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Abstract

The distributed representation of correlated images is an important challenge in applications such as multi-view imaging
in camera networks or low complexity video coding. This paper addresses the problem of distributed coding of images whose
correlation is driven by the motion of objects or the positioning of the vision sensors. It concentrates on the problem where
images are encoded with compressed linear measurements, which are used for estimation of the correlation between images at
decoder. We propose a geometry-based correlation model in order to describe the correlation between pairs of images. Weassume
that the constitutive components of natural images can be captured by visual features that undergo local transformations (e.g.,
translation) in different images. These prominent visual features are estimated with a sparse approximation of a reference image by
a dictionary of geometric basis functions. The corresponding features in the other images are then identified from the compressed
measurements. The correlation model is given by the relative geometric transformations between corresponding features. We thus
formulate a regularized optimization problem for the estimation of correspondences where the local transformations between
images form a consistent motion or disparity map. Then, we propose an efficient joint reconstruction algorithm that decodes
the compressed images such that they stay consistent with the quantized measurements and the correlation model. Experimental
results show that the proposed algorithm effectively estimates the correlation between images in video sequences or multi-view
data. In addition, the proposed reconstruction strategy provides effective decoding performance that compares advantageously to
distributed coding schemes based on disparity or motion learning and to independent coding solution based on JPEG-2000.

Index Terms

Random projections, sparse approximations, motion estimation, disparity estimation, consistent reconstruction

I. I NTRODUCTION

IN recent years, vision sensor networks and video cellular phones have been gaining an ever increasing popularity that has
been enforced by the availability of cheap semiconductor components. As these systems are operated with limited power,

they require low complexity and power efficient algorithms for the processing and transmission of the visual information.
Distributed processing becomes attractive in such settings since it involves a low complexity encoding stage that further
permits to get rid of inter-sensor communication. In this case, the images captured by one or several image sensors are
encoded independently but decoding jointly by a central decoder that exploits the underlying correlation. The computational
complexity in the representation of the visual informationis thus shifted from the encoder to the joint decoder.

In practice, the camera commonly acquires the image and thenperforms compression to reduce the transmission rate.
Instead of acquiring the entire image, one could directly take the compressed data in the form of linear measurements, and the
underlying signal can be reconstructed if it is sparse in a particular basis (e.g., DCT, Wavelet) [1], [2]. Such scheme allows
for low complexity acquisition that consists in computing inner products with a random projection matrix, instead of acquiring
the entire image. Hence, it is advantageous to merge the distributed processing and the image acquisition based on random
projections, so that it results in a very simple encoding stage. One of the most important and challenging tasks in such a
scenario is to estimate the correlation between the images (in terms of dense motion or disparity field) captured by different
sensors or video cameras, so that the information can be efficiently processed or coded. When classical block-based motion
estimation is performed, it is generally not possibly to efficiently capture the true geometry of the scene, which is key to an
effective joint decoding of the correlated images.

In this paper, we consider the problem of finding an efficient distributed joint representation for a pair of correlated images,
where the common objects in different images are displaced due to the view point change or motion of the scene objects. In
particular, we are interested in computing a joint representation when the images are given under the form of few quantized
linear measurements. We propose to model the correlation between images as the geometric transformation of visual features,
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rather than restricting ourselves to block-based translation correlation model. We first compute the most prominent visual
features in a reference image and approximate them with geometric functions drawn from a parametric dictionary. Then we
formulate an optimization problem whose objective is to compute the corresponding features in the compressed image along
with the relative geometric transformations. We add a regularization constraint in order to ensure that the estimated motion (or
disparity) field is consistent and corresponds to the actualmotion of visual objects. The resulting correlation model is then used
in a new joint reconstruction algorithm for computing an effective approximation of the correlated images. The joint decoding is
cast as an optimization problem that includes a penalty termin order to enforce that the reconstructed image is consistent with
the quantized measurements. We show by experiments that theproposed algorithm computes a good estimation of the motion
or disparity field between the pair of images. In particular,the results confirm that dictionary based on geometric basisfunctions
permits to capture the correlation more efficiently than a dictionary built on patches or blocks from the reference image[3].
In addition, we show that the estimated correlation model can be used to reconstruct the compressed image by motion (or
disparity) compensation. Such reconstruction strategy permits to outperform DSC scheme based on disparity learning [4], [5]
and independent coding scheme based on JPEG-2000 in terms ofrate-distortion (RD) performance. Finally, the experiments
outline the benefit of the consistent reconstruction penalty term in the joint reconstruction algorithm, where it proves to be
very effective in increasing the decoding quality of the compressed images.

The rest of the paper is organized as follows. Section II briefly overviews the related work in signal processing based on
random projections. The geometric based correlation modelused in our framework is presented in Section III. Section IV
describes the proposed regularized energy model and the correlation estimation algorithm, while the consistent reconstruction
algorithm is presented in Section V. Experimental results in multi-view imaging and distributed video coding applications are
given in Section VI.

II. RELATED WORK

We present in this section a brief overview of the related work in distributed image coding where we mostly focus on
simple sensing solutions based on linear measurements. In recent years, signal acquisition based on random projections has
actually received a significant attention in many applications like medical imaging, compressive imaging or sensor networks.
Donoho [1] and Candeset al. [2] have shown that a small number of linear measurements maycontain enough information
to reconstruct a signal, as long as it has sparse representation in a basis that is incoherent with the sensing matrix [6].These
ideas have been applied to image acquisition [7], [8], [9] and later extended to video sequences [10], [11], [12].

The key in effective distributed representation certainlylies in the definition of good correlation models. Duarteet al. [13],
[14] have proposed different correlation models for the distributed compression of correlated signals from linear measurements.
In particular, they introduce three joint sparsity models in order to exploit the inter-signal correlation in the jointreconstruction.
These three sparse models are respectively described by (i)JSM-1, where the signals share a common sparse support plus
a sparse innovation part specific to each signal, (ii) JSM-2,where the signals share a common sparse support with different
coefficients, and (iii) JSM-3 with a non-sparse common signal with individual sparse innovation in each signal. These correlation
models permit a joint reconstruction with a reduced sampling rate or equivalently a smaller number of measurements compared
to independent reconstruction for the same decoding quality. The sparsity models developed in [13] have then been applied
for distributed video coding [15], [16] with random projections. The scheme in [15] used a modified Gradient projection
sparse algorithm [17] for the joint signal reconstruction.The authors in [16] have proposed a distributed compressivevideo
coding scheme based on the sparse recovery with decoder sideinformation. In particular, the prediction error between the
original and side information frames is assumed to be sparsein a particular orthonormal basis (e.g., Wavelet basis). Another
distributed video coding scheme has been proposed in [3], which relies on an inter-frame sparsity model. A block of pixels in
a frame is assumed to be sparsely represented by linear combination of the neighboring blocks from the decoded key frames.
In particular, an adaptive block-based dictionary is constructed from the previously decoded key frames and eventually used
for signal reconstruction. Finally, iterative projectionmethods are used in [18], [19] in order to ensure a joint reconstruction
of correlated images that are sparse in a dual tree wavelet transform basis and at the same time consistent with the linear
measurements in multi-view settings.

