RPN

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Vijayaraghavan Thirumalai and Pascal Frossard

SCHOOL OF ENGINEERING - STI //
SIGNAL PROCESSING LABORATORY LTS4 @

CH-1015 LAUSANNE

Telephone: +4121 6932708
Telefax: +4121 6937600
e-mail: vi j ayar aghavan. t hi runal ai @pf!l.ch

DISTRIBUTED REPRESENTATION OF GEOMETRICALLY
CORRELATED IMAGESWITH COMPRESSED LINEAR
MEASUREMENTS

Vijayaraghavan Thirumalai and Pascal Frossard

Ecole Polytechnique Fédérale de Lausanne (EPFL)

Signal Processing Laboratory LTS4 Technical Report
TR-LTS-2010-005
Dec 15th, 2010

Part of this work has been submitted to the IEEE TransactionBnage Processing.

This work has been supported by the Swiss National Scienaoadation under grant 200021-118230.



Distributed Representation of Geometrically
Correlated Images with Compressed Linear
Measurements

Vijayaraghavan Thirumalai and Pascal Frossard
Ecole Polytechnigue Fédérale de Lausanne (EPFL)
Signal Processing Laboratory (LTS4) , Lausanne, 1015 -z&w#nd.
Email:{vijayaraghavan.thirumalai, pascal.frossa@kpfl.ch
Fax: +41 21 693 7600, Phone: +41 21 693 2708

Abstract

The distributed representation of correlated images isngpoitant challenge in applications such as multi-view imgg
in camera networks or low complexity video coding. This papddresses the problem of distributed coding of images &hos
correlation is driven by the motion of objects or the positig of the vision sensors. It concentrates on the problerergvh
images are encoded with compressed linear measuremerith arfe used for estimation of the correlation between image
decoder. We propose a geometry-based correlation modetier to describe the correlation between pairs of imagesas¥ame
that the constitutive components of natural images can peuesd by visual features that undergo local transformatie.g.,
translation) in different images. These prominent viseakdires are estimated with a sparse approximation of arefeimage by
a dictionary of geometric basis functions. The correspogmdéatures in the other images are then identified from thepcessed
measurements. The correlation model is given by the relaometric transformations between corresponding festWWe thus
formulate a regularized optimization problem for the estion of correspondences where the local transformati@teden
images form a consistent motion or disparity map. Then, wapgse an efficient joint reconstruction algorithm that dieso
the compressed images such that they stay consistent wethuiintized measurements and the correlation model. Expetal
results show that the proposed algorithm effectively estiz® the correlation between images in video sequences ltirview
data. In addition, the proposed reconstruction strategyiges effective decoding performance that compares aageausly to
distributed coding schemes based on disparity or motiomileg and to independent coding solution based on JPEG:2000

Index Terms

Random projections, sparse approximations, motion estimadisparity estimation, consistent reconstruction

I. INTRODUCTION

N recent years, vision sensor networks and video cellulanpk have been gaining an ever increasing popularity theat ha

been enforced by the availability of cheap semiconductonpmments. As these systems are operated with limited power,
they require low complexity and power efficient algorithnes the processing and transmission of the visual informatio
Distributed processing becomes attractive in such settgigce it involves a low complexity encoding stage thathfert
permits to get rid of inter-sensor communication. In thisegathe images captured by one or several image sensors are
encoded independently but decoding jointly by a centrabdec that exploits the underlying correlation. The compaoitel
complexity in the representation of the visual informatisrihus shifted from the encoder to the joint decoder.

In practice, the camera commonly acquires the image and pleeforms compression to reduce the transmission rate.
Instead of acquiring the entire image, one could directke thhe compressed data in the form of linear measuremeridshan
underlying signal can be reconstructed if it is sparse in riqudar basis (e.g., DCT, Wavelet) [1], [2]. Such schemleves
for low complexity acquisition that consists in computimgér products with a random projection matrix, instead ofuéing
the entire image. Hence, it is advantageous to merge thebdistd processing and the image acquisition based on nando
projections, so that it results in a very simple encodingetaOne of the most important and challenging tasks in such a
scenario is to estimate the correlation between the imagesernns of dense motion or disparity field) captured by défe
sensors or video cameras, so that the information can béeeffic processed or coded. When classical block-basedomoti
estimation is performed, it is generally not possibly toaidfintly capture the true geometry of the scene, which is kegnt
effective joint decoding of the correlated images.

In this paper, we consider the problem of finding an efficiaatrtbuted joint representation for a pair of correlatecgas,
where the common objects in different images are displacedtd the view point change or motion of the scene objects. In
particular, we are interested in computing a joint represi@n when the images are given under the form of few quedtiz
linear measurements. We propose to model the correlatiomele images as the geometric transformation of visualifeat
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rather than restricting ourselves to block-based traioslatorrelation model. We first compute the most prominesuai
features in a reference image and approximate them with gemnunctions drawn from a parametric dictionary. Then we
formulate an optimization problem whose objective is to pate the corresponding features in the compressed imagg alo
with the relative geometric transformations. We add a r@gzdtion constraint in order to ensure that the estimatetiom (or
disparity) field is consistent and corresponds to the achudion of visual objects. The resulting correlation modethien used

in a new joint reconstruction algorithm for computing areeffve approximation of the correlated images. The joiroding is
cast as an optimization problem that includes a penalty terarder to enforce that the reconstructed image is comgistih

the quantized measurements. We show by experiments thatapesed algorithm computes a good estimation of the motion
or disparity field between the pair of images. In particulaeg, results confirm that dictionary based on geometric anigtions
permits to capture the correlation more efficiently than cidinary built on patches or blocks from the reference imi@je

In addition, we show that the estimated correlation model lsa used to reconstruct the compressed image by motion (or
disparity) compensation. Such reconstruction strateggnjpe to outperform DSC scheme based on disparity learrdipg[$]

and independent coding scheme based on JPEG-2000 in terratedistortion (RD) performance. Finally, the experitsen
outline the benefit of the consistent reconstruction pgrietm in the joint reconstruction algorithm, where it preve be
very effective in increasing the decoding quality of the poessed images.

The rest of the paper is organized as follows. Section liflgrieverviews the related work in signal processing based on
random projections. The geometric based correlation madedtl in our framework is presented in Section Ill. Section IV
describes the proposed regularized energy model and thelatozn estimation algorithm, while the consistent restanction
algorithm is presented in Section V. Experimental resultmulti-view imaging and distributed video coding applioas are
given in Section VI.

