po-
sitions in the configuration into layers, such that exterior positions may
not be filled (are considered as not available) until the interior ones are.
Figures 1.4.(a) and 1.4.(b) depict two example configurations divided into
layers. These specific layers are defined by exploiting symmetries in the
shape to be constructed; algorithmic extensions to the solutions presented
here should involve an automatic partitioning of the configuration into
layers and a distributed implementation on the robotic platform.

Low-level control: This strategy comprises an individual robot’s move-
ment, and consists of a simple control layer combining obstacle avoidance
with movement towards the target position. Both behaviors are computed
locally, on the robot. Motor commands are determined straightforwardly
by attempting to drive directly to the currently allocated target position;
if an obstacle is encountered along the way, the robot will execute a ran-
dom turn (in place) and a random back-off before re-attempting to drive
straight towards its target. This approach was used specifically due to its
nature of minimizing the accumulation of error in odometry, which is used
to interpolate between reception of successive position messages.

A pseudocode representation of the complete controller is shown in
Algorithm 1.3..

1.2.3 Down to Reality

The system was tested in reality for two specific configurations—the circle
and triangle (see Figure 1.4.(c) and Figure 1.4.(d))—and in two variants:
(i) robots are driven from an initially scattered state into a structured con-
figuration, and (ii) robots are driven from one existing completed config-
uration into another. These test cases were performed in sequence (ran-
dom — configuration — configuration) ten times for each combination
AN=>0,N0=0,0=24,0—=0). Werecorded the time taken to ac-
complish the configurations as well as message loss: all experiments were
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Receive target configuration from tracker.
repeat
Receive position information (x, i) from tracker.
Select nearest unfilled configuration location (£, 7, 0) as target.
Attempt to move straight towards selected target.
if Obstacle detected before target reached then
Perform random turn / random backoff.
else
Estimate current orientation (0) from difference between
current and previous positions.
end if
until Target location reached.

Figure 1.3. Layered Nearest-Neighbor Control.

completed successfully, with a time-to-completion of less than 150s, and a
recorded message loss of 45%.

The results show us that even when including global information, op-
timal solutions are not necessarily guaranteed. Furthermore, theoretical
approaches may not be tenable due to the non-negligible amount of mes-
sage loss. In this respect, the current system demonstrated a high level
of robustness. Yet, for an ultimately scalable system, even partial cen-
tralization will become inefficient as the conditions are worsened by the
increasing number of agents. Decentralization will include node-to-node
local communication and localized relative positioning methods using on-
board sensors. However, these methods will introduce new challenges, as
an accumulation of uncertainties at the collective level arise due to partial
perception at the individual nodes in the system.

Many of these challenges may yet be addressed in the near future with
additional advances in the area of networked robotic systems.

1.3 Self-Organized Strategies for Distributed Control

If very strict constraints are set on the individual robots (e.g., computa-
tional resources, reliability) because of miniaturization for instance, and
if time pressure for achieving the task is not too high, fully distributed
control strategies can be considered. Self-organization has proven to be
very successful among the variety of coordination mechanisms used in
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(d)

Figure 1.4. Top: examples of two configurations constructed from layers, so as not to un-
intentionally isolate robots from the positions they need to fill: (a) an open circle, and (b) a
packed triangle. Positions are numbered by the layer that they belong to (e.g., all positions
marked “1” must be filled before the positions marked “2” become available). Bottom: phys-
ical realization of these two configurations ((c) an open circle, and (d) a packed triangle)
using ten e-pucks with floor sensors, radios, and lamp attachments. The “arena” (section of
the table marked off with black lines) is 150 x 90 centimeters.

distributed robotics. In this section, we support the discussion with two
concrete examples illustrating how apparently complex problems can be
solved with very simple reactive agents using self-organization. The
first case study is concerned with the structured assembly of small ob-
jects using a group of Khepera I robots (see Fig. 1.5.(a)) [Martinoli et al.
(1999)] . The second case study involves a team of miniature mobile Alice
robots (depicted in Fig. 1.9.(b)) that must achieve collaborative screening
of a noisy environment in order to identify and destroy undesirable ob-
jects [Mermoud et al. (2010)].
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1.3.1 Clustering of objects