In multi-view imaging or distributed video coding, the correlation is explained by the motion of objects or view point change.
Block-based translation models that are commonly used for correlation estimation fail to efficiently capture the geometry of
scene objects. This results in poor correlation model, especially with low resolution images. Furthermore, most of theabove
mentioned schemes (except [3]) assume that the signal is sparse in a particular orthonormal basis (e.g., DCT or Wavelet). This
is also the case of the JSM models above, which cannot be used to relate the scene objects by means of a local transform and
unfortunately fail to provide an efficient joint representation of correlated images at lower rate. It is more generic toassume the
signals to be sparse in a redundant dictionary, which allowsgreater flexibility in the design of the representation vectors. The
most prominent geometric components in the images can be captured efficiently by dictionary functions. Then, the correlation
can be estimated by comparing the most prominent features indifferent images. Few works have been reported in the literature
for the estimation of a correlation model using redundant structured dictionaries in multi-view [20] or video applications [21].
However, these works do not construct the correlation modelfrom the linear measurements. Rauhutet al. [22] extend the
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Fig. 1. Schematic representation of the proposed scheme. The imagesI1 and I2 are correlated through displacement of scene objects, due to view point
change or motion of scene objects.

concept of signal reconstruction from linear measurementsusing redundant dictionaries. However, this has not been extended
to distributed scenarios. We rather focus here on estimating the correlation from the random projections. The correlation model
is built using the geometric transformations captured by the structured dictionary which leads to a good estimation of motion
or disparity.

Finally, the distributed schemes based on compressed measurements (except [3]) usually fail to estimate the actual number of
bits for the video representation and hence cannot be applied directly in practical coding applications. Quantizationand entropy
coding of the measurements in compressed sensing is actually an open research problem due to the two following reasons: (i) the
reconstructed signal from quantized measurements does notnecessarily satisfy the consistent reconstruction property [23]; (ii)
the entropy of the measurements is usually large so that the coding performance in imaging applications is unsatisfactory [24].
Hence it is essential to develop adapted quantization techniques and reconstruction algorithms that reduce the distortion in the
reconstructed signal, such as [25], [26]. The authors in [27], [28] have also studied the asymptotic reconstruction performance
of the signal under uniform and non-uniform quantization schemes, and they have shown that the non-uniform quantization
schemes usually give smaller distortion in the reconstruction signal, comparing to uniform quantization schemes. Recently,
optimal quantization strategy for the random measurementshas been designed based on distributed functional scalar quantizers
[29]. In this paper, we use a simple quantization strategy with consistent reconstruction constraints in the joint decoding of
correlated images, in order to illustrate the potential of low complexity sensing solutions in multi-view or distributed video
coding applications.

III. D ISTRIBUTED CODING WITH LINEAR MEASUREMENTS

A. Framework

We consider a framework where a pair of imagesI1 and I2 represent a scene at different time instants or from different
viewpoints; these images are correlated through the motionof visual objects. These images are represented by linear
measurements that correspond to the projection of the imagepixel values on a random set of coding vectors. They are
then transmitted to a joint decoder that estimates the relative motion or disparity between the received signals and jointly
reconstructs the images. The framework is illustrated in Fig. 1.

We focus on the particular problem where one of the images serves as a reference for the correlation estimation and the
decoding of the second image. While this image could be encoded with any coding algorithm (e.g., JPEG-2000), we choose
in this work to represent the reference imageI1 by random linear measurementsy1 = ψ I1 with a projection matrixψ. The
measurements are used by the decoder to reconstruct an approximation Î1 using a convex optimization algorithm under the
assumption thatI1 is sparse in particular basis (e.g., a Wavelet basis) [9]. Next, we concentrate on the independent coding and
joint decoding of the second image, where the first image serves as side information. The second imageI2 is also projected on
a random matrixψ to generate the measurementsy2 = ψ I2. The measurementsy2 are quantized with a uniform quantization
algorithm for the sake of simplicity at encoder; non-uniform quantization schemes are usually complex and demand the
transmission of the codebook to the decoder. Finally, the bit rate is estimated by encoding the quantized linear measurements
with an entropy coder (e.g., Arithmetic coder).

The joint decoder first computes the sparse approximation ofthe imageÎ1 using the functions in a parametric dictionary
of geometric functions. Such an approximation captures themost prominent geometrical features that represent the visual
information in the imagêI1. The joint decoder then performs de-quantization and entropy decoding of the second image
to form the measurement vector̂y2 (see Fig. 1). This measurement vector is used to estimate therelative transformation
between the imagesI1 andI2 and also for reconstructing the second image when the first image serves as side information.
Given the most prominent geometrical features in the imageÎ1, we estimate the corresponding features in the second image
I2 whose visual information is given in terms of quantized linear measurementŝy2. In particular, the corresponding visual
features in both images are then related using a geometry based correlation model, where the correspondences are defined
under translational motion constraints. We generate the horizontalmh and verticalmv components of the dense motion field
from the translation motion of the visual features between both the images. This motion information(mh,mv) is further used
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to reconstruct the compressed imageÎ2 from the reference imagêI1. We further ensure a consistent reconstruction ofÎ2 by
explicitly considering the quantized measurementsŷ2 during the reconstruction. Before getting into the detailsof the joint
reconstruction algorithm, we describe the sparse image approximation algorithm and the geometry-based correlation model
built on a parametric dictionary.

B. Sparse Image Approximation

We discuss here the sparse approximation using geometric basis functions in a structured dictionary, which helps to build the
geometric correlation model between the images. We proposeto represent the images by a sparse linear expansion of geometric
function gγ taken from a parametric and overcomplete dictionaryD = {gγ}. The geometric functiongγ in the dictionaryD
is usually calledatom. The dictionary is constructed by applying a set of geometric transformations to a generating function
g. These geometric transformations can be represented by a family of unitary operatorsU(γ), so that the dictionary takes the
form D = {gγ = U(γ)g, γ ∈ Γ} for a given set of transformation indexesΓ. Typically this transformation set consists of
scalingsx, sy, rotationθ, and translationtx, ty operators, defined as

[

u
v

]

=

[

1/sx 0
0 1/sy

] [

cos θ sin θ
−sin θ cos θ

] [

x− tx
y − ty

]

wherex, y defines the image coordinate. Thus, each of the transformation or equivalently each atom inD is indexed by five
parameters.