Il. RELATED WORK

We present in this section a brief overview of the related kwior distributed image coding where we mostly focus on
simple sensing solutions based on linear measurementscantr years, signal acquisition based on random projectias
actually received a significant attention in many applmagi like medical imaging, compressive imaging or sensoNords.
Donoho [1] and Candest al. [2] have shown that a small number of linear measurementsaoatain enough information
to reconstruct a signal, as long as it has sparse represenitata basis that is incoherent with the sensing matrix Télese
ideas have been applied to image acquisition [7], [8], [9] &ter extended to video sequences [10], [11], [12].

The key in effective distributed representation certalidg in the definition of good correlation models. Duagteal. [13],

[14] have proposed different correlation models for theriltisted compression of correlated signals from linear sneaments.

In particular, they introduce three joint sparsity modeleider to exploit the inter-signal correlation in the joiatonstruction.
These three sparse models are respectively described B$M)1, where the signals share a common sparse support plus
a sparse innovation part specific to each signal, (ii) JSMAZere the signals share a common sparse support with differe
coefficients, and (iii) JISM-3 with a non-sparse common digiith individual sparse innovation in each signal. Theseeation
models permit a joint reconstruction with a reduced sangplate or equivalently a smaller number of measurements acedp

to independent reconstruction for the same decoding gudlite sparsity models developed in [13] have then been egbpli
for distributed video coding [15], [16] with random projexts. The scheme in [15] used a modified Gradient projection
sparse algorithm [17] for the joint signal reconstructidhe authors in [16] have proposed a distributed compressilen
coding scheme based on the sparse recovery with decodeméiimation. In particular, the prediction error betwedre t
original and side information frames is assumed to be sparaeparticular orthonormal basis (e.g., Wavelet basis).oftrer
distributed video coding scheme has been proposed in [3tharelies on an inter-frame sparsity model. A block of péxil

a frame is assumed to be sparsely represented by linear eatiani of the neighboring blocks from the decoded key frames
In particular, an adaptive block-based dictionary is cartsed from the previously decoded key frames and eventuakd

for signal reconstruction. Finally, iterative projectiomethods are used in [18], [19] in order to ensure a joint rettation

of correlated images that are sparse in a dual tree wavelesform basis and at the same time consistent with the linear
measurements in multi-view settings.

In multi-view imaging or distributed video coding, the celation is explained by the motion of objects or view poirdiahe.
Block-based translation models that are commonly used doetation estimation fail to efficiently capture the gedmeof
scene objects. This results in poor correlation model, @alhe with low resolution images. Furthermore, most of tieove
mentioned schemes (except [3]) assume that the signal isespaa particular orthonormal basis (e.g., DCT or WavelEt)s
is also the case of the JSM models above, which cannot be agethte the scene objects by means of a local transform and
unfortunately fail to provide an efficient joint represeita of correlated images at lower rate. It is more generiagsume the
signals to be sparse in a redundant dictionary, which allgrester flexibility in the design of the representation vext The
most prominent geometric components in the images can baredpefficiently by dictionary functions. Then, the coatén
can be estimated by comparing the most prominent featuraiff@ment images. Few works have been reported in the titeea
for the estimation of a correlation model using redundanicstired dictionaries in multi-view [20] or video appligats [21].
However, these works do not construct the correlation mémbeh the linear measurements. Rauletital. [22] extend the
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Fig. 1. Schematic representation of the proposed scheme.rihges/; and I» are correlated through displacement of scene objects, @wéetw point
change or motion of scene objects.

concept of signal reconstruction from linear measuremesitsg redundant dictionaries. However, this has not betaneded
to distributed scenarios. We rather focus here on estigalia correlation from the random projections. The coriatatodel
is built using the geometric transformations captured leydtriuctured dictionary which leads to a good estimation ofiom
or disparity.

Finally, the distributed schemes based on compressed mnegasnts (except [3]) usually fail to estimate the actual benof
bits for the video representation and hence cannot be apgiiectly in practical coding applications. Quantizatammd entropy
coding of the measurements in compressed sensing is gcmatipen research problem due to the two following reasgrtsg
reconstructed signal from quantized measurements doesegessarily satisfy the consistent reconstruction ptgg2s]; (i)
the entropy of the measurements is usually large so thatatiem@ performance in imaging applications is unsatisfigcfa4].
Hence it is essential to develop adapted quantization teaba and reconstruction algorithms that reduce the digtom the
reconstructed signal, such as [25], [26]. The authors if, [[2B] have also studied the asymptotic reconstructiorignerance
of the signal under uniform and non-uniform quantizatiohesnes, and they have shown that the non-uniform quantizatio
schemes usually give smaller distortion in the reconswuocsignal, comparing to uniform quantization schemes.eR#y,
optimal quantization strategy for the random measurenteagseen designed based on distributed functional scadautiqars
[29]. In this paper, we use a simple quantization strategfn wonsistent reconstruction constraints in the joint déup of
correlated images, in order to illustrate the potentialaf complexity sensing solutions in multi-view or distribdtvideo
coding applications.

IIl. DISTRIBUTED CODING WITH LINEAR MEASUREMENTS
A. Framework

We consider a framework where a pair of imagesand I, represent a scene at different time instants or from differe
viewpoints; these images are correlated through the matiowisual objects. These images are represented by linear
measurements that correspond to the projection of the inpidged values on a random set of coding vectors. They are
then transmitted to a joint decoder that estimates theivelamotion or disparity between the received signals andtlipi
reconstructs the images. The framework is illustrated @ Ei

We focus on the particular problem where one of the imageseseas a reference for the correlation estimation and the
decoding of the second image. While this image could be ettedth any coding algorithm (e.g., JPEG-2000), we choose
in this work to represent the reference imageby random linear measurements = ¢ I; with a projection matrix;). The
measurements are used by the decoder to reconstruct anxipgtion /; using a convex optimization algorithm under the
assumption thaf; is sparse in particular basis (e.g., a Wavelet basis) [9%t,Nee concentrate on the independent coding and
joint decoding of the second image, where the first imageeseag side information. The second imdges also projected on
a random matrix) to generate the measuremenis= ¢ I>. The measuremenigs are quantized with a uniform quantization
algorithm for the sake of simplicity at encoder; non-unifoguantization schemes are usually complex and demand the
transmission of the codebook to the decoder. Finally, thedde is estimated by encoding the quantized linear measnts
with an entropy coder (e.g., Arithmetic coder).

