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Abstract. This paper presents the first independent and systematic lin-
ear, differential and impossible-differential (ID) cryptanalyses of MIBS,
a lightweight block cipher aimed at constrained devices such as RFID
tags and sensor networks. Our contributions include linear attacks on
up to 18-round MIBS, and the first ciphertext-only attacks on 13-round
MIBS. Our differential analysis reaches 14 rounds, and our impossible-
differential attack reaches 12 rounds. These attacks do not threaten the
full 32-round MIBS, but significantly reduce its margin of security by
more than 50%. One fact that attracted our attention is the striking
similarity of the round function of MIBS with that of the Camellia block
cipher. We actually used this fact in our ID attacks. We hope further
similarities will help build better attacks for Camellia as well.
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1 Introduction

This paper describes the first independent and systematic linear, differential
and impossible-differential cryptanalyses on reduced-round variants of the MIBS
block cipher. MIBS is a lightweight cipher, with a Feistel structure, aimed at
ubiquitous but constrained environments, such as RFID tags and sensor networks
[6]. MIBS operates on 64-bit blocks, uses keys of 64 or 80 bits and iterates
32 rounds. There is a striking similarity between the round functions of MIBS
and Camellia ciphers [1]. This feature was actually exploited in our impossible-
differential analysis of MIBS in Sect.5. Our results are summarized in Table 6.

Previous cryptanalytic results on MIBS, presented by its designers, concerned
differential and linear relations on up to 4-round MIBS. Nonetheless, no full
attacks were ever detailed. We provide better distinguishers and attacks on up
to 18 rounds, effectively reducing the margin of security of MIBS by more than
50% as originally predicted by its designers.

? This work was supported by the National Competence Center in Research on Mo-
bile Information and Communication Systems (NCCR-MICS), a center of the Swiss
National Science Foundation under grant number 5005-67322.



This paper is organized as follows: Sect. 2 describes the main components
of MIBS relevant for the attacks in this paper; Sect. 3 details linear relations
and attacks on reduced-round versions of MIBS; Sect. 4 presents differential
characteristics and attacks; Sect. 5 presents impossible-differential distinguishers
and attacks; Sect. 6 concludes this paper.

2 A Brief Description of MIBS

MIBS is a block cipher following a Feistel Network design [6]. MIBS operates
on 64-bit blocks, uses keys of 64 or 80 bits, and iterates 32 rounds for both key
sizes. All internal operations in MIBS are nibble-wise, that is, on 4-bit words.
The round function F of MIBS has an SPN structure composed of an xor layer
with a round subkey, an S layer of 4×4-bit S-boxes, and a linear transformation
layer (with branch number 5), in this order.

For our attack purposes, the linear transformation (P layer) is most relevant.
Let (y1, y2, y3, y4, y5, y6, y7, y8) denote the input to this layer. Its output, (y′1, y′2,
y′3, y′4, y′5, y′6, y′7, y′8), can be described as

y′1 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y7 ⊕ y8; y′2 = y2 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y6 ⊕ y7;

y′3 = y1 ⊕ y2 ⊕ y3 ⊕ y5 ⊕ y6 ⊕ y8; y′4 = y2 ⊕ y3 ⊕ y4 ⊕ y7 ⊕ y8;

y′5 = y1 ⊕ y3 ⊕ y4 ⊕ y5 ⊕ y8; y′6 = y1 ⊕ y2 ⊕ y4 ⊕ y5 ⊕ y6;

y′7 = y1 ⊕ y1 ⊕ y3 ⊕ y6 ⊕ y7; y′8 = y1 ⊕ y3 ⊕ y4 ⊕ y6 ⊕ y7 ⊕ y8, (1)

where ⊕ denotes exclusive or.
The input text block to the i-th round is denoted (Li−1, Ri−1), with Li, Ri ∈

{0, 1}32, and (Ri−1 ⊕ F (Ki, Li−1), Li−1) denotes the round output. (L0, R0)
denotes a plaintext block.

The key schedule of MIBS is adapted from the key schedule of PRESENT [4].
There are two versions of key schedule of MIBS, both generating 32-bit round
subkeys Ki for 1 ≤ i ≤ 32, from 64-bit and 80-bit user keys, respectively. Let
statei denote the ith round key state; state0 denote the user key. The 80-bit
version of key schedule of MIBS, with bit numbering in right-to-left order from
1 to 80, is as follows:
for i = 1 to i = 32,

statei = statei−1 ≫ 19,
statei = S[statei[80 ∼ 77]]‖S[statei[76 ∼ 73]]‖statei[72 ∼ 1],
statei = statei[80 ∼ 20]‖statei[19 ∼ 15]⊕ Counter ‖statei[14 ∼ 1],
Ki = statei[80 ∼ 49].

where ’≫’ means bitwise right-rotation, ’‖’ means string concatenation, and
’∼’ indicates a sequence of bit positions. We refer to [6] for further details about
MIBS components.

3 Linear Cryptanalysis

In [6], the designers claimed security of MIBS against linear cryptanalysis by
providing a 4-round linear relation with 7 active S-boxes, and overall bias 2−8.
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They assumed that this relation was iterative (although it was not) and claimed
resistance of the full 32-round MIBS to linear attacks.