We can then write the linear approximation of the reference imageÎ1 with functions inD as

Î1 ≈
N
∑

k=1

ck gγk
, (1)

where{ck} are the set ofN coefficients, and the number of atomsN used in the approximation of̂I1 is usually much lesser
the number of atoms inD. It should be noted that in our framework we are interested inapproximating the reconstructed
version of the first imagêI1 using the functions in the geometric dictionaryD.

Given the dictionaryD, finding the sparse approximation of the image usingN atoms as given in Eq. (1), is usually a NP
hard problem. Even though the problem is NP hard, several suboptimal algorithms exists in the literature (e.g., basis pursuit,
matching pursuit, etc.) in order to find the capture the most salient and prominent visual features in the images, in reasonable
computational time. In this work we have chosen matching pursuit [30], which greedily pick up theN atoms{gγk

} that best
match the imagêI1 [31].

C. Joint Correlation Model

We propose to model the correlation between the images by therelative transformation of prominent visual features in both
images that are captured by geometric functions from a structured dictionary. The correlation model is expected to offer better
performance for a joint decoding strategy compared to independent approximation of each image. We describe briefly the
correlation model between the imagesI1 andI2 in the rest of this section. For more details, we encourage the reader to refer
[20], [21].

In this work, we arbitrarily chooseI1 as the reference image. We first compute the set of functions{gγk
} that form the

sparse approximation of the reconstructed version of the reference imagêI1 (see Eq. (1)). Under the assumption that the images
are correlated via local geometric transforms of their principal components, the second imageI2 could be approximated with
transformed version of the atoms used in the approximation of Î1. We can thus write

I2 ≈
N
∑

k=1

ck F
k(gγk

), (2)

whereF k(gγk
) represents a local geometrical transformation of the atomgγk

. For consistency, we have described the correlation
model given in Eq. (2) using the functions{gγk

} that are picked from the reconstructed imageÎ1. However, this correlation
model holds well even if the atoms{gγk

} are picked from the original imageI1. Due to the parametric form of the dictionary, the
effect ofF k corresponds to a geometrical transformation of the atomgγk

that results in another atom in the same dictionaryD.
Therefore, it is interesting to note that the transformation F k on gγk

boils down to a transformationδγ of the atom parameters,
i.e.,

F k(gγk
) = U(δγ)gγk

= U(γk ◦ δγ)g = gγk◦δγ = gγ′

k
. (3)

The main challenge in the joint decoder consists in estimating the local geometrical transformationF k for each of the atom
gγk

in Î1 from the compressed linear measurementsŷ2. We formulate in the next section a regularized optimization problem
in order to estimateF k, or equivalently the relative motion or disparity between imagesI1 andI2.
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IV. CORRELATION ESTIMATION FROM COMPRESSED LINEAR MEASUREMENTS

Given the set ofN atoms{gγk
} that approximate the first imagêI1, the disparity or motion estimation problem consists

in finding the corresponding visual patterns in the second image I2, while the latter is given only by compressed random
measurementŝy2. This is equivalent to find the correlation between both images with the joint sparsity model based on local
geometrical transformations as described in Section III-C. We describe here the proposed regularized optimization framework
that estimates the correlation between the imagesI1 andI2.

A. Regularized energy function

We are looking for a set ofN atoms inI2 that corresponds to theN visual features{γk} selected in the first image. We
denote this set byΛ, whereΛ = (γ′1, γ

′
2, ...γ

′
N ) for someγ′k ∀ k, 1 ≤ k ≤ N . We propose to select this set of atoms in a

regularized energy minimization framework as a trade-off between the set that well approximateI2 and the set that results in
smooth local transformations between both images. The energy modelE proposed in our scheme is expressed as

E(Λ) = Ed(Λ) + α1Es(Λ), (4)

whereEd andEs represent the data term and smoothness term respectively, andα1 is the regularization constant that balances
the data and smoothness term. The solution to the correlation estimation is given by the set ofN atom parametersΛ∗ that
minimizes the energyE, i.e.,

Λ∗ = argmin
Λ∈S

E(Λ) (5)

whereS represents the search space given by

S = {(γ′1, γ
′
2, ...γ

′
N ) | γ′k = γk + δγ, 1 ≤ k ≤ N, δγ ∈ U} . (6)

whereU ⊂ R
5, andU= [−δtx; δtx] × [−δty; δty] × [−δθ; δθ] × [−δsx; δsx] × [−δsy; δsy] whereδtx, δty, δθ, δsx, δsy

determine the search window size corresponding to translation parameterstx, ty, rotationθ and scalessx, sy respectively.
We consider now that the transformation between images are mainly due to translation motion with pixel accuracy, which

represents a good motion model for distributed video codingor multi-view images captured by neighbor cameras. We look for
transformationsF k that involves translation in horizontal and vertical directions with pixel accuracy, but changes in the scaling
or orientation are not considered, i.e., the set of transformationsF k in Eq. (2) is limited to translations. Thus the search space
for the set of atom parameters for the approximation ofI2 is limited to

S =
{

(γ′1, γ
′
2, ...γ

′
N ) | γ′k = (tkx +∆x, t

k
y +∆y, θ

k, skx, s
k
y)
}

(7)

with 1 ≤ k ≤ N,∆x,∆y ∈ Z, −δtx ≤ ∆x ≤ δtx, −δty ≤ ∆y ≤ δty} and (tkx, t
k
y , θ

k, skx, s
k
y) represents the parameters of

the atoms in{gγk
}. The motion field is estimated from the translations betweenthe different pairs of corresponding atoms

in both images. Given a pair of corresponding atomsgγk
andgγ′

k
in the imagesI1 andI2 respectively, we first calculate the

mapping of each pixelz = (x, y) in gγk
to its corresponding pixel̃z = (x̃, ỹ) in gγ′

k
using Eq. (1). This grid transformation

z
(k) − z̃

(k) = (x(k) − x̃(k), y(k) − ỹ(k)) corresponds to the amount of local motion captured by thekth pair of atomsgγk
and

gγ′

k
. Using the similar process, the mapping is established for all the N atom pairs from the respective transform parameters

γk andγ′k. Then the grid transformations captured by all theN pairs of atom are fused together to estimate the dense motion
field. For the given locationz, we first assign weights{w(k)

z } based on the response of thekth atom at the pixel location
z. Then the fusion process is simply implemented by choosing the most confident transformation or motionz(k) − z̃

(k) for
the given locationz, from the set of transformations{z(k) − z̃

(k)} induced by theN atoms. Thus the horizontal and vertical
components of the motion field at locationz, denoted asmh(z) andmv(z), are given by

(mh(z),mv(z)) = (x(k
′) − x̃(k

′), y(k
′) − ỹ(k

′)) (8)

wherek′ = arg max
k=1,2,...N

w(k)
z

, andw(k)
z is the response of thekth atom at the locationz i.e., w(k)

z = gγk
(z) = gγk

(x, y).

The resulting motion corresponds to motion of objects in video sequence, or to disparity values in multi-view imaging. We
describe below the two cost functions used in Eq. (4).