The joint decoder first computes the sparse approximatiah@fimagel; using the functions in a parametric dictionary
of geometric functions. Such an approximation capturesniest prominent geometrical features that represent thealis
information in the imagel;. The joint decoder then performs de-quantization and pgtaecoding of the second image
to form the measurement vectgs (see Fig. 1). This measurement vector is used to estimateethive transformation
between the images and > and also for reconstructing the second image when the firajénserves as side information.
Given the most prominent geometrical features in the imBgave estimate the corresponding features in the second image
1> whose visual information is given in terms of quantized dineneasurements,. In particular, the corresponding visual
features in both images are then related using a geometadbasrelation model, where the correspondences are defined
under translational motion constraints. We generate thizdwtal m” and verticalm® components of the dense motion field
from the translation motion of the visual features betweeth bhe images. This motion informatigm”, m) is further used



to reconstruct the compressed imakefrom the reference imagé . We further ensure a consistent reconstructiod-oby
explicitly considering the quantized measuremejstsduring the reconstruction. Before getting into the detailghe joint
reconstruction algorithm, we describe the sparse imageoappation algorithm and the geometry-based correlatiadeh
built on a parametric dictionary.

B. Sparse Image Approximation

We discuss here the sparse approximation using geometi fomctions in a structured dictionary, which helps tddthe
geometric correlation model between the images. We projposspresent the images by a sparse linear expansion of ggome
function g, taken from a parametric and overcomplete dictiorBry= {g,}. The geometric functiom, in the dictionaryD
is usually calledatom. The dictionary is constructed by applying a set of georndtansformations to a generating function
g. These geometric transformations can be represented hyiby faf unitary operatord/(y), so that the dictionary takes the
form D = {g, = U(y)g,y € I'} for a given set of transformation index&s Typically this transformation set consists of
scalings;, s, rotationd, and translatiort,., t, operators, defined as

u | | 1/sy 0 cos @ sin 0 T —1,
v | 0 1/s, —sin 0 cos 6 y—ty
wherez, y defines the image coordinate. Thus, each of the transfamati equivalently each atom i is indexed by five

parameters. A
We can then write the linear approximation of the referemeage; with functions inD as

N
fl"rb’ZCk gvka (1)
k=1

where{c;} are the set ofV coefficients, and the number of atofsused in the approximation df is usually much lesser
the number of atoms iD. It should be noted that in our framework we are interestedgproximating the reconstructed
version of the first imagé; using the functions in the geometric dictionaby

Given the dictionaryD, finding the sparse approximation of the image uswM@toms as given in Eq. (1), is usually a NP
hard problem. Even though the problem is NP hard, severalpimal algorithms exists in the literature (e.g., basisspi,
matching pursuit, etc.) in order to find the capture the mabést and prominent visual features in the images, in neasie
computational time. In this work we have chosen matchingitif30], which greedily pick up thév atoms{g,, } that best
match the imagd; [31].

C. Joint Correlation Model

We propose to model the correlation between the images bgethtve transformation of prominent visual features ithbo
images that are captured by geometric functions from atstred dictionary. The correlation model is expected to roffietter
performance for a joint decoding strategy compared to ieddpnt approximation of each image. We describe briefly the
correlation model between the imaghsand I, in the rest of this section. For more details, we encouragadhder to refer
[20], [21].

In this work, we arbitrarily choosé; as the reference image. We first compute the set of funcfgns} that form the
sparse approximation of the reconstructed version of tfezerce imagd; (see Eq. (1)). Under the assumption that the images
are correlated via local geometric transforms of their gigal components, the second imafyecould be approximated with
transformed version of the atoms used in the approximatfoh oWe can thus write

N

IQ ~ Ck Fk(g’yk)v (2)
k=1

whereF*(g., ) represents a local geometrical transformation of the atgmFor consistency, we have described the correlation
model given in Eq. (2) using the functiods., } that are picked from the reconstructed image However, this correlation
model holds well even if the aton{g.,, } are picked from the original imagl. Due to the parametric form of the dictionary, the
effect of F* corresponds to a geometrical transformation of the ajgnthat results in another atom in the same dictionary
Therefore, it is interesting to note that the transformafid on g,, boils down to a transformatiofty of the atom parameters,
ie.,

F¥gy) = U079y = Uk ©67)9 = Grposy = 9o ®3)
The main challenge in the joint decoder consists in estimgatie local geometrical transformatidit for each of the atom

Gy N I, from the compressed linear measurementsWe formulate in the next section a regularized optimizaiooblem
in order to estimateé*, or equivalently the relative motion or disparity betwearagesl; and I,.



IV. CORRELATION ESTIMATION FROM COMPRESSED LINEAR MEASUREMENS

Given the set ofV atoms{g., } that approximate the first imagk, the disparity or motion estimation problem consists
in finding the corresponding visual patterns in the secondgen’s, while the latter is given only by compressed random
measurementg,. This is equivalent to find the correlation between both iezagith the joint sparsity model based on local
geometrical transformations as described in Section INME describe here the proposed regularized optimizatemédwork
that estimates the correlation between the imagesnd I5.

A. Regularized energy function

We are looking for a set o atoms inl; that corresponds to th® visual featureg~;} selected in the first image. We
denote this set by, whereA = (71,73, ...7y) for some~y, ¥V k, 1 < k < N. We propose to select this set of atoms in a
regularized energy minimization framework as a trade-efileen the set that well approximateand the set that results in
smooth local transformations between both images. Theggmaodel £ proposed in our scheme is expressed as

E(A) = Ea(A) + an Es(A), (4)

whereE,; and E; represent the data term and smoothness term respectindly; &s the regularization constant that balances
the data and smoothness term. The solution to the cornelastimation is given by the set df atom parameterd* that
minimizes the energy, i.e.,
A = in £(A 5
argmin E(A) (5)

where S represents the search space given by
S ={(v1:7%N) | % =% + 07,1 <k <N, oy eU}. (6)

whereld C R®, andlU= [—4t,; Oty] X [—0ty; Oty] x [—80; 660] X [—0sy; 054) X [—dsy; ds,] Wheredt,, 6ty, 66, dsy,0s,
determine the search window size corresponding to traoslgrameters,, t,, rotationé and scales,, s, respectively.