In this experiment, the task is to collect small objects, referred to as
“seeds”, which are initially scattered throughout a square arena, and to
gather them in a single in-line, structured aggregate using Khepera I
robots equipped with grippers, and capable of distinguishing small ob-
jects to manipulate from obstacles to avoid with their frontal proximity
sensors (see Fig. 1.5.). As the robots have only local sensing capabilities
and do not exploit a global communication network, there is neither cen-
tral nor global coordination among robots. In the experiments described
in this chapter, robots do not exploit any form of specific wireless peer-
to-peer communication; only stigmergic communication via the assembly
process is considered. The type of stigmergic communication is in this
case qualitative (or discrete) since the stimulating sign (a small object to
manipulate) differs qualitatively from other perceptual stimuli (obstacles
to avoid) rather than quantitatively (e.g., the spatial density of seeds).

(b)

R

1
i}
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Figure 1.5. (a) A Khepera robot holding a seed in its gripper. (b) Seed scattering at the
beginning of a simulated experiment of aggregation with 3 robots, and (c) after about 4 hours
of simulated time.

The behavior of each robot is determined by a simple hand-coded pro-
gram that can be represented with a standard flow chart or a Finite State
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Figure 1.6. FSM representing the seed-aggregation controller. Transitions between states
are deterministically triggered by sensor measurements (i.e., detection of a seed or a wall).

Machine (FSM) (see Fig. 1.6.). In its default behavior, the robot moves
straight forward within the working zone looking for seeds. When at least
one of its six frontal proximity sensors is activated, the robot starts a dis-
crimination procedure. Basically, two cases can occur: the robot might
be in front of a large object (an arena wall, another robot, or a “wall” of
contiguous seeds) or a small object (a seed or the tip of an in-line seed ag-
gregate). In the first case, the object is considered to be an obstacle, and the
robot avoids it. In the second case, the small object is considered to be an
object to manipulate. If the robot is not already carrying a seed, it grasps
the small object in front of it with the gripper, otherwise it drops the seed
it is carrying close to the small object it has found; then in both cases, the
robot resumes searching for seeds.

This simple individual behavior has three consequences: (1) the team
of robots is able to gather objects in aggregates of increasing size, (2) ag-
gregates have a precise structure and are built in line, and (3) eventually,
the aggregation process will result in a single-aggregate configuration.

The two first consequences are due to geometry (see Fig. 1.7.). First,
because the probability of decrementing an aggregate is always smaller
than that of incrementing it, except for isolated seeds, aggregates tend to
grow. Second, seeds that belong to an aggregate are perceived as seeds
(as opposed to obstacles) only when they are at the tip of the structured
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aggregate; therefore, seeds are always dropped in a more or less regular
line.

The third consequence is slightly less intuitive. Because large aggre-
gates tend to be more stable than small aggregates (i.e., the probability of
an aggregate being decremented is inversely proportional to its size), the
aggregation process will eventually result in a single-aggregate configura-
tion, which can be seen as the lowest energy configuration of the system.

One could perhaps imagine a situation where seeds are constantly ex-
changed between two aggregates of the same size, and no isolated seeds
remain in the arena. In this scenario, both aggregates would have equal
probabilities of being decremented and incremented; a potential deadlock
in a non-optimal energy configuration. However, this situation can never
occur because of the following reasons. First, the intrinsic randomness
of the process prevents the system from remaining stuck in such situa-
tions; even if both aggregates have identical geometric stability, this type
of 2-aggregates configuration can be seen as an unstable fixed point of the
system. Second, the probabilistic distribution over all the possible sizes of
aggregate are typically asymmetric either because of subtle non-modeled
spatial effects (e.g., aggregates more or less close to each other, dependence
of robots’ trajectory) or deliberate design choices (e.g., in the experiment
of [Martinoli et al. (1999)], aggregates of one seed are irreversibly removed
and never generated again). These asymmetries lead to cluster instabilities
for some non-negligible periods of time, are accentuated by high robots-
to-object ratios, generate aggregates being more favored than other, and
eventually promote a single-aggregate configuration.