Firstly, we derived the linear approximation table (LAT) for1 the 4×4 S-box
of MIBS. See Table 7 in the appendix. We note that this S-box is linearly 4-
uniform2 (an analogous concept to that used in DC, Sect. 4). Thus, the highest
bias is 2−2. We have found a better 4-round linear relation, described in Table 1,
with only six active S-boxes and bias 2−7. The last pair of bit masks in Table 1
stand for the output masks after the swapping of half blocks in a round.

We denote the input mask to the i-th round as (ΓLi−1, ΓRi−1). The (i+ 1)-
th round input mask is the i-th round output mask. Values subscripted by ’x’
are in hexadecimal base.

Table 1. A 4-round linear relation for MIBS.

Round i ΓLi−1 ΓRi−1 Number of active S-boxes Bias

1 00600600x 02202220x 1 2−2

2 02202220x 00660600x 2 2−3

3 00660600x 00202200x 2 2−3

4 00202200x 60666600x 1 2−2

5 60666600x 00002200x - -

3.1 Searching for Linear Relations for MIBS

For a systematic linear analysis of MIBS, we automated the search procedure by
creating a program to look for linear relations of MIBS according to the following
criteria:

– focus on iterative linear relations, preferably;
– maximize the overall bias by minimizing the number of active S-boxes;
– use the fact that the S-box is linearly 4-uniform (Table 7);
– use the fact that the branch number of the P permutation in the F function

of MIBS is 5 (which is claimed to be optimal)

Taking into account these criteria, the best result of our search is the 16-round
linear relation with 30 active S-boxes and bias 2−31 in Table 2. From the LAT
of MIBS, Table 7, there are six possible instantiations of this linear relation,
that is, (w, z) ∈ {(2x, 6x), (6x, 2x), (4x, ex), (ex, 4x), (8x, dx), (dx, 8x)}, where we

exploited the symmetry w
S−box→ z and z

S−box→ w (both with the same bias 2−2).
The last line of Table 2 accounts for the swapping between half blocks. The first
15 rounds of this distinguisher corresponds to the best 15-round linear relation
(with 28 active S-boxes, and bias 2−29) that will be used in a key-recovery attack
in Sect. 3.2.
1 The LAT of an S-box stands for a table containing an exhaustive enumeration of all

linear approximations of the given S-box.
2 It means that the largest entry in the LAT has value 4.
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Table 2. A 16-round linear relation for MIBS.

Round i ΓLi−1 ΓRi−1 Number of active S-boxes Bias

1 w000w0w0x 00000000x 0 2−1

2 00000000x w000w0w0x 2 2−3

3 w000w0w0x z0000z00x 3 2−4

4 z0000z00x w000ww0wx 2 2−3

5 w000ww0wx z000zz0zx 2 2−3

6 z000zz0zx w0000w00x 3 2−4

7 w0000w00x z000z0z0x 2 2−3

8 z000z0z0x 00000000x 0 2−1

9 00000000x z000z0z0x 2 2−3

10 z000z0z0x w0000w00x 3 2−4

11 w0000w00x z000zz0zx 2 2−3

12 z000zz0zx w000ww0wx 2 2−3

13 w000ww0wx z0000z00x 3 2−4

14 z0000z00x w000w0w0x 2 2−3

15 w000w0w0x 00000000x 0 2−1

16 00000000x w000w0w0x 2 2−3

17 w000w0w0x z0000z00x - -

3.2 17-round Multiple Linear Attack

We proposed a key-recovery attack on 17-round MIBS by considering the first
fifteen rounds of the linear distinguisher in Table 2, placed between rounds 2
and 16. We recover subkey bits from the first and last rounds.

The main relation for this 17-round attack is

(R0 ⊕ F (K1, L0)) · w000w0w0x ⊕ (L17 ⊕ F (K17, R17)) · w000w0w0x = 0, (2)

where w is one of the values indicated in Sect. 3.1. Due to the low branch num-
ber of the P layer (see Sect. 2), only two subkey nibbles need to be guessed
in both F (K1, L0) and F (K17, R0). See Fig. 1. Following [3], we use four vari-
ations of (2) for four values of w that lead to linearly independent relations:
w ∈ {2x, 4x, 8x, dx}. According to [3], the combined bias of these multiple linear
relations is

√
4 · (2−29)2 = 2−28. The data complexity is 4/(2−28)2 = 258 KP.

The attack procedure follows [7]:

– Take 258 known plaintexts and request the corresponding ciphertexts en-
crypted under the unknown secret key K.

– for w ∈ {2x, 4x, 8x, dx} keep independent counters for each possible value of
subkey bits which correspond to active S-boxes: S1 and S6 in both rounds 1
and 17.