We consider now that the transformation between images aielyndue to translation motion with pixel accuracy, which
represents a good motion model for distributed video codingnulti-view images captured by neighbor cameras. We ook f
transformationg* that involves translation in horizontal and vertical difens with pixel accuracy, but changes in the scaling
or orientation are not considered, i.e., the set of transéionsF* in Eq. (2) is limited to translations. Thus the search space
for the set of atom parameters for the approximatiod-ofs limited to

S ={(n1:%%, AN | 9 = (5 + Dasty + Ay, 0%, 55, 55) ) @)
with 1 <k < N,A,, A, € Z, =6ty < A, < 6ty, —6t, < A, < 6t} and (t5,¢%, 0%, 5% s¥) represents the parameters of

the atoms in{g,, }. The motion field is estimated from the translations betwerendifferent pairs of corresponding atoms
in both images. Given a pair of corresponding atgmsandg.,, in the images/; and I, respectively, we first calculate the
mapping of each pixet = (x,y) in g,, to its corresponding pixet = (Z,¢) in g~; Using Eq. (1). This grid transformation
zF) —z(0) = (z®) — 5*) (k) _ 5(k)) corresponds to the amount of local motion captured byitfiepair of atomsg,, and

g~;- Using the similar process, the mapping is established [fche V' atom pairs from the respective transform parameters
v and~y;.. Then the grid transformations captured by all fiiepairs of atom are fused together to estimate the dense motion
field. For the given location, we first assign weight$w§k)} based on the response of th& atom at the pixel location

z. Then the fusion process is simply implemented by choodiegnost confident transformation or motiaff) — z(*) for

the given locationz, from the set of transformationg*) — z(*)} induced by theN atoms. Thus the horizontal and vertical
components of the motion field at locatian denoted asn”(z) andm"(z), are given by

(m"(z), m"(z)) = (&) — ) 5+ — 57 8)

k)

wherek’ = arg ,_nax Nw;k), andwy" is the response of thg!" atom at the locatior i.e., wi) = Gy (2) = G, (T, Y).

The resulting motion corresponds to motion of objects iresidequence, or to disparity values in multi-view imaging W
describe below the two cost functions used in Eq. (4).

B. Data cost function

Given the set ofV atom parameterd = {~, }, the data cost functio®’; measures the error between the measurempgnts
and the orthogonal projection @k onto the columns spanned liyx, where Wy = v[g,;|g.,|.....[g ]. It turns out that the
orthogonal projection operatd? is given byP = U0l wherewt represents the pseudo-inverse. Therefore the data term
estimates the set @f atom parameterA that agrees best with the measureméntdMore formally, the data cost is computed
using the following relation,

Ea(A) = || g2 — WaWh g2 ||, 9



The data cost function given in the Eq. (9) first calculates ¢befficientsc = \I/Rgh, and then measures tlig distance
between the observatign and ¥, c. However, when the measurements are quantized the coefficetorc fails to properly
account for the error introduced by the quantization. Thantged measurements give only an approximate bin infoomat
and the actual measurement value could be any point in thetigation interval. Lety» ; be theit" coordinate of the original
measurement, angh ; be the corresponding quantized value. Since the joint de=chbds only access to the quantized value
92, and not the original valug, ;, the joint decoder only knows that the quantized measurtsrigs within the quantized
interval, i.e.,j2; € Ry, = (r; 7:41], Wherer; andr;;, defines the lower and upper bound of quantizer @in We propose to
refine the data cost term by computing a coefficient ve€tas the best solution when considering all the valid measeném
values in the quantization interval, i.giz € R;, WwhereR; is the cartesian product of quantized regiRy, for eachi'"
coordinate ings ;. The coefficients: andg, can be jointly estimated by solving the following optimimat problem,

(¢, §2) =arg rcpqun | g2 — UAC ||2, s.t. §2 € Ry. (20)
Y2

It can be shown that the Hessian of the objective functfon || 72 — ¥A¢ |2 is positive semidefinite, i.ey?f = 0, and
hence the objective functiofi is convex. Also the regiofk; forms a closed convex set as each regloy) = (r; riy1], Vi
forms a convex set. Henceforth the optimization problenegiin the Eqg. (10) is convex. The data cost term given in Eq. (9)
can be modified with the estimated coefficieatas

Ea(A) =[| g2 — UAE |2 - (11)

C. Smoothness cost function

The goal of the smoothness terf is to penalize the atom transformations such that they tr@suioherent deformations
of neighbors atoms. In other words, the atoms in a neightmattase likely to undergo similar transformatiddf when the
correlation between images is due to object or camera molstead of penalizing directly the transformatidif to be
coherent for neighbor atoms, we propose to generate a deoisennfor disparity) field from the atom transformation and t
penalize the motion (or disparity) field such that it is ca@mgifor adjacent pixels. This regularization is easier todi@than a
regular set of transformation8* and directly corresponds to the physical constraints thdetly the formation of correlated

images.
Once the motion field has been estimated using Eq. (8), thetsmess cosE is computed using the following relation
Es = Z sz,z’a (12)
z,z' €N

wherez, z’ are the adjacent pixel locations and is the usual 2 pixel neighborhood. The tekf,  in Eq. (12) is defined as
Vi = min (jm"(z) — m"(z')| + |m*(z) — m*(2)|, K) (13)

The parameteK sets a maximum limit to the penalty, and thus helps to prestire discontinuities in the motion field [32].
It should be noted that for larg&” the smoothness terfi; becomes simply the cumulative sum of the dissimilaritieshia
motion field at adjacent pixels, z’. In this case, it is equivalent the total variatidi() norm of the motion field, i.e., thg
norm of the motion field gradient.

D. Optimization algorithm

As described in Section IV-A, we are interested in captuthmgytranslation motion (or disparity) of the objects in ticerse
with pixel accuracy. We approximate the transformatighto act only on the integer locations of the translational porent
(tz,t,) of the atomg,, , and the action of"* on the rotation plus the scales of atom are not considerads We are interested
to estimate the set of parametérs that minimize the energy functiof given in Eq. (4) when the search space is limited to
translations of atoms idg,, }, as given in Eq. (7).

One could use an exhaustive search on the entire parametee Sp(see Eg. (7)) to solve the optimization problem in
Eq. (5). However, the cost for such a solution is high, as the sf the search spacg grows linearly with the number of
atomsN and exponentially with the window size, i.¢S| = N ((29t=+1)x(20t,+1))  Alternatively, Dynamic programming can be
used to search for the global minima in this problem that gdlyi non-convex inS. Dynamic programming is an optimization
methodology that usually decomposes the complex probléonsieveral overlapping subproblems. Each subproblem igdol
one by one starting from the smallest subproblem, and thaisnlto the current subproblem is estimated based on thsicol
estimated in the previous subproblem. The final solutiosigr@ated by back-tracing the solution estimated in eacpiitem.
For energy function minimization described in Eq. (5), ithewever hard to identify proper subproblems due to the aperl
between theV atoms in the image approximation.