B. Data cost function

Given the set ofN atom parametersΛ = {γ′k}, the data cost functionEd measures the error between the measurementsŷ2
and the orthogonal projection of̂y2 onto the columns spanned byΨΛ, whereΨΛ = ψ[gγ′

1
|gγ′

2
|.....|gγ′

N
]. It turns out that the

orthogonal projection operatorP is given byP = ΨΛΨ
†
Λ, whereΨ† represents the pseudo-inverse. Therefore the data term

estimates the set ofN atom parametersΛ that agrees best with the measurementsŷ2. More formally, the data cost is computed
using the following relation,

Ed(Λ) = ‖ ŷ2 −ΨΛΨ
†
Λŷ2 ‖2. (9)
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The data cost function given in the Eq. (9) first calculates the coefficientsc = Ψ†
Λŷ2, and then measures thel2 distance

between the observation̂y2 andΨΛc. However, when the measurements are quantized the coefficient vectorc fails to properly
account for the error introduced by the quantization. The quantized measurements give only an approximate bin information
and the actual measurement value could be any point in the quantization interval. Lety2,i be theith coordinate of the original
measurement, and̂y2,i be the corresponding quantized value. Since the joint decoder has only access to the quantized value
ŷ2,i and not the original valuey2,i, the joint decoder only knows that the quantized measurements lies within the quantized
interval, i.e.,ŷ2,i ∈ Rŷi

= (ri ri+1], whereri andri+1 defines the lower and upper bound of quantizer binQi. We propose to
refine the data cost term by computing a coefficient vectorc̃ as the best solution when considering all the valid measurement
values in the quantization interval, i.e.,ỹ2 ∈ Rŷ, whereRŷ is the cartesian product of quantized regionRŷi

for eachith

coordinate inŷ2,i. The coefficients̃c and ỹ2 can be jointly estimated by solving the following optimization problem,

(c̃, ỹ2) = argmin
c̃,ỹ2

‖ ỹ2 −ΨΛc̃ ‖2, s.t. ỹ2 ∈ Rŷ . (10)

It can be shown that the Hessian of the objective functionf = ‖ ỹ2 − ΨΛc̃ ‖2 is positive semidefinite, i.e.,∇2f � 0, and
hence the objective functionf is convex. Also the regionRŷ forms a closed convex set as each regionRŷi

= (ri ri+1], ∀i
forms a convex set. Henceforth the optimization problem given in the Eq. (10) is convex. The data cost term given in Eq. (9)
can be modified with the estimated coefficientsc̃ as

Ẽd(Λ) =‖ ŷ2 −ΨΛc̃ ‖2 . (11)

C. Smoothness cost function

The goal of the smoothness termEs is to penalize the atom transformations such that they result in coherent deformations
of neighbors atoms. In other words, the atoms in a neighborhood are likely to undergo similar transformationF k when the
correlation between images is due to object or camera motion. Instead of penalizing directly the transformationF k to be
coherent for neighbor atoms, we propose to generate a dense motion (or disparity) field from the atom transformation and to
penalize the motion (or disparity) field such that it is coherent for adjacent pixels. This regularization is easier to handle than a
regular set of transformationsF k and directly corresponds to the physical constraints that underly the formation of correlated
images.

Once the motion field has been estimated using Eq. (8), the smoothness costEs is computed using the following relation

Es =
∑

z,z′∈N

Vz,z′ , (12)

wherez, z′ are the adjacent pixel locations andN is the usual 2 pixel neighborhood. The termVz,z′ in Eq. (12) is defined as

Vz,z′ = min
(

|mh(z)−m
h(z′)|+ |mv(z)−m

v(z′)|,K
)

(13)

The parameterK sets a maximum limit to the penalty, and thus helps to preserve the discontinuities in the motion field [32].
It should be noted that for largeK the smoothness termEs becomes simply the cumulative sum of the dissimilarities inthe
motion field at adjacent pixelsz, z′. In this case, it is equivalent the total variation (TV ) norm of the motion field, i.e., thel1
norm of the motion field gradient.

D. Optimization algorithm

As described in Section IV-A, we are interested in capturingthe translation motion (or disparity) of the objects in the scene
with pixel accuracy. We approximate the transformationF k to act only on the integer locations of the translational component
(tx, ty) of the atomgγk

, and the action ofF k on the rotation plus the scales of atom are not considered. Thus we are interested
to estimate the set of parametersΛ∗ that minimize the energy functionE given in Eq. (4) when the search space is limited to
translations of atoms in{gγk

}, as given in Eq. (7).
One could use an exhaustive search on the entire parameter spaceS (see Eq. (7)) to solve the optimization problem in

Eq. (5). However, the cost for such a solution is high, as the size of the search spaceS grows linearly with the number of
atomsN and exponentially with the window size, i.e.,|S| = N ((2δtx+1)×(2δty+1)). Alternatively, Dynamic programming can be
used to search for the global minima in this problem that is highly non-convex inS. Dynamic programming is an optimization
methodology that usually decomposes the complex problem into several overlapping subproblems. Each subproblem is solved
one by one starting from the smallest subproblem, and the solution to the current subproblem is estimated based on the solution
estimated in the previous subproblem. The final solution is estimated by back-tracing the solution estimated in each subproblem.
For energy function minimization described in Eq. (5), it ishowever hard to identify proper subproblems due to the overlap
between theN atoms in the image approximation.

We propose here a parametric free optimization algorithm toestimate the transformationF k iteratively, by changing each of
theN atom parametersγk by one increment in the parameter space. We focus on the search space that is given by perturbing
the translational componentstx andty of each atom position by one unit, i.e.,tx±1, ty±1 for each atomγk. We first initialize
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the algorithm with zero motion, i.e., the set of atoms{gγk
} generated from̂I1 are used in the first iteration,γ′k = γk, ∀k where

1 ≤ k ≤ N , and the search space isS0 is formed using

S0 ={(γ′1, γ
′
2, ..., γ̂

′
k, ..., γ

′
N )|γ̂′k = (tkx + j1, t

k
y + j2, θ

k, skx, s
k
y),

1 ≤ k ≤ N, j1, j2 ∈ Z,−1 ≤ j1, j2 ≤ 1} ⊂ S.
(14)

We then calculate the energyE in Eq. (4) for the set ofN atoms in the search spaceS0. It can be easily shown that the size
of the search spaceS0 is at most8N + 1, i.e., |S0| = 8N + 1 . Once the energyE is computed for atoms inS0, we select
the parametersΛ0 = (γ01 , γ

0
2 , ..., γ

0
N ) corresponding to the minimum energy. Then a new search spaceS1 is formed similarly

to the definition in Eq. (14) with the current parameter solution Λ0 as reference. Such a procedure is repeated by successively
constructing a new search spaceSi on the solutionΛi−1 from the previous iteration of the algorithm. The algorithmstops
when convergence is attained (or till it reaches maximum number of iterations). The proposed algorithm is guaranteed to
converge. LetE0 be the initial energy, i.e., the energy corresponding to setof parametersγ′k = γk, ∀k where1 ≤ k ≤ N . If
Ei is the minimal energy computed at stepi of the algorithm, we clearly haveEi ≤ Ei−1, as the search spaceSi includes
the best set of parametersΛi−1 from the previous iterations. The energy decreases at everyiteration till it reaches a local or
global minimaEmin. The proposed optimization scheme thus converges and provides a (suboptimal) solution with tractable
computational complexity to the estimation of correlationbetween images. The algorithm which bears some resemblanceto
a gradient descent solution is summarized in Algorithm 1. Finally, the data cost in the8th line of the Algorithm 1 can be
replaced by the robust data cost term̃Ed as given in Eq. (11). We show later that the performance of ourscheme can be
improved by using the robust data cost term̃Ed.