– For each possible key, check that (R0 ⊕ F (K1, L0)) · w000w0w0x ⊕ (L17 ⊕
F (K17, R17)) · w000w0w0x = 0 holds, where, for instance, w = 6:
For each key candidate Ki, let Twi be the number of plaintexts such that
(R0⊕F (K1,1‖K1,6, L0))·w000w0w0x⊕(L17⊕F (K17,1‖K17,6, R17)⊕ w000w0w0x
= 0 for each w. Let Twmax be the maximal value and Twmin be the minimal
value of all Twi ’s, then
• If |Twmax −N/2| > |Twmin −N/2| then adopt the key candidate corre-

sponding to Twmax
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• If |Twmin −N/2| > |Twmax −N/2| then adopt the key candidate corre-
sponding to Twmin, where N = 258 in this attack.

– the correct subkey is simultaneously suggested by the counters Twmax or Twmin

corresponding to all four values of w.

According to the key schedule of MIBS, there is no overlapping between the

subkeysK1,1,K1,6,K17,1,K17,6. Thus, the time complexity becomes
216

2 · 17
·258 ≈

269 17-round MIBS encryptions because partial decryption of two nibbles in the
first round and two other nibbles in the 17th round costs about half a round.
The memory complexity is the 258 blocks. The remaining 64 key bits can be
recovered by exhaustive search without affecting the overall attack complexity.
Following [9], the success probability of this attack, pS , is computed assuming
N · |p− 1/2|2 = 4, and a = 8

pS = Φ(2 ·
√
N · |p− 1/2| − Φ−1(1− 2−a−1)) ≈ 0.9794

where Φ is the cumulative distribution function of the standard normal distri-
bution.

3.3 Ciphertext-Only Attack

Assuming the input plaintext is coded as ASCII text, we can perform a ciphertext-
only attack. In this setting though, the codebook size is reduced to 264−8 = 256,
since the most significant bit of every byte is zero. We use the first 13 rounds
of (Table 2), which imply the following linear relation: L0 · 80008080x ⊕ L17 ·
e0000e00x ⊕ R17 · 80008080x = 0, with bias 2−27. We perform a distinguish-
from-random attack, using 2 · (2−27)−2 = 255 CO, and equivalent number of
encryptions. The memory complexity is negligible. According to [7], assuming
Matsui’s algorithm 1, the success probability of this distinguishing attack is
about 97.7%.

3.4 18-round Linear Attack

We can use the full 16-round relation in Table 2 with bias 2−31 for a key-recovery
attack on 18-round MIBS. The attack procedure is similar to the one in Sect. 3.2,
but this time we recover K1,1, K1,6, K18,6, K18,7, K18,8. We found no overlapping
in these subkeys, so we recover 20 subkey bits in total. The linear relations for
this attack is

(R0⊕R18⊕F (K1, L0)) ·w000w0w0x⊕ (L18⊕F (K18, R18)) ·z0000z00x = 0, (3)

For each pair (w, z) in Sect. 3.1 we have an independent linear relation. Following
[3], the combined bias of these multiple linear relations is

√
6 · (2−31)2 = 2−29.7.

The data complexity is 3/(2−29.7)2 = 260.98 KP.
The time complexity is 220 ·260.98 ·5/8 ·1/18 ≈ 276.13 18-round computations,

since partial decryption of two nibble in the first round, and three nibbles in the
18th round costs less than one-round computation. Memory complexity is the
same as data complexity. According to [9], the success probability of this attack
is 72.14%.
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4 Differential Cryptanalysis

Differential cryptanalysis (DC) was originally proposed by Biham and Shamir
in [2]. In [6], the designers claim security of MIBS against DC by providing a 4-
round characteristic with six active S-boxes, and probability 2−15. They assumed
that this characteristic was iterative (although it is not) and claimed resistance
of the full 32-round MIBS to DC.

4.1 Searching for Differential Characteristics of MIBS

We have computed the difference distribution table (DDT) for3 the 4× 4 S-box
of MIBS. See Table 8 in the appendix. We note that this S-box is differentially
4-uniform4. So, the highest probability for any difference propagation across this
S-box is 2−2.

For a systematic differential analysis of MIBS, we automated the search for
differential characteristics by creating a program to look for differential charac-
teristics for MIBS according to the following criteria:

(a) focus on iterative characteristics, preferably;
(b) maximize the overall probability by minimizing the number of active S-boxes;
(c) use the fact that the S-box is differentially 4-uniform (Table 8) [8];
(d) use the fact that the branch number of the P permutation in the F function

of MIBS is 5

Using these criteria, we have found two 12-round differential characteristics, both
with probability 2−56. These characteristics have 28 active S-boxes in total, and
for each S-box we chose the largest entries in the DDT. One characteristic is
detailed in Table 3. The other characteristic is obtained from Table 3 by turning
it upside-down (due to the symmetry of the Feistel Network scheme).

4.2 13-round Differential Attack

We perform a key-recovery attack on 13-round MIBS by placing the 12-round
characteristic in Table 3 in rounds 1 up to 12. We recover 24 subkey bits from
the 13th round. The attack procedure is as follows:

(a) take c · 256 pairs of plaintext blocks Pi and Pj which satisfy Pi ⊕ Pj =
(EEE0E0EEx, 50500550x) and obtain their corresponding ciphertexts Ci =
(Li13, Ri13) and Cj = (Lj13, Rj13);

(b) keep counters for each possible value of six subkey nibbles of K13 corre-
sponding to the six Ex nibble differences in the right half of the ciphertext,
namely K13,1, K13,2, K13,3, K13,5, K13,7 and K13,8;

(c) keep only those text pairs for which the right half of the ciphertext difference
equals EEE0E0EEx;

3 The DDT of an S-box stands for a table containing an exhaustive enumeration of
all pairs of input/output differences for the given S-box.