We propose here a parametric free optimization algorithestonate the transformatidi® iteratively, by changing each of
the N atom parameters, by one increment in the parameter space. We focus on thehsspace that is given by perturbing
the translational components andt, of each atom position by one unit, i.e,,+1, t, £ 1 for each atomy;. We first initialize



the algorithm with zero motion, i.e., the set of atofws, } generated frond; are used in the first iteration;, = v, Vk where
1 < k < N, and the search space $8 is formed using

SO :{(Wiv’yéa ---aﬁ/llqa 7’7§V)|ﬁ/l/c = (t]; +]lat§ +j279k1 S];a 85)1

ko e (14)
1§k§N131732€Za_1§31732Sl}CS'

We then calculate the enerdy in Eq. (4) for the set ofV atoms in the search spagg. It can be easily shown that the size
of the search spacg? is at most8\V + 1, i.e., |S°] = 8N + 1 . Once the energ¥ is computed for atoms i$°, we select
the parameterd® = (1,19, ...,7%) corresponding to the minimum energy. Then a new search sf'a¢eformed similarly

to the definition in Eq. (14) with the current parameter dolut\® as reference. Such a procedure is repeated by successively
constructing a new search spasé on the solutionA’~! from the previous iteration of the algorithm. The algoritistops
when convergence is attained (or till it reaches maximum emof iterations). The proposed algorithm is guaranteed to
converge. LetE, be the initial energy, i.e., the energy corresponding too$gtarametersy;, = v, Vk wherel < k < N. If

E; is the minimal energy computed at stepf the algorithm, we clearly hav&; < E; ;, as the search spa¥ includes

the best set of parameteAd—! from the previous iterations. The energy decreases at ategtion till it reaches a local or
global minimaF,,;,. The proposed optimization scheme thus converges andda®w (suboptimal) solution with tractable
computational complexity to the estimation of correlatlmetween images. The algorithm which bears some resembtance
a gradient descent solution is summarized in Algorithm hakfy, the data cost in th&'" line of the Algorithm 1 can be
replaced by the robust data cost tefty as given in Eq. (11). We show later that the performance ofsohieme can be
improved by using the robust data cost teffn.

Algorithm 1 Correlation estimation
1: Input N, a1, K, dty, oty

2: Generate{g,, } from I; s.t. ) = Y0 ¢ g+,

3: Initialize A=! = {y;}

4: repeat

5: Generate index search spagebased omAi—! (with Eq. (14))
6: for all Parameter vectora in S* do

7:  Compute the motion field

8. Compute the data teri;(A) with Eq. (9)

9:  Compute the smoothness terdm(A) with Eq. (12)

10: Compute the global energhf(A) = E4(A) + a3 Es(A)

11: end for

=
N

: A' = argminycgi E(A)
: Until convergence is reached

=
w

V. CONSISTENT RECONSTRUCTION BY WARPING

Once the motion or disparity between the correlated imagssheen estimated as described in the previous section, one
can simply reconstruct the second image by warping theerberimage the reference viel using the estimated motion or
disparity field. The resulting approximatida is however not necessarily consistent with the quantizedsamementg,. In
other words, the measurements corresponding to the pimjest the imagel, on the sensing matri® are not necessarily
equal togs. This error might even be quite significant.

We propose to add a consistency tefinin the energy model described in Eq. (4) in order to force tascy in the image
reconstruction through warping with operaitdi, using the computed motion (or disparity) field (see Fig. t)particular, the
additional cost functiotk’, is defined as thg norm error between the quantized measurements generatedtfe reconstructed
imagefg = WA(fl) and the measuremenjs. The cost functionF; is written as

E(A) =] g2 — QW] ll2=| 92 — QWi (1)) |2 (15)
where Q is the quantizer. It should be noted that when the measursnaea not quantized the consistency term reads
Ey(A) =] y2 = ¢Wa (1) 2 (16)

We then merge the three cost functiafig, £ and F; with regularization constants; andas in order to form a new energy
model E'r for consistent reconstruction expressed as

ER(A) = Ed(A) + a1 Ey (A) + agEt(A). (17)

In order to solve Eq. (17) or equivalently to estimate theelation model that leads to consistent reconstructionpme@ose
to use the same optimization method as the one describedctio®dV-D. We modify the objective functions to include the



Fig. 2. Plastic image set (a) View point I;§ (b) View point 2 (2)

consistency term, and we iteratively look for the best atparameters sets by adapting successively the transladiamgters.
Again, the algorithm is guaranteed to converge to a locall@ba minimum with a moderate computational complexityeTh
consistent reconstruction algorithm is summarized in At 2. Finally, the data cost term in tig" line of Algorithm 2
can be replaced with robust data teffij to provide robustness to quantization errors.

Algorithm 2 Consistent reconstruction
1: Input N, a1, K, dty, oty

2: Generate{g,, } from I) s.t. ) = Y0 ¢ g+,

3: Initialize A1 = {y;}

4: repeat

5: Generate index search spagebased omAi~! (with Eq. (14))
6: for all Parameter vectors in S do

7:  Compute the motion field

8. Warp the reference imagg using motion fieId,WA(fl)

9:  Compute the data teri;(A) with Eq. (9)

10: Compute the smoothness ted (A) with Eq. (12)

11:  Compute the consistency terfy (A) with Eqg. (15)

12 Compute the global energr(A) = Eq(A) + a1 Es(A) + a2 Er(A)
13: end for

14: A' = argminpcg: Er(A)

15: Until convergence is reached

We discuss now briefly the computational complexity of thgoathm for image reconstruction, which can basically be
divided into two stages. The first stage finds the most promifeatures in the reference image using sparse approxingati
in a structured dictionary, and the second stage estimh&sransformation for all the features in the reference inbhy
solving a regularized optimization problem. Even if the ater can afford computational complexity in our framewds&th
stages might be appear complex. However, the computat@mmplexity of the decoder can be reduced significantly using
a tree-structured dictionary for the approximation of teéerence image [33]. Alternatively, a block-based diciigncan
be used, and transformations are then computed for eack. xperiments show however that this comes at a price of a
performance penalty in the reconstruction quality. It saclthat the decoding scheme proposed here offers highifigxitith
a tradeoff between complexity and performance. For exangule might decide to use the simple data cBgteven when
the measurements are quantized. This leads to a simplemsdbet to reduced reconstruction quality. Overall, our famrk
offers a very simple encoding stage with image acquisitiaseld on random linear projections and the computationalelour
is shifted to a joint decoder that can trade-off complexityg gerformance.