1.3.2 Collaborative decision-making in presence of noise

The case study investigated in this section is an example of how ag-
gregation can be used to overcome perception limitations in swarms of
robots with only low-bandwidth communication. In particular, we show
how physical contact (i.e., aggregation) can be used as a positive feed-
back mechanism for collective decision-making in a swarm of minimalist
robots, namely 2-cm-sized Alice robots [Caprari and Siegwart (2005)]. The
environment is populated with N; spots which can be either good or bad,
and N, robots whose goal is to search for and destroy bad spots while
preserving the good ones. Each time a spot is destroyed, another is im-
mediately created at a different location within the environment. In our
current setup, the spots are colored circles of diameter dso; drawn on an
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Figure 1.7. (a) Geometrical representation of the aggregate incrementing probability. The
ratio between the identification perimeter (arc delimiting the grey zone) and the total de-
tection perimeter represents the probability to increment the aggregate by one seed. (b)
Geometrical representation of the aggregate decrementing probability. Due to mechanical
constraints, the angle from which a seed can be successfully grasped by a robot is slightly
smaller than its detection angle. (c) The numerical values of both probabilities as a function
of the size of the aggregate.

arena by an overhead projector; good spots are green and bad spots are
red (see Fig. 1.9.(a)). The robots are equipped with a light sensor that
can be used to assess the type of a spot. However, the measurement
data provided by the light sensor is noisy (see Fig. 1.8.(a)); therefore, it
is possible for the robots to mistakenly trigger the destruction of a good
spot. We denote py, ¢004 the probability that a robot believes a good spot
to be bad (false positive) and py, ;.4 the probability that a robot believes
a bad spot to be good (false negative). Depending on the distribution
of light sensor measurements, these probabilities can be different. Since
we assume the robots to be purely reactive, they form their belief on the
basis of a single measurement (made upon entering or leaving the spot),
and in a purely deterministic manner, by using a simple decision thresh-
old tg = (Hgood + Hpad) /2, With pgooq and py,y the average light intensity
in good and bad spots, respectively. We assume that the robots can always
determine the presence (or absence) of a spot in a perfect manner.

One can draw an analogy with different natural systems that are re-
sponsible for identifying and neutralizing pathogens in a given environ-
ment (e.g., the human immune system, or bacteria purifying environmen-
tally polluted regions). Importantly, this task must be carried out in a reli-
able manner: the system must attack pathogens while preserving healthy
actors of the environment. Similarly, in our case study, the environment
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Figure 1.8. (a) Histogram of light sensor measurements (1000 values) in good spots (green),
and in bad spots (red). Fitted Gaussian distributions are also shown (continuous lines). Here-
after, we study the scenario with py gpos = 0.271 and py,paa = 0.2224. (b) Sketch of a typical
experiment with 4 spots and 5 robots for k = 2, i.e., two robots are required to trigger the
destruction of a spot. Trajectories of the robots are denoted by black lines. Robot A explored
a good spot, made one wrong decision (by performing a U-turn at the border of this spot),
but eventually left the spot. Robot B is exploring a bad spot, waiting for a teammate. Robot
C avoided an obstacle while exploring the environment. Robots D and E encountered each
other in a bad spot, and decided to aggregate; this spot is therefore about to be destroyed,
and re-created at some other location in the arena.

contains two types of spots (“good” and “bad”), which differ from each
other in an observable fashion. However, light intensity measurements
are corrupted by both the intrinsic noise of the photocell and the light-
ing variations of the projector, thus making identification of the cell-type
unreliable.