Algorithm 1 Correlation estimation
1: Input N, α1, K, δtx, δty
2: Generate{gγk

} from Î1 s.t. Î1 ≈
∑N

k=1 ck gγk

3: Initialize Λ−1 = {γk}
4: repeat
5: Generate index search spaceSi based onΛi−1 (with Eq. (14))
6: for all Parameter vectorsΛ in Si do
7: Compute the motion field
8: Compute the data termEd(Λ) with Eq. (9)
9: Compute the smoothness termEs(Λ) with Eq. (12)

10: Compute the global energyE(Λ) = Ed(Λ) + α1Es(Λ)
11: end for
12: Λi = argminΛ∈Si E(Λ)
13: Until convergence is reached

V. CONSISTENT RECONSTRUCTION BY WARPING

Once the motion or disparity between the correlated images has been estimated as described in the previous section, one
can simply reconstruct the second image by warping the reference image the reference vieŵI1 using the estimated motion or
disparity field. The resulting approximation̂I2 is however not necessarily consistent with the quantized measurementŝy2. In
other words, the measurements corresponding to the projection of the imageÎ2 on the sensing matrixΨ are not necessarily
equal toŷ2. This error might even be quite significant.

We propose to add a consistency termEt in the energy model described in Eq. (4) in order to force consistency in the image
reconstruction through warping with operatorWΛ using the computed motion (or disparity) field (see Fig. 1). In particular, the
additional cost functionEt is defined as thel2 norm error between the quantized measurements generated from the reconstructed
imageÎ2 = WΛ(Î1) and the measurementŝy2. The cost functionEt is written as

Et(Λ) =‖ ŷ2 −Q[ψÎ2] ‖2=‖ ŷ2 −Q[ψWΛ(Î1)] ‖2 (15)

whereQ is the quantizer. It should be noted that when the measurements are not quantized the consistency term reads

Ẽt(Λ) =‖ y2 − ψWΛ(Î1) ‖2 (16)

We then merge the three cost functionsEd, Es andEt with regularization constantsα1 andα2 in order to form a new energy
modelER for consistent reconstruction expressed as

ER(Λ) = Ed(Λ) + α1Es(Λ) + α2Et(Λ). (17)

In order to solve Eq. (17) or equivalently to estimate the correlation model that leads to consistent reconstruction, wepropose
to use the same optimization method as the one described in Section IV-D. We modify the objective functions to include the
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(a) (b)

Fig. 2. Plastic image set (a) View point 1 (I1) (b) View point 2 (I2)

consistency term, and we iteratively look for the best atomsparameters sets by adapting successively the translation parameters.
Again, the algorithm is guaranteed to converge to a local or global minimum with a moderate computational complexity. The
consistent reconstruction algorithm is summarized in Algorithm 2. Finally, the data cost term in the9th line of Algorithm 2
can be replaced with robust data term̃Ed to provide robustness to quantization errors.

Algorithm 2 Consistent reconstruction
1: Input N, α1, K, δtx, δty
2: Generate{gγk

} from Î1 s.t. Î1 ≈
∑N

k=1 ck gγk

3: Initialize Λ−1 = {γk}
4: repeat
5: Generate index search spaceSi based onΛi−1 (with Eq. (14))
6: for all Parameter vectorsΛ in Si do
7: Compute the motion field
8: Warp the reference imagêI1 using motion field,WΛ(Î1)
9: Compute the data termEd(Λ) with Eq. (9)

10: Compute the smoothness termEs(Λ) with Eq. (12)
11: Compute the consistency termEt(Λ) with Eq. (15)
12: Compute the global energyER(Λ) = Ed(Λ) + α1Es(Λ) + α2Et(Λ)
13: end for
14: Λi = argminΛ∈Si ER(Λ)
15: Until convergence is reached

We discuss now briefly the computational complexity of the algorithm for image reconstruction, which can basically be
divided into two stages. The first stage finds the most prominent features in the reference image using sparse approximations
in a structured dictionary, and the second stage estimates the transformation for all the features in the reference image by
solving a regularized optimization problem. Even if the decoder can afford computational complexity in our framework,both
stages might be appear complex. However, the computationalcomplexity of the decoder can be reduced significantly using
a tree-structured dictionary for the approximation of the reference image [33]. Alternatively, a block-based dictionary can
be used, and transformations are then computed for each block. Experiments show however that this comes at a price of a
performance penalty in the reconstruction quality. It is clear that the decoding scheme proposed here offers high flexibility with
a tradeoff between complexity and performance. For example, one might decide to use the simple data costEd even when
the measurements are quantized. This leads to a simpler scheme but to reduced reconstruction quality. Overall, our framework
offers a very simple encoding stage with image acquisition based on random linear projections and the computational burden
is shifted to a joint decoder that can trade-off complexity and performance.

VI. EXPERIMENTAL RESULTS

A. Overview

We analyze the performance of the correlation estimation and image reconstruction algorithms in multi-view imaging
and distributed video coding applications. The images are captured by random linear projections using the scrambled block
Hadamard transform with block size 8 [9]. The reference image is then reconstructed as the solution of aℓ1− ℓ2 regularization
problem using a GPSR algorithm [17]. In order to compute a sparse approximation of the reference image at decoder, we use
a dictionary that is constructed using two generating functions, as explained in [31]. The first one consists of 2D Gaussian
functions to capture low frequency components. The second function represents Gaussian in one direction, and the second
derivative of 2D gaussian in the orthogonal direction to thecapture edges. The discrete parameters of the functions in the
dictionary are chosen as follows. The translation parameters tx and ty take any positive value and cover the full width and
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(a) (b)

Fig. 3. Sawtooth image set (a) View point 1 (I1) (b) View point 5 (I2)

(a) (b) (c) (d) (e)

Fig. 4. Plastic image set (a) Ground truth disparity fieldM
h between views 1 and 2 (b) Disparity field with Alg. 1 (c) Error in the depth map with Alg. 1

(DE = 0.10). (d) Disparity field with Alg. 2 (d) Error in the depth map with Alg. 2 (DE = 0.05). [8870 quantized measurements]

height of the image. Ten rotation parameters are used between 0 andπ, with incrementsπ/18. Five scaling parameters are
equidistributed in the logarithmic scale from1 to N1/8 vertically, and1 to N2/9.77 horizontally, whereN1 ×N2 is the size
of the image.