4 It means that the largest entry in the DDT has value 4.
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Table 3. A 12-round differential characteristic for MIBS.

Round i ∆Li−1 ∆Ri−1 Number of active S-boxes Probability

1 EEE0E0EEx 50500550x 6 2−12

2 00000050x EEE0E0EEx 1 2−2

3 00EEE000x 00000050x 3 2−6

4 05005000x 00EEE000x 2 2−4

5 00E000E0x 05005000x 2 2−4

6 55500000x 00E000E0x 3 2−6

7 00000000x 55500000x 0 1

8 55500000x 00000000x 3 2−6

9 00E000E0x 55500000x 2 2−4

10 05005000x 00E000E0x 2 2−4

11 00EEE000x 05005000x 3 2−6

12 00000050x 00EEE000x 1 2−2

13 EEE0E0EEx 00000050x - -

(d) for each plaintext pair with indices i, j, compute P−1(Li13 ⊕ L
j
13 ⊕ 00000050x),

and compare with the output difference of the S-box layer inside F (K13, R
i
13)

⊕ F (K13, R
j
13); discard the pairs that do not match one of the seven possible

output differences of the S-box, according to the DDT (Table 8) with input
difference Ex; from the input difference to the 13th round, increment coun-
ters corresponding to each suggested 24 subkey bits by the input difference
EEE0E0EEx, and P−1(Li13 ⊕ L

j
13 ⊕ 00000050x);

Following [2], we estimate the signal-to-noise ratio (SNR), as 224 ·2−56/(1 ·2−32 ·
(7/15)6 · (2−4)2) = 214, since p = 2−56, k = 24, α = 1 (we expect one subkey on
average to be suggested in step (d)), β = 2−32 · (7/15)6 · (2−4)2, since ∆R13 =
EEE0E0EEx gives a 32-bit condition, every output difference to an S-box whose
input difference is Ex can have only seven possible nonzero output differences,
and the two S-boxes with input difference 0 can only have 0 output difference.
We estimate about c = 32 right pairs to uniquely determine the correct subkey
values. This means 261 CP. Step (c) imposes a 32-bit condition on the pairs.
So, about 261/232 = 229 pairs survive. In step (d), the complexity corresponds
to 2 · 229 one-round computations. This corresponds to about 230/13 ≈ 226.3

13-round computations. The memory complexity corresponds to 224 counters.
If the user key has 64 bits, the remaining 40 key bits requires 240 13-round
computations; if the key is 80-bit long, then the remaining 56 key bits requires
256 13-round computations.

According to [9], the success probability pS of this attack, for SNR = 214,
a = 7 (i.e. assuming we expect the correct 24-bit subkey to be ranked among
the 7 highest counters), N = 261 CP, p = 2−56, is

pS = Φ(

√
p ·N · SNR− Φ−1(1− 2−a)√

SNR+ 1
) ≈ 0.9999
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4.3 14-round Differential Attack

For 14-round MIBS, we studied a key-recovery attack by placing the 12-round
characteristic in Table 3 between rounds 2 and 13. We recover subkey bits from
K1 and K14 at the same time. The attack procedure is as follows:

(a) consider m structures of plaintexts, such that R0 contains all possible 32-
bit values, but in the L0, half of the text contain arbitrary 32-bit values,
and half of them contain L0 ⊕ 50500550x. Each structure, thus, contain
232 · 232 = 264 pairs with which difference (50500550x, ∆R0), where ∆R0 is
a nonzero 32-bit difference;

(b) keep only those text pairs for which the right half of the ciphertext difference
equals EEE0E0EEx;

(c) prepare counters for each possible value of four subkey nibbles of K1 corre-
sponding to the four 5x nibble differences in the left half of the plaintext,
namely K1,1, K1,3, K1,6 and K1,7, and each of the six nibbles of K14 corre-
sponding to the six Ex nibble differences in the right half of the ciphertext;
this corresponds to 40 subkey bits;

(d) for each pair of plaintext with indices i, j, compute P−1(Ri0⊕R
j
0⊕EEE0E0EEx),

and compare it with the output difference of the S-box layer inside F (K1, L
i
0)

⊕ F (K1, L
j
0); discard the pairs that do not match one of the seven possi-

ble output differences of the S-box layer, according to the DDT (Table 8)
with input difference 5x; also, the S-boxes with input difference 0 can only
have 0 output difference; from the input difference to the 1st round, incre-
ment counters corresponding to each suggested 16 subkey bits by the input
difference 50500550x, and P−1(Ri0 ⊕R

j
0 ⊕ EEE0E0EEx);