As mentioned earlier, collective decision-making is one way of over-
coming the limitations of the individual agents in terms of sensing. The
question is, how can we achieve collective decision-making without ex-
plicit communication? Aggregation allows us to solve this problem by re-
placing the transmission of a message by the detection of a physical pres-
ence (which can be thought also as a form of implicit communication).
Here, we use local infrared beaconing as a way of discriminating between
obstacles and other robots, a mechanism easily replicated at smaller length
scales (e.g., by an electrical contact or pressure sensor). Then, we can ex-
ploit aggregation as an implicit communication scheme that allows the
robots, uniquely through their physical presence, to share their estimate
of the type of the spot they are in. When two robots encounter each other
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Figure 1.9. (a) Picture of a real experiment with 5 robots and 4 spots. (b) Close-up of an
Alice 2002 robot, which has a size of 2cmx2cmx2cm and is equipped with four infrared
sensors for environment sensing and communication as well as an extension board with one
photocell and two colored LEDs (red and green) for tracking purposes.

in a spot, they form an aggregate only if both believe that this spot is a bad
spot; otherwise they perform obstacle avoidance, and eventually leave the
spot.

One important parameter of our controller is k, which denotes the
number of aggregated robots required to trigger the destruction of a spot.
For k = 1, there is no collaboration: a single robot can destroy the spot it
is exploring by itself. For k = 2, the spot is destroyed as soon as a robot
aggregates with another robot (Figure 1.8.(b) depicts a typical experiment
with k = 2). For k = 3, an aggregate can remain in a spot for a while with-
out triggering its destruction, which therefore introduces a further param-
eter Pleave,ager that is, the probability that a robot leaves the aggregate it is
part of.

The optimal value of k depends on the difficulty of the task, i.e., the
amount of noise characterizing the light sensor measurements in good
and bad spots, as well as their separability. Note that even in absence
of noise, i.e., when the probability of false positives and false negatives is
€10 (P, go0d = Puw,bad = 0), more than one robot may be required to trigger
the destruction of a spot (e.g., when individual robots are too small or lim-
ited for carrying out the task on their own). In order to have a quantitative
method of reporting system performance, we define an arbitrary metric
function M in terms of the number of good and bad spots destroyed:

M= Lﬂj (1.1)
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Table 1.1. Summarized results of two experiments (with and without
collaboration) using 5 real Alice robots and 4 spots (2 of each kind).
Destruction rates are given in number of spots destroyed per minute.
The performance of the swarm (calculated using Eq. (1.1) with « = 2)
is two orders of magnitude higher when collaboration is introduced.

Destruction rate | No collaboration (k = 1) | Collaboration (k = 2)
Bad spots Good spots Bad spots | Good spots

Run1 4.93 3.85 0.68 0.09

Run 2 5.28 2.68 0.55 0.00

Run 3 5.12 2.95 1.56 0.20

Performance No collaboration (k = 1) | Collaboration (k = 2)

Run 1 29-1077 2.8

Run 2 7.0-1072 9.0

Run 3 5.8-1072 1.76

where Dy, is the number of bad spots destroyed, Dy, is the number of
good spots destroyed, and « a coefficient that may be balanced according
to the penalty one wishes to associate with the destruction of a good spot;
the higher the coefficient, the higher the penalty.

Given the intrinsically stochastic nature of the investigated processes,
a large number of runs is required in order to obtain statistically rele-
vant data, which results in extremely time-consuming experiments if real
robots are used. We provide experimental results (see Table 1.1) that sug-
gest the relevance of collective perception and action as a mechanism for
coping with unreliable sensing at the individual level. In spite of the
high variability of the results obtained with real robots (> 100% of vari-
ability on the performance metric), collaboration seems to provide a non-
negligible performance gain, up to two orders of magnitude in these par-
ticular experiments using our specific metric (Equation (1.1)) with « = 2.