VI. EXPERIMENTAL RESULTS
A. Overview

We analyze the performance of the correlation estimatioth iamage reconstruction algorithms in multi-view imaging
and distributed video coding applications. The images amtuwred by random linear projections using the scrambledkbl
Hadamard transform with block size 8 [9]. The reference ieniaghen reconstructed as the solution df a /> regularization
problem using a GPSR algorithm [17]. In order to compute asgpapproximation of the reference image at decoder, we use
a dictionary that is constructed using two generating fionst as explained in [31]. The first one consists of 2D Gassi
functions to capture low frequency components. The secandtibn represents Gaussian in one direction, and the decon
derivative of 2D gaussian in the orthogonal direction to tia@ture edges. The discrete parameters of the functiorisein t
dictionary are chosen as follows. The translation pararseieandt, take any positive value and cover the full width and
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Fig. 3. Sawtooth image set (a) View point L; { (b) View point 5 (2)

QT 1
' |
(0)

(a)

Fig. 4. Plastic image set (a) Ground truth disparity fiBli* between views 1 and 2 (b) Disparity field with Alg. 1 (c) Errorthe depth map with Alg. 1
(DE = 0.10). (d) Disparity field with Alg. 2 (d) Error in the dépmap with Alg. 2 (DE = 0.05). [8870 quantized measurements]

(c) (d) (e)

height of the image. Ten rotation parameters are used bet@endr, with incrementsr/18. Five scaling parameters are
equidistributed in the logarithmic scale fromto N, /8 vertically, andl to N»/9.77 horizontally, whereN; x N is the size
of the image.

The measurementg corresponding to the second imafieis computed with the same sensing mattixas the reference
image. The measuremengs are quantized a uniform quantizer, and the bit rate is coatplily encoding the quantized
measurements using an Arithmetic coder. We report in thiSsethe performance of the correlation estimation andyaea
the influence of the measurement consistency term in theggmamimization constraint. We also analyze the influence of
the quantization of the measurements for the second imadgen We study the reconstruction results as a function of the
measurement rate or the coding rate of the second image. $secampare the performance of our disparity estimation
algorithms with stochastic optimization algorithm basedsimultaneous perturbation (SPSA) [34]. Finally, we corephe
rate-distortion performance in the coding of the secondyen@a state-of-the-art solutions for independent or digtdd image
coding.

B. Multi-view image coding

We first study the performance of our distributed image regméation algorithms in a multi-view imaging framework. We
use two image datasets, namehastic (see Fig. 2) an@awtooth (see Fig. 3}. These datasets have been captured by a camera
array where the different viewpoints are arranged unifgrartanged on a line. As this corresponds to translating #meeca
along one of the image coordinate axis, the disparity estimgroblem becomes a one-dimensional search problemhand t
smoothness term in Eq. (8) is simplified accordingly. Thegesare downsampled to a resolutibht x 176 using bilinear
filters. We carry out experiments using the views 1 and 5 fant8ath image set, and views 1 and 2 for Plastic image set.
The view point 1 is selected as the reference imageUnless stated differently, it is encoded such that theityuef I; is

1These image sets are available in http://vision.middigbdu/stereo/data/

'I" "' YW "

(a) (b) (c) (d) (e)

Fig. 5. Sawtooth image set (a) Ground truth disparity fisi between views 1 and 5 (b) Disparity field with Alg. 1 (c) Errarthe depth map with Alg.
1 (DE = 0.092). (d) Disparity field with Alg. 2 (d) Error in theedth map with Alg. 2 (DE = 0.047). [8870 quantized measurdsjen
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(a)MSE : 102 (b)MSE : 558 (c)MSE : 44 (d)MSE : 633

Fig. 6. Comparison of the warped imagew.r.t. I> and; for the Plastic image set: (d)— |2 — I2| with Alg. 1 (b) 1—|I> — I | with Alg. 1 (c) 1— |2 — I2|
with Alg. 2 (d) 1 — |I2 — I1| with Alg. 2. [2534 quantized linear measurements].

approximately 33 dB w.r.t/;. Matching pursuit is then carried out di by approximation withV = 30 and N = 60 atoms
for Plastic and Sawtooth image set, respectively. The mieasents are generally quantized using a 2-bit uniform quentAt
decoder, the search for the geometric transformatihdetween images is carried out along the translational compts,,
with window sizedt, = 4 pixels, and no search is consider along the vertical dwaciie.,dt, = 0. Unless stated explicitly
we use the data codi, given in Eq. (9) in Algorithms 1 and 2.

We first study the performance of the estimated disparityrmftion and we show in Fig. 4 and Fig. 5 the estimated digpari
field m" from 8870 quantized measurements (i.e., a measurement rate of 35%ptio image sets respectively. The ground
truth M" is given in Fig. 4(a) and Fig. 5(a) respectively. The transtation F* is estimated using the procedure described in
Algorithm 1, and the resulting dense disparity fields anestitated in Fig. 4(b) and Fig. 5(b). The Algorithm 1 gives ado
estimation of the disparity map; in particular the dispaxalue is correctly estimated in the regions with texturedepth
discontinuity. We could also observe that the estimationhef disparity field is however less precise in smooth regass
expected from feature-based methods. Fortunately endhghyrong estimation of the disparity value correspondmghie
smooth region in the images does not significantly affectviieped or predicted image quality [35]. Fig. 4(c) and Fige)5(
confirm such a distribution of the disparity estimation eraad illustrate by white pixels the positions where theraation
error is larger than one. The disparity error DE is computeiivben the estimated disparity fietd” and ground trutiM” as
DE =33, (s, {/M"(z) —m"(z)| > 1} whereZ represents the pixel resolution of the image [35]. We cantisaethe
error in the disparity field is relatively high close the eslgince crisp discontinuities cannot be accurately cagtdue to the
scale and smoothness of the atoms in the chosen dictionlaeydiBparity information estimated by Algorithm 2 is preseh
in Fig. 4(d) and Fig. 5(d) and the corresponding errors in B{g) and Fig. 5(e). We see that the addition of the consigten
term E; in the correlation estimation algorithm clearly improvas fperformance.

We propose a different illustration of the disparity estiima performance in Fig. 6. The dense disparity fiad is used to
warp the reference image and the image thus reconstructed is representeld byve estimate the correlation between images
in the Plastic dataset with Alg. 1 usir@$34 quantized measurements (i.e., a measurement rate of 1086)h&M warp the
reference image to reconstruct an approximafipnf the second image. We show in Fig. 6(a) and (b) the compatisbveen
I, and respectivelyl, and I;, where white pixels represent a correct reconstructiois tlear thatl, is closer tol, than
I, which confirms that the proposed scheme capture the ctiorelaetween the images efficiently. The same comparisons
are given in Fig. 6(c) and (d) when the Alg. 2 is used for catieh estimation. The results confirm that the addition @f th
consistency term again provides a more accurate dispagity $ince the warped imagde gets quite close to the target image
Is.