The measurementsy2 corresponding to the second imageI2 is computed with the same sensing matrixψ as the reference
image. The measurementsy2 are quantized a uniform quantizer, and the bit rate is computed by encoding the quantized
measurements using an Arithmetic coder. We report in this section the performance of the correlation estimation and analyze
the influence of the measurement consistency term in the energy minimization constraint. We also analyze the influence of
the quantization of the measurements for the second image. Then we study the reconstruction results as a function of the
measurement rate or the coding rate of the second image. We also compare the performance of our disparity estimation
algorithms with stochastic optimization algorithm based on simultaneous perturbation (SPSA) [34]. Finally, we compare the
rate-distortion performance in the coding of the second image to state-of-the-art solutions for independent or distributed image
coding.

B. Multi-view image coding

We first study the performance of our distributed image representation algorithms in a multi-view imaging framework. We
use two image datasets, namelyPlastic (see Fig. 2) andSawtooth (see Fig. 3)1. These datasets have been captured by a camera
array where the different viewpoints are arranged uniformly arranged on a line. As this corresponds to translating the camera
along one of the image coordinate axis, the disparity estimation problem becomes a one-dimensional search problem and the
smoothness term in Eq. (8) is simplified accordingly. The images are downsampled to a resolution144 × 176 using bilinear
filters. We carry out experiments using the views 1 and 5 for Sawtooth image set, and views 1 and 2 for Plastic image set.
The view point 1 is selected as the reference imageI1. Unless stated differently, it is encoded such that the quality of Î1 is

1These image sets are available in http://vision.middlebury.edu/stereo/data/

(a) (b) (c) (d) (e)

Fig. 5. Sawtooth image set (a) Ground truth disparity fieldM
h between views 1 and 5 (b) Disparity field with Alg. 1 (c) Error in the depth map with Alg.

1 (DE = 0.092). (d) Disparity field with Alg. 2 (d) Error in the depth map with Alg. 2 (DE = 0.047). [8870 quantized measurements]
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(a)MSE : 102 (b)MSE : 558 (c)MSE : 44 (d)MSE : 633

Fig. 6. Comparison of the warped imageÎ2 w.r.t. I2 andI1 for the Plastic image set: (a)1−|Î2−I2| with Alg. 1 (b) 1−|Î2−I1| with Alg. 1 (c) 1−|Î2−I2|
with Alg. 2 (d) 1− |Î2 − I1| with Alg. 2. [2534 quantized linear measurements].

approximately 33 dB w.r.t.I1. Matching pursuit is then carried out on̂I1 by approximation withN = 30 andN = 60 atoms
for Plastic and Sawtooth image set, respectively. The measurements are generally quantized using a 2-bit uniform quantizer. At
decoder, the search for the geometric transformationsF k between images is carried out along the translational componenttx
with window sizeδtx = 4 pixels, and no search is consider along the vertical direction, i.e.,δty = 0. Unless stated explicitly
we use the data costEd given in Eq. (9) in Algorithms 1 and 2.

We first study the performance of the estimated disparity information and we show in Fig. 4 and Fig. 5 the estimated disparity
field m

h from 8870 quantized measurements (i.e., a measurement rate of 35%) for both image sets respectively. The ground
truth M

h is given in Fig. 4(a) and Fig. 5(a) respectively. The transformationF k is estimated using the procedure described in
Algorithm 1, and the resulting dense disparity fields are illustrated in Fig. 4(b) and Fig. 5(b). The Algorithm 1 gives a good
estimation of the disparity map; in particular the disparity value is correctly estimated in the regions with texture ordepth
discontinuity. We could also observe that the estimation ofthe disparity field is however less precise in smooth regionsas
expected from feature-based methods. Fortunately enough,the wrong estimation of the disparity value corresponding to the
smooth region in the images does not significantly affect thewarped or predicted image quality [35]. Fig. 4(c) and Fig. 5(c)
confirm such a distribution of the disparity estimation error and illustrate by white pixels the positions where the estimation
error is larger than one. The disparity error DE is computed between the estimated disparity fieldmh and ground truthMh as
DE = 1

Z

∑

z=(x,y)

{

|Mh(z) −m
h(z)| ≥ 1

}

whereZ represents the pixel resolution of the image [35]. We can seethat the
error in the disparity field is relatively high close the edges since crisp discontinuities cannot be accurately captured due to the
scale and smoothness of the atoms in the chosen dictionary. The disparity information estimated by Algorithm 2 is presented
in Fig. 4(d) and Fig. 5(d) and the corresponding errors in Fig. 4(e) and Fig. 5(e). We see that the addition of the consistency
termEt in the correlation estimation algorithm clearly improves the performance.

We propose a different illustration of the disparity estimation performance in Fig. 6. The dense disparity fieldm
h is used to

warp the reference imagêI1 and the image thus reconstructed is represented byÎ2. We estimate the correlation between images
in the Plastic dataset with Alg. 1 using2534 quantized measurements (i.e., a measurement rate of 10%). We then warp the
reference image to reconstruct an approximationÎ2 of the second image. We show in Fig. 6(a) and (b) the comparison between
Î2 and respectivelyI2 and I1, where white pixels represent a correct reconstruction. Itis clear thatÎ2 is closer toI2 than
I1, which confirms that the proposed scheme capture the correlation between the images efficiently. The same comparisons
are given in Fig. 6(c) and (d) when the Alg. 2 is used for correlation estimation. The results confirm that the addition of the
consistency term again provides a more accurate disparity field since the warped imagêI2 gets quite close to the target image
I2.