(e) analogously, compute P−1(Li14⊕L
j
14⊕00000050x), and compare it with the

output difference of the S-box layer inside F (K14, R
i
14) ⊕ F (K14, R

j
14); dis-

card the pairs that do not match one of the seven possible output differences
of the S-box, according to the DDT (Table 8) with input difference Ex; also,
the S-boxes with input difference 0 can only have 0 output difference; from
the input difference to the 14th round, increment counters corresponding
to each suggested 24 subkey bits by the input difference EEE0E0EEx, and
P−1(Li14 ⊕ L

j
14 ⊕ 00000050x);

Following [2], we estimate the signal-to-noise ratio (SNR), as 240 · 2−56/(1 ·
2−32 · (7/15)4 · (2−4)4 · (7/15)6 · (2−4)2) = 250, since p = 2−56, k = 40, α = 1
(we expect one subkey on average to be suggested in steps (d) and (e)), β =
2−32 · (7/15)4 · (2−4)4 · (7/15)6 · (2−4)2, since ∆R14 = EEE0E0EEx gives a 32-bit
condition, every output difference to an S-box whose input difference is 5x or Ex
can have only seven possible nonzero output differences, and the S-boxes with
input difference 0 can only have 0 output difference. We estimate about m = 128
structures to determine the correct subkey values. This means 27+33 = 240 CP.
Step (c) imposes a 32-bit condition on the pairs. So, about 27+64/232 = 239 pairs
survive. In step (d), the complexity corresponds to 2 · 239 one-round computa-
tions. The same holds in step (e). This corresponds to about 241/14 ≈ 237.2

14-round computations. The memory complexity corresponds to 240 counters. If
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the user key has 64 bits, the remaining 24 key bits requires 224 14-round com-
putations; if the key is 80-bit long, then the remaining 40 key bits requires 240

14-round computations.
According to [9], the success probability pS of this attack, for SNR = 250,

a = 8 (i.e. assuming we expect the correct 40-bit subkey to be ranked among
the 8 highest counters), N = 240 CP, p = 2−56, is

pS = Φ(

√
p ·N · SNR− Φ−1(1− 2−a)√

SNR+ 1
) ≈ 0.5015

5 Impossible-Differential Cryptanalysis

There is a striking similarity between the round functions of MIBS and Camellia
[1] block ciphers. Therefore, inspired by the impossible differential attack on
Camellia, proposed by Wu et al. in [11], we have constructed a similar 8-round
impossible differential for MIBS, as the one built for Camellia proposed in [10].
Then, we use this 8-round impossible differential to attack 12-round MIBS.

We have found the following 8-round impossible differential for MIBS:

(00000000x, 000000s0x)
8r

6→ (0000h000x, 00000000x). (4)

where u and v are nonzero nibble differences, and the broken arrow indicates
that the difference in the left hand side does not cause the difference in the right
hand side.

We have also found another 8-round impossible differential distinguisher for

MIBS: (00000000x, 00s00000x)
8r

6→ (0000000hx, 00000000x).

5.1 Some Properties of MIBS for 80-bit user key

We have exploited two properties of MIBS to use in the attack:

Property 1. Let Ki = (Ki,1,Ki,2, . . . ,Ki,8) denote the i-th round subkey, where
Ki,1 is the most significant nibble. Then, K1 and K2 share 13 bits in common:
K1[1 ∼ 13] = K2[20 ∼ 32] or K1,1‖K1,2‖K1,3‖K1,4[1] = K2,5[4]‖K2,6‖K2,7‖K2,8

where values inside square brackets index bit positions.

Property 2. (similar to [5]) For any 32-bit strings X,X∗, if there exists a
nonzero nibble difference s such that P−1(X ⊕X∗ ⊕ 000000s0x) is of the form
??0?00??x, then s is unique (? denotes any nibble value). The same holds for a
nonzero nibble difference h.

Proof. Suppose there are two nibble differences s and w that satisfy this property.
Then, P is a linear transformation relative to xor, P−1(X ⊕X∗ ⊕ 000000s0x)
⊕ P−1(X ⊕X∗ ⊕ 000000w0x) = P−1(000000s0x) ⊕ P−1(000000w0x) and has
the form ??0?00??x. But, P−1(000000s0x)⊕ P−1(000000w0x) = ss0ss0ssx ⊕
ww0ww0wwx. From the fifth nibble position, it follows that s⊕ w = 0, which is a
contradiction.
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5.2 Construction of 8-round Impossible Differential Distinguisher

This 8-round impossible differential characteristic (4) is constructed by con-
catenating two 3-round differentials, and putting two connection rounds in be-
tween the two differentials. See Fig. 4. The first 3-round differential, depicted
in Table 4, is built as follows: let the input difference to the first round be
(∆L0, ∆R0) = (00000000x, 000000s0x) where s is a non-zero nibble differ-
ence and after the first round, the input difference to the second round will be
(∆L1, ∆R1) = (000000s0x, 00000000x). Then in the second round, the input
difference 000000s0x to the S layer leads to the output difference 000000t0x,
where t is a nonzero nibble difference. After applying the P layer, the out-
put difference of the F-function will be tt0t00ttx. The input difference to the
third round is (∆L2, ∆R2) = (tt0t00ttx, 000000s0x). Afterwards, the differ-
ence ∆L2 = tt0t00ttx becomes t1t20t400t7t8 after the S layer where t1, t2, t4, t7
and t8 are non-zero nibble differences. Then, it evolves to (c1c2c3c4c5c6c7c8), ci
are nonzero nibble differences, after the application of the P layer, and the output
difference of the third round turns out to be (∆L3, ∆R3) = (c1c2c3c4c5c6c7c8 ⊕
000000s0x, tt0t00ttx). This completes the first differential.