1.4 Modeling Self-Organized Distributed Robotic Systems

In this section, we show how one can go beyond local heuristic reason-
ing by exploiting model-based approaches to design and control self-
organized large-scale robotic systems. One of the main difficulties in mod-
eling such systems, and particularly those involving aggregation and self-
assembly, is the inherent randomness and complexity of the dynamical
process. These challenges motivate a combination of multiple levels of ab-
stractions, ranging from detailed, realistic, submicroscopic models up to
macroscopic models, into a consistent multi-level modeling framework.
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On the one hand, one needs submicroscopic models that are able to cap-
ture low-level details of a robotic node and its modules (e.g., sensors, ac-
tuators, body shape). On the other hand, one is also interested in mod-
els that can yield accurate numerical predictions of collective metrics, and
investigate, possibly formally, macroscopic properties such as the sizes,
types, and proportions of the resulting aggregates. Multi-level modeling
allows fulfillment of both requirements in a very efficient way by build-
ing up models at incrementally increasing levels of abstraction in order to
capture the relevant features of the system.

Hereafter, we show how one can model, at different abstraction levels,
systems composed of Ny agents that move randomly throughout an arena
of area Ay, and, upon collision, aggregate into clusters of different sizes
and shapes. Clusters are generally not persistent because robots might
leave them with a certain probability p'*™¢, which is a control parameter
of the robots” behavior that can be tuned as a function of the local percep-
tion of the agent (e.g., the presence of neighbors, light intensity, etc.). The
overall stability of an aggregate (i.e., the probability p*P!f that it splits up
into different sub-aggregates) is a function of the number of robots in it,
and their respective leaving probability p'®*.

In many scenarios, p'**** may depend on the local perception of the
robot such as the number of detected neighbors [Correll and Martinoli
(2007)] or their relative alignment [Mermoud et al. (2009)]. In such cases,
p°Plit also depends on the structure and the geometry of the aggregate,
which are very difficult to accurately capture at high abstraction levels.
In some settings, the aggregating agents are passive objects moved by the
robots, either one by one [Matthey et al. (2009); Martinoli et al. (2004)], or
in groups [Beckers et al. (1994)]. Also, aggregates can either remain still (as
it is often the case with passive objects or non-holonomic robots), or move
throughout the environment, and therefore aggregate with each other just
like individual agents do. All these features have profound implications
on the models, especially at higher abstraction levels.

Hereafter, we describe a typical multi-level modeling framework that
consists of different models at different abstraction levels. These models
can be classified into three main categories: (i) submicroscopic models, in
which the state of each individual and its individual components (e.g., sen-
sors, actuators, body pose) is captured (see Section 1.4.1); (ii) microscopic
models, in which the state of each individual in the system is captured
(see Section 1.4.2), and (iii) macroscopic models, in which all individuals
in a given state are aggregated into one state variable (see Section 1.4.3).
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The governing principle of our modeling methodology is to build the suite
of models from the bottom up while conserving a consistent set of param-
eters that are shared at all abstraction levels (i.e., the joining and leaving
probabilities, the number of agents, the arena size, etc.). Collisions are ei-
ther explicitly simulated using more or less complex collision routines in
spatial models, or probabilistically emulated by a geometric approxima-
tion in nonspatial models.

1.4.1 Submicroscopic Models

The most detailed level of modeling is provided by physics-based simu-
lation implemented in robotic simulation engines such as Webots [Michel
(2004)]), which accurately models each module of a robotic node (e.g., a
sensor, an actuator, a transceiver), including often its nonlinear transfer
functions and noise distributions. These simulations faithfully account for
a subset of physical phenomena such as friction and inertia, which are
considered most relevant to the dynamics of conventional mobile robots.
One great advantage of using a physics engine is the fact that it also pro-
vides accurate collision detection between robots as well as between robots
and obstacles. Also, they allow one to easily visualize a robot’s behavior
and dynamics (see Fig. 1.10.(a)). Therefore, at this level of abstraction,
it is fairly easy to capture all the different aspects of aggregation with a
great deal of flexibility. However, these simulations are also extremely
computation- and memory-intensive, in particular when studying systems
that involve large numbers of robots.