We study now the rate-distortion performance of the proposed algorithms for the reconstruction of the imageÎ2 in Fig. 7
for both datasets. We show the performance of the reconstruction by warping the reference image according to the correlation
computed by Alg. 1 (without the measurement consistency term, i.e.,α2 = 0 in Eq. (17)) and Alg. 2. We compare the rate-
distortion performance to a distributed coding solution (DSC) based on LDPC encoding of the DCT coefficients, where the
disparity field is estimated at the decoder using Expected Maximization (EM) principles [4]. The scheme is denoted asDisparity
learning in the figures. Then, in order to demonstrate the benefit of geometric dictionaries, we also propose a scheme denoted
as block-based that adaptively constructs the dictionary using blocks or patches in the reference image [3]. As described in
[3], we construct a dictionary in the joint decoder from the reference imagêI1 using 8 × 8 blocks. The search window
size isδtx = 4 pixels along the horizontal direction. We then used the optimization scheme described in Alg. 2 to select the
best block from the adaptive dictionary. In order to have a fair comparison, we encode the reference imageI1 similarly for
both schemes (Disparity learning and block-based) with a quality of 33 dB (see Section III). Finally, we also provide the
performance of a standard JPEG-2000 independent encoding of the imageI2. We first see by comparing the two proposed
algorithms that the measurement consistency term greatly improves the decoding quality. Then, the results confirm thatthe
proposed algorithms unsurprisingly outperform independent coding based on JPEG-2000, which outlines the benefits of the
use of correlation in the decoding of compressed correlatedimages. At high rates, the performance of the proposed algorithms
however tends to saturate as our model mostly handles the geometry and the correlation between images, but it is not able to
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Fig. 7. Comparison of the RD performance of the proposed scheme w.r.t. DSC scheme [4], block based scheme [3] and independent coding solutions based
on JPEG-2000. (a) Sawtooth image set (b) Plastic image set.

efficiently handle the fine details or texture in the scene dueto the choice of dictionary functions. From Fig. 7(a) it is then
clear that the reconstruction based on Alg. 1 outperforms the DSC coding scheme based on EM principles, for the Sawtooth
image set. On the other hand for the Plastic image set (see Fig. 7(b)) our scheme performs very similar to the DSC scheme
till rate 0.2 bpp, and after that our scheme performs around 2dB lower than the DSC scheme. This is because, the Plastic
scene mainly contains low frequency components or smooth regions, and in such regions it is hard to solve the correspondence
problem or equivalently the estimation of the disparity [35]. However, when consistency with measurements is enforcedin
Alg. 2, we outperform DSC scheme based on disparity learningon both datasets. Finally, the experimental results also show
that our schemes outperform the scheme based on block-baseddictionary mainly because of the richer representation of the
geometry and local transformations with the structured dictionary.

We further evaluate the performance of our constructive parameter search strategy in Alg. 2. We compare its performance
to a global stochastic optimization method on SPSA [34] in terms of reconstruction performance and speed of convergence.
We select a global optimization based on SPSA as it performs better than genetic algorithm [36], [37], and also gives better
convergence rate than simulated annealing [37], [38], [39]. Similar to gradient descent algorithm, SPSA is an iterative algorithm
that starts with an initial guessγ′k = γk, ∀k where1 ≤ k ≤ N , and computes an approximate noisy value of the gradient
of the energy functionE at the current solution(γ′1, γ

′
2, ..., γ

′
N ), and updates the current solution(γ′1, γ

′
2, ..., γ

′
N ). Maryak and

Chin have studied the usage of SPSA as a global optimization and proved that SPSA under certain conditions can converge in
probability to the global minima among multiple local minima [36]. We use a discrete SPSA algorithm where the gain sequence
used in the gradient update is constant to the nearest integer [40], [41]. We examined the performance of the Sawtooth image
set by settingA = 0, β2 = 0.95, a = 0.2 and the sequenceci is fixed to a constantc = 1, and the number of iterations,
iter = 2000 in the SPSA algorithm, based on trial and error tests. We compare experimentally the speed of convergence
between Alg. 2 and the SPSA algorithm. Fig. 8 shows the energyof the cost function as a function of the number of iteration
in the disparity search algorithm for Sawtooth image set at measurement rate3%. It is clear from the plot that Alg. 2 converges
faster than the SPSA algorithm. Even if this is not a formal comparison in terms of computational complexity, it shows that
parameter-free constructive algorithm fastly reaches a local minima, while global stochastic optimization may reacha better
solution at the price of more computation and propser settings of multiple parameters. We also compare the RD performance
of the reconstructed imagêI2 between the proposed and SPSA optimization algorithms. Thereconstruction is done by warping
the reference image based on the correlation estimation based on Alg. 2 and SPSA, respectively. Fig. 9 shows that SPSA
performs slightly better than the proposed scheme due to a better estimation of the correlation. On the other hand the proposed
scheme convergences faster than the SPSA algorithm, which leads to a trade-off between the speed of convergence and the
RD performance. Similar observations have been made in our experiments for Plastic image set.

We now study the performance of Alg. 2 in different settings in terms of camera distances, quality of the reference image
and quantization of the measurements. We first illustrate the rate-distortion performance of the proposed scheme for different
images captured at various distances from the reference camera. In particular, we study the decoding quality of the images at
viewpoints 3 and 5 in the Sawtooth dataset when the viewpoint1 is used as the reference. Fig. 10 confirms that the performance
is better when the correlation between images is stronger (the reference image is closer to viewpoint 3 than viewpoint 5). We
further see that the coding performance is better than a state-of-the-art independent coding with JPEG-2000 or DSC based on
disparity learning [4] when the correlation between imagesis high. We further study the influence of the quality of reference
imageÎ1 on the reconstruction performance. We use Alg. 2 to reconstruct Î2 by warping when the reference image has been



13

0 200 400 600 800 1000 1200 1400 1600 1800 2000
450

500

550

600

650

700

750

800

850

iteration number
E

ne
rg

y
 

 
SPSA (a= 0.2)
Alg 2

Fig. 8. Comparison of the speed of convergence between Alg. 2and the SPSA optimization algorithm in the Sawtooth Image set. The experiments are carried
out using SPSA parametersA = 0, β2 = 0.95, and the sequenceci is fixed to a constantc = 1. [Measurement rate =3%].
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Fig. 9. Comparison of the rate-distortion performance in reconstructingÎ2 by warping for Alg. 2 and the SPSA optimization algorithm in the Sawtooth Image
set. The experiments are carried out using SPSA parametersA = 0, β2 = 0.95, and the sequenceci is fixed to a constantc = 1.

encoded at different qualities (i.e., different measurement rates). Fig. 11 shows that the reconstruction qualityÎ2 improves with
the quality of the reference imagêI1, as expected. While the error in the disparity estimation isnot dramatically reduced by
improved reference quality the warping stage permits to provide more details in the representation ofÎ2 when the reference is
of better quality. Finally, we show the influence of the quantization rate on the rate-distortion performance in the reconstruction
of Î2 with Alg. 2. We have quantized the measurementsŷ2 uniformly with a number of bits between 2 and 8 bits. While the
quality of the correlation estimation degrades when the number of bits reduces, it is largely compensated by the reduction
in bit-rate in the rate-distortion performance, as confirmed by Fig. 12. This means that the proposed correlation estimation is
relatively robust to quantization so that it is possible to attain good rate-distortion performance by drastic quantization of the
measurements.