Table 4. The first 3-round truncated differential for MIBS (in encryption direction).

Round i ∆Li−1 ∆Ri−1

1 00000000x 000000s0x

2 000000s0x 00000000x

3 tt0t00ttx 000000s0x

4 c1c2c3c4c5c6c7c8⊕000000s0x tt0t00ttx

The second 3-round differential in Table 5 is constructed as follows: let the
output difference of round 8 be (∆L8, ∆R8) = (0000h000x, 00000000x) and
if this difference is rolled back through round 8, then the output difference of
round 7 becomes (∆L7, ∆R7) = (00000000x, 0000h000x). The difference ∆L7 =
0000h000x will be 0000w000x after the application of the S layer in round 7
and the difference evolves to www0ww00x after the P layer where w denotes a
nonzero nibble. Then, the output difference of round six becomes (∆L6, ∆R6) =
(www0ww00x, 0000h000x) becomes w1w2w30w5w600, where wi are nonzero nibble
differences, after the S layer and we get the input difference of round six as (∆L5,
∆R5) = (e1e2e3e4e5e6e7e8⊕0000h000x, www0ww00x). This completes the second
3-round differential.

Concatenating these two 3-round differentials, we obtain an 8-round impos-
sible differential distinguisher. One can see in Fig. 4, the input and output dif-
ferences of the F-function in round 5 are (e1e2e3e4e5e6e7e8) ⊕ 0000h000x and
(c1c2c3c4c5c6c7c8) ⊕ 000000s0x ⊕ www0ww00x = (c1 ⊕ w, c2 ⊕ w, c3 ⊕ w, c4, c5 ⊕
w, c6 ⊕w, c7 ⊕ s, c8), respectively. Since the output difference of the S layer has
to be equal to input difference of the P layer, that is, S[(e1e2e3e4e5e6e7e8) ⊕

10



Table 5. The second 3-round truncated differential for MIBS (in decryption direction).

Round i ∆Li−1 ∆Ri−1

8 0000h000x 00000000x

7 00000000x 0000h000x

6 0000h000x www0ww00x

5 www0ww00x e1e2e3e4e5e6e7e8⊕0000h000x

0000h000x] = P−1(c1 ⊕w, c2 ⊕w, c3 ⊕w, c4, c5 ⊕w, c6 ⊕w, c7 ⊕ s, c8), we have:
P−1(c1⊕w, c2⊕w, c3⊕w, c4, c5⊕w, c6⊕w, c7⊕s, c8)= P−1(c1c2c3c4c5c6c7c8)⊕
P−1(000000s0x)⊕P−1(www0ww00x)= (t1t20t400t7t8)⊕ss0ss0ssx⊕0000w000x
= (t1 ⊕ s, t2 ⊕ s, 0, t4 ⊕ s, s⊕ w, 0, t7 ⊕ s, t8 ⊕ s).

We can see that the output difference of the third and sixth S-boxes are zero in
round five, which implies the input differences of these S-boxes are zero, too since
they are bijective. Therefore, e3 = e6 = 0 where e3 = w1 ⊕ w2 ⊕ w3 ⊕ w5 ⊕ w6,
e6 = w1 ⊕ w2 ⊕ w5 ⊕ w6. But, if e3 = w1 ⊕ w2 ⊕ w3 ⊕ w5 ⊕ w6 = 0 and
e6 = w1 ⊕ w2 ⊕ w5 ⊕ w6 = 0, then this leads to w3 = 0 which contradicts the
assumption that w3 is nonzero.

5.3 12-round Impossible Differential Attack on MIBS with 80-bit
user key

Fig. 3 depicts our 12-round impossible differential attack. We start in round
1 and end in round 12. But it can be constructed anywhere between rounds
1 and 32 due to the key schedule of MIBS for 80-bit user keys. From Fig. 3,
the required plaintexts for the attack have the form (∆L0, ∆R0) =(uu0u00uux,
P (??0?00??x) ⊕ 000000?0x) where ’u’ and ’?’ are nonzero nibble differences.

This attack is different from the conventional impossible differential attack
in a way that we exploit the equality of some subkey bits to eliminate wrong key
guesses by using the impossible differential. Instead of eliminating pairs round
by round, we can make a different analysis to reduced the time complexity of
the attack: the ciphertext pairs which satisfy the impossible differential should
have the output difference of round 10: ∆L10 = (0000h000x, 00000000x), where
h is a nonzero nibble. When the S-box of MIBS is analyzed, one can see that
the number of nonzero entries of each row of the DDT is at most 23, that is
each nonzero input difference to the S-box causes at most 23 nonzero output
differences. Therefore, the nonzero nibble h can take 24−1 = 15 different values
and in round 11, the output differences of the S-box, which corresponds to h,
has at most 15 · 23 possible nonzero output differences. Then in Round 12, five
nonzero nibbles at positions (1, 2, 3, 5, 6) have at most (23)5 nonzero output
differences which result in at most 15 ·23 · (23)5 ≈ 222 possible output differences
after the S layer.