We study now the rate-distortion performance of the progasgorithms for the reconstruction of the imagein Fig. 7
for both datasets. We show the performance of the recotistnugy warping the reference image according to the caicgla
computed by Alg. 1 (without the measurement consistenay,tee., a2 = 0 in Eq. (17)) and Alg. 2. We compare the rate-
distortion performance to a distributed coding solutiorS@) based on LDPC encoding of the DCT coefficients, where the
disparity field is estimated at the decoder using Expectexifiiaation (EM) principles [4]. The scheme is denotedasparity
learning in the figures. Then, in order to demonstrate the benefit ofngdac dictionaries, we also propose a scheme denoted
as block-based that adaptively constructs the dictionary using blocks aicpes in the reference image [3]. As described in
[3], we construct a dictionary in the joint decoder from theference imagd, using8 x 8 blocks. The search window
size isédt, = 4 pixels along the horizontal direction. We then used therojgtition scheme described in Alg. 2 to select the
best block from the adaptive dictionary. In order to have in damparison, we encode the reference imdgesimilarly for
both schemesOisparity learning and block-based) with a quality of 33 dB (see Section Ill). Finally, we alsoopide the
performance of a standard JPEG-2000 independent encoflithge amagel,. We first see by comparing the two proposed
algorithms that the measurement consistency term greaydves the decoding quality. Then, the results confirm thet
proposed algorithms unsurprisingly outperform indepenhaeding based on JPEG-2000, which outlines the benefitheof t
use of correlation in the decoding of compressed correliatedes. At high rates, the performance of the proposed itiguos
however tends to saturate as our model mostly handles theajgoand the correlation between images, but it is not able t
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Fig. 7. Comparison of the RD performance of the proposedmseha.r.t. DSC scheme [4], block based scheme [3] and indgmérmbding solutions based
on JPEG-2000. (a) Sawtooth image set (b) Plastic image set.

efficiently handle the fine details or texture in the scene wuthe choice of dictionary functions. From Fig. 7(a) it ieith
clear that the reconstruction based on Alg. 1 outperforrasdBC coding scheme based on EM principles, for the Sawtooth
image set. On the other hand for the Plastic image set (see/ ) our scheme performs very similar to the DSC scheme
till rate 0.2 bpp, and after that our scheme performs arou 2ower than the DSC scheme. This is because, the Plastic
scene mainly contains low frequency components or smogibne, and in such regions it is hard to solve the correspurale
problem or equivalently the estimation of the disparity][33owever, when consistency with measurements is enfomted
Alg. 2, we outperform DSC scheme based on disparity learnimdpoth datasets. Finally, the experimental results alswsh
that our schemes outperform the scheme based on block-dagemhary mainly because of the richer representatiorhef t
geometry and local transformations with the structurediahary.

We further evaluate the performance of our constructivapater search strategy in Alg. 2. We compare its performance
to a global stochastic optimization method on SPSA [34] imte of reconstruction performance and speed of convergence
We select a global optimization based on SPSA as it perforttebthan genetic algorithm [36], [37], and also gives drett
convergence rate than simulated annealing [37], [38],.[SBhilar to gradient descent algorithm, SPSA is an iteeadilgorithm
that starts with an initial guesg, = v, Vk wherel < k < N, and computes an approximate noisy value of the gradient
of the energy functiorE at the current solutiofty;, 75, ..., vy), and updates the current solution, 5, ..., vy ). Maryak and
Chin have studied the usage of SPSA as a global optimizatidrpeoved that SPSA under certain conditions can converge in
probability to the global minima among multiple local mirar{86]. We use a discrete SPSA algorithm where the gain seguen
used in the gradient update is constant to the nearest mi#Qje [41]. We examined the performance of the Sawtoothgena
set by settingA = 0, 82 = 0.95, a = 0.2 and the sequence is fixed to a constant = 1, and the number of iterations,
iter = 2000 in the SPSA algorithm, based on trial and error tests. We ewenpxperimentally the speed of convergence
between Alg. 2 and the SPSA algorithm. Fig. 8 shows the enefrglye cost function as a function of the number of iteration
in the disparity search algorithm for Sawtooth image set@asnrement rat&’. It is clear from the plot that Alg. 2 converges
faster than the SPSA algorithm. Even if this is not a formahparison in terms of computational complexity, it showst tha
parameter-free constructive algorithm fastly reachescal lminima, while global stochastic optimization may reacbhetter
solution at the price of more computation and propser gtof multiple parameters. We also compare the RD performanc
of the reconstructed imagle between the proposed and SPSA optimization algorithms r@tenstruction is done by warping
the reference image based on the correlation estimatioadbas Alg. 2 and SPSA, respectively. Fig. 9 shows that SPSA
performs slightly better than the proposed scheme due tdterlestimation of the correlation. On the other hand theopsed
scheme convergences faster than the SPSA algorithm, wkéads Ito a trade-off between the speed of convergence and the
RD performance. Similar observations have been made inxqerenents for Plastic image set.

We now study the performance of Alg. 2 in different settingdérms of camera distances, quality of the reference image
and quantization of the measurements. We first illustragerdite-distortion performance of the proposed scheme ftareint
images captured at various distances from the referencereatm particular, we study the decoding quality of the iegmgt
viewpoints 3 and 5 in the Sawtooth dataset when the viewdoisitused as the reference. Fig. 10 confirms that the perfarenan
is better when the correlation between images is strongerréference image is closer to viewpoint 3 than viewpoini/&)
further see that the coding performance is better than a-sfahe-art independent coding with JPEG-2000 or DSC dbase
disparity learning [4] when the correlation between imaigelsigh. We further study the influence of the quality of refece
image; on the reconstruction performance. We use Alg. 2 to recoasfs by warping when the reference image has been
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Fig. 8. Comparison of the speed of convergence between Adgd2he SPSA optimization algorithm in the Sawtooth Image®ee experiments are carried
out using SPSA parametert = 0, 82 = 0.95, and the sequence is fixed to a constant = 1. [Measurement rate 8%).
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Fig. 9. Comparison of the rate-distortion performance onstructingl> by warping for Alg. 2 and the SPSA optimization algorithm e tSawtooth Image
set. The experiments are carried out using SPSA paramdters), 5> = 0.95, and the sequencg is fixed to a constant = 1.

encoded at different qualities (i.e., different measunetmates). Fig. 11 shows that the reconstruction qudlitimproves with
the quality of the reference image, as expected. While the error in the disparity estimationdsdramatically reduced by
improved reference quality the warping stage permits taideomore details in the representationlefwhen the reference is
of better quality. Finally, we show the influence of the quzatton rate on the rate-distortion performance in the nstiction

of I, with Alg. 2. We have quantized the measuremehntsiniformly with a number of bits between 2 and 8 bits. While the
quality of the correlation estimation degrades when the emof bits reduces, it is largely compensated by the reduncti
in bit-rate in the rate-distortion performance, as confiirbg Fig. 12. This means that the proposed correlation estimas
relatively robust to quantization so that it is possible timia good rate-distortion performance by drastic quatitin of the
measurements.