Finally, we study the improvement offered by the robust datacost Ẽd from Eq. (11) in Alg. 1 and Alg. 2 when the
measurements have been compressed with a 2-bit uniform quantizer and an Arithmetic coder. We use the optimization toolbox
based on CVX2 in order to solve the optimization problem described in Eq. (10). Fig. 13 compares the modified Algorithms 1
and 2 with DSC based on disparity learning [4], a joint reconstruction with a block-based dictionary [3] and independentcoding
with JPEG-2000. The relative performance of the different schemes are maintained with the robust data costẼd. However,
the robust data cost permits to improve the quality of the image Î2 around1 dB especially at lower measurement rates. This
gain can be observed by comparing the rate-distortion performance to the results given in Fig. 7 where the algorithms do not
use the robust data cost term. For example, by comparing Fig.7(b) and Fig. 13(b) we could see that for Plastic image set at
bit-rate 0.6 bpp, the Alg. 2 improves quality of imageÎ2 (approximately) from29 dB to 30 dB when robust data term is used.

2available in http://cvxr.com/cvx/
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Fig. 10. Rate-distortion performance as a function of the correlation between images. Alg. 2 is used to reconstruct images at different viewpoints in the
Sawtooth dataset, while the image at viewpoint 1 is selectedas a reference image.
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Fig. 11. Rate-distortion performance with Alg. 2 for reconstructing Î2 as a function of the quality of the reference imageÎ1 (resp. 28 dB, 33 dB and 38 dB)
in the Plastic image set.
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Fig. 13. Rate-distortion performance of Alg. 1 and Alg. 2 modified with a robust data cost term in the reconstruction of theimageI2. (a) Sawtooth image
set (b) Plastic image set.

C. Distributed video coding

We study now the performance of the proposed algorithms in distributed video coding applications. The experiments are
similar to the multi-view imaging framework above, except that the correlation estimation relates to motion estimation instead
of disparity computation. We built the image set using the frames 2 and 3 of the Foreman sequence. The frame 2 is selected
as the reference imageI1, and is approximated to a quality of approximately45 dB in the joint decoder. We used the same
dictionary described in the previous section for approximating the imageÎ1. For this particular data set, we approximateÎ1
usingN = 60 atoms. The measurementsy2 are compressed using a two-bit uniform quantizer and an Arithmetic coder. The
search window size isδtx = δty = 4 pixels for both the translational componentstx and ty.

(a)MSE : 80 (b)MSE : 101 (c)MSE : 41 (d)MSE : 73

Fig. 14. Comparison of the warped imagêI2 w.r.t. I2 and I1 for the Foreman image set: (a)1 − |Î2 − I2| with Alg. 1 (b) 1 − |Î2 − I1| with Alg. 1
(c) 1− |Î2 − I2| with Alg. 2 (d) 1− |Î2 − I1| with Alg. 2. [3801 quantized linear measurements].

Fig. 14 first illustrates the accuracy of the motion information computed in Alg. 1 and Alg. 2 with 3801 quantized
measurements (i.e., 15% measurement rate). It compares theimage Î2 reconstructed by warping the reference image, to
respectively the original imagesI2 andI1. We see that the warped image is closer toI2 thanI1, which confirms the benefit of
the motion estimation in the joint decoder. We further observe that the error denoted by black pixels is reduced significantly
in the face region due to the good estimation of the motion field in smooth area. Similarly to the multi-view experiments, the
motion around sharp edges is however not perfectly captureddue to choice of the dictionary that does not include very thin
geometrical patterns. Finally, we see that Alg. 2 provides abetter estimation due to the benefit of the measurement consistency
termEt.

We further study the rate-distortion performance of the proposed algorithms in the reconstruction of the imageÎ2. We compare
the performance to different state-of-the-art solutions in distributed or joint video coding. First, we provide the performance
of a DSC scheme (i.e.,Motion learning) based on motion learning [5], using the similar experimental setup demonstrated
in the previous section and a reference imageÎ1 of 45 dB for a fair comparison. In addition, we implement Alg.2 with a
different dictionary that is built on blocks of the reference image, similarly to [3] (denoted asBlock-based in the figures). We
also compare to an independent encoding of the imageI2 with JPEG-2000. For the sake of completeness, we further provide
results of a joint video encoding solution based on H.264 with an IP encoding structure (i.e., a GOP size of 2). We again
encode the reference I frame (I1) at a quality of 45 dB, and we vary the quantization parameterfor the P frame (I2) to build
the rate-distortion characteristics. We consider two different settings in the H.264 motion estimation, which is performed with
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Fig. 15. Rate-distortion performance in reconstructing the second imagêI2 in Foreman data set with the Alg. 1 and Alg. 2 from measurements quantized on
2 bits. Comparisons with state-of-the-art coding solutions in joint and distributed video coding. The proposed algorithms are implement without (a) and with
(b) robust data cost term.

variable and fixed macroblock size. Fig. 15 illustrates the rate-distortion performance of the different schemes and confirms the
results that have been observed in the previous section. First, we see that the measurement consistency termEt in Alg. 2 greatly
improved the performance of our motion estimation algorithm. Similarly, the benefit of the robust data term in our algorithms
is mostly visible at low rate, when we compare Fig. 15 (a) and Fig. 15 (b). Then, it is clear that our proposed solutions
outperform independent coding since it exploits the correlation between images. It also outperforms DSC solution based on
motion learning due a better model of the geometric correlation. The correlation estimation with block-based dictionary is less
efficient than the estimation with a dictionary of geometricatoms. Finally, we see that the joint encoding with H.264 is clearly
better than all distributed coding solutions. However, ouralgorithm is able to compete at low bit rate with H.264 based on a
fixed block-size motion estimation, which is certainly an interesting and promising result.

VII. C ONCLUSIONS

In this paper we have presented a framework for the distributed representation of image pairs with quantized linear
measurements, along with joint reconstruction algorithmsthat exploit the geometrical correlation between images. We have a
proposed a correlation model based on local transformations of geometric patterns that are present in the sparse representation
of images. The motion or disparity information in distributed video coding and respectively multi-view imaging can then be
estimated from the pairs of geometric features in differentimages. We propose a regularized optimization problem in order to
identify the geometrical transformations that result in smooth motion or disparity fields between a reference and a predicted
image. We have proposed a low complexity algorithms to the correlation estimation problem, which offers an effective trade-off
between complexity and accuracy of the solution. In addition, we have proposed an improved reconstruction solution by image
warping, where the image transformations are estimated in order to be consistent with the compressed measurements in the
predicted image. Experimental results demonstrate that the proposed methodology provides a good estimation of dense disparity
or motion fields in different natural image datasets. We alsoshow that our geometry-based correlation model is more efficient
than block-based correlation models. Finally, the consistent reconstruction constraints prove to offer improved reconstruction
quality, such that the proposed algorithm outperform JPEG-2000 and DSC schemes in terms of rate-distortion performance. It
certainly provides an interesting alternative to distributed image processing applications due to its effective framework based
on geometry, which is the main characteristic of natural images.
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