The attack procedure is as follows:
Data Collection
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Choose 2m structures of plaintexts of each structure is of the form:

∆L0 = (uua3ua5a6uu)

∆R0 = P (x1x2b3x4b5b6x7x8)⊕ (c1c2c3c4c5c6yc8)

where (ai, bj , cj) are constants and (u, xi, y) takes all possible nonzero values.

So, each structure has (24)7 = 228 plaintexts which constitute
1

2
· 228 · 228 = 255

plaintext pairs. Since we take 2m structures, there are 255+m plaintexts pairs in
total.

Data Filtering and Key Elimination

– The analysis that we made above shows that the probability of a random
pair passes the test is 2−42 = 222 · 2−64, therefore after this filtering step
255+m · 222 · 2−64 = 213+m pairs remain.

– For each remaining pair ((L0, R0), (L12, R12)) and ((L∗0,R
∗
0), (L∗12, R

∗
12)), do

the following steps:
1. By Property 2, there is only one nibble u which satisfies P−1(L0⊕L∗0 ⊕

000000u0x), and it has the form ??0?00??x. Therefore, for each pair of
plaintexts compute P−1(L0 ⊕L∗0 ⊕ 000000u0x) to find the unique value
of u by trying all possible values of u. It is analogous to find the unique
value of h.

2. Afterwards, in rounds 1 and 12, since the input and output differences
of the S-boxes are known, the subkey nibbles (K1,1, K1,2, K1,4, K1,7,
K1,8) and (K12,1, K12,2, K12,3, K12,5, K12,6) are suggested with the help
of the DDT.

3. Guess further 24 subkey bits (6 nibbles) of rounds 1 and 12, namely,
(K1,3, K1,5, K1,6, K12,4, K12,7, K12,8), then do the followings:
(a) For every remaining pair, encrypt plaintexts through the first round,

and decrypt their corresponding ciphertexts through the last round
to obtain intermediate values (L1, L

∗
1) and (R11, R

∗
11), respectively.

(b) Compute the suggested bits of the subkey nibbles K2,7 and K11,5

using the values L1, L∗1, u and P−1(L0 ⊕ L∗0) for round 2 and R11,
R∗11, h and P−1(R12 ⊕R∗12) for round 12.

(c) By Property 1, check the subkey nibbles satisfying the following re-
lation K2,7 = K1,2[2 ∼ 4]||K1,3[1]. This equality implies a 4-bit con-
dition on pairs and any pair which satisfies the equality eliminates
one wrong 68-bit subkey value: (K1,1, K1,2, K1,4, K1,7, K1,8, K12,1,
K12,2, K12,3, K12,5, K12,6, K1,3, K1,5, K1,6, K12,4, K12,7, K12,8,
K11,5). Each pair eliminates 2−4 of all subkey guesses, so after the
first pair the number of remaining keys is 268(1−2−4). Since we have

213+m pairs, there are 268(1− 2−4)213+m

wrong subkeys. For m = 0,
no wrong subkeys survive.

5.4 Complexity Analysis

Data Complexity : We set m = 0, because it is enough to take just one structure
of plaintexts. So, the data complexity the attack is 228 chosen plaintexts (CP).
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Memory Access: In data filtering step, we have to have access to all 222 output
differences (∆L12, ggg0gg00x) stored in a hash table to identify the useful pairs.
Therefore, this step needs 222 · 228 = 250 memory access (MA). We approximate
the cost of one round MIBS encryption to be equivalent to one memory access.
Thus, 250 memory accesses cost about 246.42 12-round MIBS encryptions.

Time complexity :

– Step 1 needs at most two one-round MIBS encryption per remaining pair.

Therefore, the time complexity of this step is at most 213 · 2

12
≈ 210.41 12-

round MIBS encryptions. We do not need to try all possible 15 values of a
and h, since the computation is less than two round encryptions.

– The time complexity of Step 2 is less than 213 · 2

12
≈ 210.41 12-round MIBS

encryptions. Because, for five active S-boxes, we use the DDT to find the
suggested keys, which costs less than one round encryption.

– In Step 3(a), since we guess 24 bits of subkeys; the time complexity of this

step is at most 2 · 213 · 224 · 2

12
≈ 235.42 12-round MIBS encryptions. In

Step 3(b), the time complexity is less than 213 · 2

12
≈ 210.41 12-round MIBS

encryptions. Note that the complexity of checking 4-bit equality in subkeys
is negligible.

Memory Complexity: The storage of all chosen plaintexts and their corre-
sponding ciphertexts is 228 · 2 = 229 blocks. In step 1, we have to store 222

possible output differences which need 222 blocks of memory. In the key elimi-
nation step, since we have 268 bits subkey guess, we need 268 · 2−6 = 262 blocks
of memory.