1.4.2 Microscopic Models

While microscopic models capture the state of each individual robot in the
system, their state vector is significantly smaller than their correspond-
ingly submicroscopic counterpart. This state reduction is typically ob-
tained through appropriate aggregation of the state variables, which can
be more or less important as a function of the desired level of detail. Here-
after, we describe two types of microscopic models: (1) a spatial agent-
based model, (2) a nonspatial Monte Carlo model.

Spatial Agent-Based Model: Physics play a very important role in most
self-organized systems, but many physical effects can often be neglected
without impacting the particular system parameter being studied. In spa-
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tial agent-based models, the kinematics of each individual robot is still
captured, but a lot of intra-node, submicroscopic details about the mod-
ules and their specific interaction with the environment (e.g., wheel slip,
sensor noise, etc.) are abstracted away, resulting in significantly faster sim-
ulations. We assume that our robots are radially symmetric, with a posi-
tion ¥ € R2 of their center of mass, a velocity 7 € R?, an orientation 6,
and a radius r (see Fig. 1.10.(b)). The environment has a finite surface area
Aot and has toroidal boundary conditions. Each robot R; follows a precise
trajectory determined by the kinematic laws of interest. Two robots Ry and
R; of radius r1 and ry, respectively, located at a distance d from each other,

collide if and only if d < 71 + 7.

building blocks aggregate

(a) (b)

Figure 1.10. (a) Screenshot of an aggregation experiment with Alice robots simulated in We-
bots, a physics-based mobile robotics simulation. (b) In the microscopic setting, many details,
such as the shape of the robot and most physical effects, are abstracted away. Here, robots
are radially symmetric bodies with preferred binding directions. The relative alignment of
two aggregated robots is denoted by two angles 6; € [0, 7] and 6, € [0, 7], i.e., the bearing
of each building block with respect to the other.

Nonspatial Monte-Carlo Model: Spatial models offer an interesting
modeling framework for multi-agent systems, but they are still expensive
both in terms of memory and computation. Indeed, these models store
the position and the orientation of each agent as well as the precise struc-
ture of each aggregate. Also, they must determine at each iteration and
for each pair of agents whether a collision occurred or not. One can go
even further in the process of abstracting details that are not particularly
relevant to the dynamics of the main process under investigation (e.g., ag-
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gregation, self-assembly); hereafter, we describe a Monte Carlo approach,
which does not capture spatiality, i.e., it does not keep track of the posi-
tion and orientation of each individual. It can be considered a stochastic
microscopic model that, in contrast to the macroscopic models developed
later (see Sec. 1.4.3), does not rely on a mean-field approach, i.e., it does not
“aggregate” discrete entities into real-valued state variables that describe
averaged quantities. However, the model assumes that the individual be-
havior of each robot and that of the environment can be represented by
intertwined Markov chains, i.e., the probabilistic transition from one state
vector A to another state vector B depends only on the information con-
tained in the state vector A.

The particular model that we describe hereafter assumes that agents
have only one binding site, thus intrinsically limiting the size of the
formed aggregates to pairs. Our model keeps track of only one property
of the aggregates, that is, the relative alignment of their building blocks
(see Fig. 1.10.(b)). On one hand, since our model is nonspatial, collisions
are no longer deterministic, but are randomly sampled from a Poisson dis-
tribution of mean A = p/°" N (see Eq. (1.2)). On the other hand, each
aggregate resulting from these collisions is individually captured: a ran-
dom relative alignment {; = (01, 65,;) is generated and stored in a list &,
(see Algorithm 1.11.). One very interesting feature of this type of models
is that they store only relevant pieces of information about the aggregates,
which can range from the number of building blocks to a fully-fledged
graph-based representation of the aggregate’s topology.