Finally, we study the improvement offered by the robust datat £,; from Eq. (11) in Alg. 1 and Alg. 2 when the
measurements have been compressed with a 2-bit uniforntigeiaand an Arithmetic coder. We use the optimization tozlb
based on CVX in order to solve the optimization problem described in Bf)(Fig. 13 compares the modified Algorithms 1
and 2 with DSC based on disparity learning [4], a joint recautdion with a block-based dictionary [3] and independmting
with JPEG-2000. The relative performance of the differaritesnes are maintained with the robust data dast However,
the robust data cost permits to improve the quality of thegien& around1 dB especially at lower measurement rates. This
gain can be observed by comparing the rate-distortion pednce to the results given in Fig. 7 where the algorithmsato n
use the robust data cost term. For example, by comparing7fij.and Fig. 13(b) we could see that for Plastic image set at
bit-rate 0.6 bpp, the Alg. 2 improves quality of image(approximately) from29 dB to 30 dB when robust data term is used.

2available in http://cvxr.com/cvx/
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Fig. 11. Rate-distortion performance with Alg. 2 for recwnsting I» as a function of the quality of the reference imalge(resp. 28 dB, 33 dB and 38 dB)
in the Plastic image set.
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C. Digtributed video coding

We study now the performance of the proposed algorithms siribduted video coding applications. The experiments are
similar to the multi-view imaging framework above, excepattthe correlation estimation relates to motion estinmatitstead
of disparity computation. We built the image set using thafes 2 and 3 of the Foreman sequence. The frame 2 is selected
as the reference imagk, and is approximated to a quality of approximately dB in the joint decoder. We used the same
dictionary described in the previous section for approxinwathe imagel;. For this particular data set, we approximdate
using N = 60 atoms. The measuremenfs are compressed using a two-bit uniform quantizer and arhietic coder. The
search window size ist, = dt, = 4 pixels for both the translational componentsandt,.

S, ™
f = £ ¥ f =
= 0 vl
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Fig. 14. Comparison of the warped jmajg w.rt. I and I; for the Foreman image set: (4)— |Io — Io| with Alg. 1 (b) 1 — |I2 — I1| with Alg. 1
(©) 1 — |I2 — I2| with Alg. 2 (d) 1 — |I2 — I1| with Alg. 2. [3801 quantized linear measurements].

Fig. 14 first illustrates the accuracy of the motion inforimatcomputed in Alg. 1 and Alg. 2 with 3801 quantized
measurements (i.e., 15% measurement rate). It comparelntige [, reconstructed by warping the reference image, to
respectively the original imagds and ;. We see that the warped image is closei4dhan 71, which confirms the benefit of
the motion estimation in the joint decoder. We further obsdhat the error denoted by black pixels is reduced sigmifigza
in the face region due to the good estimation of the motionl fielsmooth area. Similarly to the multi-view experiments t
motion around sharp edges is however not perfectly captduedto choice of the dictionary that does not include vern thi
geometrical patterns. Finally, we see that Alg. 2 providégiter estimation due to the benefit of the measurementstensy
term E;.

We further study the rate-distortion performance of theppeed algorithms in the reconstruction of the imagéNe compare
the performance to different state-of-the-art solutiomglistributed or joint video coding. First, we provide therfpemance
of a DSC scheme (i.eMotion learning) based on motion learning [5], using the similar experirabsetup demonstrated
in the previous section and a reference imdgef 45 dB for a fair comparison. In addition, we implement ARjwith a
different dictionary that is built on blocks of the referenimage, similarly to [3] (denoted &ock-based in the figures). We
also compare to an independent encoding of the inTageith JPEG-2000. For the sake of completeness, we furthesigeo
results of a joint video encoding solution based on H.26s it IP encoding structure (i.e., a GOP size of 2). We again
encode the reference | framé ) at a quality of 45 dB, and we vary the quantization paramfetethe P frame [3) to build
the rate-distortion characteristics. We consider twoedéht settings in the H.264 motion estimation, which is genied with
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Fig. 15. Rate-distortion performance in reconstructing second imagéd, in Foreman data set with the Alg. 1 and Alg. 2 from measuresgontized on
2 bits. Comparisons with state-of-the-art coding solwiam joint and distributed video coding. The proposed atbars are implement without (a) and with
(b) robust data cost term.

variable and fixed macroblock size. Fig. 15 illustrates tite-distortion performance of the different schemes amdircons the
results that have been observed in the previous secticst, ®ie see that the measurement consistency grm Alg. 2 greatly
improved the performance of our motion estimation alganitiSimilarly, the benefit of the robust data term in our altions

is mostly visible at low rate, when we compare Fig. 15 (a) amgl E5 (b). Then, it is clear that our proposed solutions
outperform independent coding since it exploits the catie@h between images. It also outperforms DSC solution base
motion learning due a better model of the geometric coiitlaiThe correlation estimation with block-based dictignia less
efficient than the estimation with a dictionary of geome#iioms. Finally, we see that the joint encoding with H.264léady
better than all distributed coding solutions. However, algiorithm is able to compete at low bit rate with H.264 basedo
fixed block-size motion estimation, which is certainly atenesting and promising result.

VII. CONCLUSIONS

In this paper we have presented a framework for the diswtbuepresentation of image pairs with quantized linear
measurements, along with joint reconstruction algorithinas exploit the geometrical correlation between images.have a
proposed a correlation model based on local transformatibigeometric patterns that are present in the sparse esia¢ion
of images. The motion or disparity information in distriedtvideo coding and respectively multi-view imaging camthe
estimated from the pairs of geometric features in differareiges. We propose a regularized optimization problem deioto
identify the geometrical transformations that result inosthh motion or disparity fields between a reference and aigtezt
image. We have proposed a low complexity algorithms to thieetation estimation problem, which offers an effectivedie-off
between complexity and accuracy of the solution. In addjtiee have proposed an improved reconstruction solutiomiage
warping, where the image transformations are estimatedderdo be consistent with the compressed measurementg in th
predicted image. Experimental results demonstrate tegitbposed methodology provides a good estimation of dasparity
or motion fields in different natural image datasets. We alsow that our geometry-based correlation model is moreiefic
than block-based correlation models. Finally, the coasisteconstruction constraints prove to offer improvednstruction
quality, such that the proposed algorithm outperform J2BG and DSC schemes in terms of rate-distortion performanc
certainly provides an interesting alternative to disti@slimage processing applications due to its effective éamork based
on geometry, which is the main characteristic of naturalgesa
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