To conclude, the time complexity of the attack is dominated by the data
filtering step, which is 246.42 12-round MIBS encryptions. The memory and the
data complexities are 262 blocks and 228 CP, respectively. The attack recovers
68 bits of the 80-bit secret key; the remaining 12-bit of the secret key can be
found by exhaustive search.

6 Conclusions

This paper described the first independent and systematic linear, differential
and impossible-differential analyses of reduced-round versions of the MIBS block
cipher [6]. Actually, we presented the best known-plaintext attack so far on up to
18-round MIBS, and the first ciphertext-only attack on 13-round MIBS. These
attacks do not threaten the full 32-round MIBS, but reduce by more than 50%
its margin of security.

Table 6 summarizes the complexities of all attacks on reduced-round MIBS
described in this paper.
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Table 6. Attack complexities on reduced-round MIBS block cipher.

#Rnds Time Data Memory Key Size Source Comments Success
(bits) Prob.

12 246.42 228 CP 262 80 Sect. 5 ID, key-recovery —
13 240 261 CP 224 64 Sect. 4.2 DC, key-recovery 99.9%
13 255 255 CO — 64 or 80 Sect. 3.3 LC,distinguishing 97.7%
13 256 261 CP 224 80 Sect. 4.2 DC, key-recovery 99.9%
14 237.2 240 CP 240 64 Sect. 4.3 DC, key-recovery 50.15%
14 240 240 CP 240 80 Sect. 4.3 DC, key-recovery 50.15%
17 269 258 KP 258 80 Sect. 3.2 LC, key-recovery 97.94%
18 276.13 260.98 KP 260.98 80 Sect. 3.4 LC, key-recovery 72.14%

time complexity is number of reduced-round encryptions;
LC: Linear Cryptanalysis; DC: Differential Cryptanalysis; ID: Imposs. Differential
CP: Chosen Plaintext; KP: Known Plaintext; CO: Ciphertext Only
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A Appendix - Figures and Tables

Table 7. Linear Approximation Table (LAT) of the S-box of MIBS.

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x AX Bx Cx Dx Ex Fx

0x 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 -2 0 2 0 -2 -4 -2 2 0 -2 0 2 0 2 -4
2x 0 0 -2 -2 -2 2 -4 0 0 4 2 -2 -2 -2 0 0
3x 0 2 2 0 2 0 0 2 -2 4 0 2 0 2 -2 -4
4x 0 -2 -2 4 -2 0 0 2 0 -2 2 0 -2 0 -4 -2
5x 0 0 -2 2 2 -2 0 0 2 2 0 4 -4 0 2 2
6x 0 -2 4 2 0 -2 0 -2 0 2 4 -2 0 2 0 2
7x 0 4 0 0 0 -4 0 0 -2 -2 2 -2 -2 -2 2 -2
8x 0 2 2 4 0 2 -2 0 -2 0 0 2 2 -4 0 2
9x 0 0 2 -2 -4 -4 -2 2 0 0 -2 2 0 0 -2 2
Ax 0 -2 0 -2 -2 0 2 -4 -2 0 2 4 0 -2 0 -2
Bx 0 0 4 0 -2 2 2 2 4 0 0 0 -2 -2 2 -2
Cx 0 0 0 0 2 -2 2 -2 2 2 -2 -2 0 -4 -4 0
Dx 0 2 0 -2 2 0 -2 0 4 -2 4 2 2 0 -2 0
Ex 0 4 -2 2 -4 0 2 -2 2 2 0 0 2 2 0 0
Fx 0 2 2 0 0 2 -2 -4 0 -2 -2 0 -4 2 -2 0

Table 8. (xor) Difference Distribution Table (DDT) of the S-box of MIBS.

0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx

0x 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1x 0 0 0 0 2 0 0 2 2 2 0 4 2 0 2 0
2x 0 2 0 2 0 0 0 4 0 0 2 2 2 0 0 2
3x 0 0 2 0 0 2 2 2 0 0 0 2 4 2 0 0
4x 0 0 0 2 0 2 2 2 2 4 0 0 0 0 0 2
5x 0 0 2 2 2 0 0 2 0 0 0 0 0 2 4 2
6x 0 0 2 0 0 2 0 0 4 0 2 0 2 0 2 2
7x 0 2 2 2 4 2 0 0 0 2 0 0 2 0 0 0
8x 0 0 0 0 2 0 2 0 0 2 2 0 2 2 0 4
9x 0 4 0 0 2 2 0 0 2 0 0 2 0 2 0 2
Ax 0 2 0 4 0 0 2 0 2 0 0 0 2 2 2 0
Bx 0 0 2 2 2 0 2 0 2 0 4 2 0 0 0 0
Cx 0 2 2 0 0 0 4 0 0 2 0 2 0 0 2 2
Dx 0 2 4 0 0 0 0 2 2 2 2 0 0 2 0 0
Ex 0 2 0 0 2 4 2 2 0 0 2 0 0 0 2 0
Fx 0 0 0 2 0 2 0 0 0 2 2 2 0 4 2 0
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Fig. 1. Linear attack on 17-round MIBS.
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Fig. 2. Differential attack on 14-round MIBS.
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Fig. 3. Impossible differential attack on 12-round MIBS.
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Fig. 4. 8-round impossible differential of MIBS.
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