One subtlety in building nonspatial models of aggregation is to accu-
rately capture the encountering probabilities. Here, we assume a constant
encountering probability p/® that is determined using a geometric ap-
proximation:
oT wy

Atot
where 7 is the average velocity of the robot, w; its diameter, T the sam-
pling time, and Ay is the total area of the arena [Martinoli ef al. (2004)].
In more complicated scenarios, one would also account for encountering
probabilities that depend on the size and the geometry of the aggregates.

join

(1.2)

1.4.3 Macroscopic Models

Microscopic models are computationally expensive stochastic models,
which provide a single realization of the time evolution of the system at
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Initialize Ns = Np and Np3,... =0

for all t in tspan do
—Sample 1, the number of collision events from a Poisson distribution
of mean A = p/o™" N
— Generate and append to Z; a random vector of #, relative align-
ments &, = (gl, . ,Cnc) with &; = (91,1‘, 92,1') and gd,i ~ U(O, 7'[)
— Generate a random vector X* = (xj,...,x}, ) with x; ~ U(0,1) and
N, = size(&,;)
- Compute 1, the number of aggregates in &, with ¢; such that x} <
p*e@¢(¢;) and remove them from &,
—Let N+ N+2n, —2n,

end for

Figure 1.11. Pseudo-Code of Monte-Carlo simulation.

each run, and do not scale well with the number of units. As a result, one
must usually perform a large number of runs in order to obtain statisti-
cally meaningful results. Hereafter, we describe a nonspatial macroscopic
model of aggregation, which allows one to overcome these limitations, but
at the price of further approximations. Our model is a time-discrete sys-
tem of difference equations, where k denotes the current iteration (time
step) and kT the actual time, with T the sampling time, which is left out
in the equations for the sake of simplicity, and should be chosen small
enough in comparison to the time constants and dynamics of the system.
We can summarize the average state transitions of each individual dynam-
ical system, and thus keep track of the number of aggregates of size 1 to Np.
The ensemble of individuals, including structural properties, is now repre-
sented by a difference equation, which keeps track of the average number
of individuals in each state. Inflow and outflow of each state represent
the average fluctuation between states and are given by the probability for
a state transition to occur and the number of robots in other states. Us-
ing Definition 1 and following a mean-field approach, the average num-
ber N;(k + 1) of aggregates of size j (with 1 < j < Np) at time k + 1 is then
given by the following difference equation:

N]-(k + ]) = N]-(k) + fin,j(PjOin(k), Pleaw(k)/ Ni(k))
— fourj(PI™(k), P'™(k), Ni(k))
withi=1,...,Npandi #j (1.3)
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where functions f;, ; and f,,;; denote the inflow and the outflow of the
state N;(k), i.e,, the number of aggregates of size j being formed or de-
stroyed at time k. The matrices P/" = (pﬁl"), and Pleave = ( ple]””e) denote
both the connectivity and the transition probabilities between states N;, N,
and N;4;. Namely, aggregates of size i can form aggregates of size i + j by
C . . .o -1s join
joining an aggregate of size j with probability p i Inversely, aggregates
of size i 4 j can split into aggregates of size i and j with plﬁfm If there is
no interaction between aggregates of size i and j, then p o — pfe‘m 0.
Therefore, the functions f;, ; and f,;; may have a dlfferent number of

terms depending on the properties of the aggregation process, but their
form remains identical.

Finj(-) = T2y P (0) Nji(k) Ny (k)

+ Ty it (k) Ni(k) (1.4)
fout,]'(. . ) = ZlNOl ] P{l;m(k) Nl(k) N](k)
+ Xy P (k) Nj(K) (1.5)

Terms of the form pjom(k) N;(k) N;(k) correspond to the number N; (k)
of aggregates of size i ti1at join one aggregate of size j at time k with a

probability p] Dm(k) Nj(k), and form an aggregate of size i + j. Terms of the

form ple“”e(k) N1+]~(k) denotes the number of aggregates of size i + j that

split into aggregates of size i and j at time k with probability ple‘"’e( ).

In the general case, one should take into account all p0851ble No—1
pairwise combinations of aggregates that lead to the formation of an ag-
gregate of size j. However, in many cases, one assumes that the robots
remain still once aggregated (e.g., because wheeled robots are often non-
holonomic); there are then only two ways of forming an aggregate of
size j° :

N;_

Nj+1 — Nj + N (1.6)

In such cases, we have that p] °" £ 0ifand only ifi = 1 orj = 1. Of course,

this assumption dramatically simplifies the complexity of the model, both
in computational complexity and memory requirements. Figure 1.12. de-
picts the state transition diagram of this model.

3We neglect the case of aggregates that merge when growing, which is a safe assumption in
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Figure 1.12. State transition diagram of the aggregation model when aggregated robots re-
main stationary. Only single robots (N7) can interact with each other, and with aggregates
(N; withi=2,..., Np).

Macroscopic models can also track properties of the aggregates other
than their size (i.e., the number of building blocks), such as their geometry.
In the above model, we assume that aggregates have basically no geom-
etry. For instance, robots cannot be stuck in the middle of an aggregate,
surrounded by other robots. Also, nearby aggregates never connect with
each other because of one robot joining them; similarly, aggregates never
split into two sub-aggregates because one robot left. These scenarios, de-
pending on the structure of the aggregates, may happen in reality, but the
particular model depicted in Figure 1.12. does not account for them.

Yet, it is possible to capture some simple geometric features of the ag-
gregates at the macroscopic level. To achieve that, one conventional ap-
proach is to discretize selected state variables into several sub-variables,
essentially going through a state expansion process. For instance, in or-
der to capture the alignment of pairs of building blocks, one can discretize
the state variable N, into M sub-variables N, ; that denote the number of
aggregates with an average alignment &; with i = 1,..., M. Obviously,
such a discretization leads to a M-fold increase of the number of states,
and therefore an exponential increase of the number of equations, making
the model rapidly intractable. In [Mermoud et al. (2009)], we present in de-

the case of non-crowded scenarios. Also, we assume that only one robot joins and leaves the
aggregate in a given time step, if the model is time-discrete.
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tail a model that captures alignment of building blocks at the macroscopic
level by using this approach, but with an explicit limitation on the size of
the aggregates to pairs.

Last, but not least, one should keep in mind some of the limitations
of macroscopic models. In particular, since macroscopic models “aggre-
gate” discrete entities into real-valued state variables that describe aver-
aged quantities, both the discreteness of the entities and the potentially
non-uniform behavior of the system under consideration are lost. There-
fore, macroscopic models rely on an approximation, called the ODE ap-
proximation, which assumes that the system involves a large number of
small changes, i.e., the model becomes exact if we scale the system such
that the reaction rates become large and the effects of those reactions small.
The validity of the approximation does not only depend on the number of
robots in the systems, though; the very structure of the network and the
number of interactions also plays a key role. From this perspective, dis-
cretization of state variables is generally a source of inaccuracy, because it
tends to lower the reaction rates while increasing their effects.

1.5 Conclusion

Devising control strategies for distributed robotic systems is a difficult
problem per se, and enabling scalability of these control strategies is an
even harder challenge. The thrilling promises of micro-robotic systems
in a broad variety of disciplines, such as biomedical engineering, perva-
sive and ambient information technology, environmental engineering, and
space exploration are not going to be fulfilled if we do not successfully
overcome two crucial obstacles: (i) manufacturing and integrating these
ultra-miniaturized robots, and (ii) devising suitable control strategies for
large-scale distributed robotic systems at this size range. The former is
currently the subject of various intense research efforts, but the latter re-
mains largely unaddressed. Indeed, there is no evidence whatsoever that
even cutting-edge distributed control strategies are scalable and reliable
enough to be successfully applied to these future robotic platforms, which
will be at the same time massively distributed and extremely miniatur-
ized. The main reason for this situation is of course the lack of proper ex-
perimental platforms for validating those strategies targeted to massively
distributed systems, but also the lack of a suitable theoretical framework
for analyzing these strategies in a formal and rigorous manner. In partic-
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ular, the development of an efficient modeling framework for large-scale
distributed robotic systems is, in our opinion, a crucial step towards an
actual application of those systems to real-world engineering problems.
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