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Abstract—Progress in mobile wireless technology has resulted
in the increased use of mobile devices to store and manage
users’ personal schedules. Users also access popular context-
based services, typically provided by third-party providers, by
using these devices for social networking, dating and activity-
partner searching applications. Very often, these applications
need to determine common availabilities among a set of user
schedules. The privacy of the scheduling operation is paramount
to the success of such applications, as often users do not want to
share their personal schedules with other users or third-parties.
Previous research has resulted in solutions that provide privacy
guarantees, but they are either too complex or do not fit well in
the popular user-provider operational model. In this paper, we
propose practical and privacy-preserving solutions to the server-
based scheduling problem. Our novel algorithms take advantage
of the homomorphic properties of well-known cryptosystems in
order to privately compute common user availabilities. We also
formally outline the privacy requirements in such scheduling ap-
plications and we implement our solutions on real mobile devices.
The experimental measurements and analytical results show that
the proposed solutions not only satisfy the privacy properties but
also fare better, in regard to computation and communication
efficiency, compared to other well-known solutions.

Index Terms—Activity scheduling, Client-server architecture,
Homomorphic encryption

I. INTRODUCTION

Users rely increasingly on mobile devices such as smart-
phones and netbooks to access information while on the move
[7], and very often they use the same equipment to store
personal information about their daily schedules and activities
[2]. Although many context and data sharing applications
such as Google Maps, Facebook and Twitter are popular,
activity management and synchronization applications are also
gaining more and more attention [4]. Applications such as
Microsoft Outlook [5], Apple iCal [1] and Nokia Ovi [6]
are available on mobile devices and they all offer time and
activity management services. One desirable feature in such
applications is activity scheduling: colleagues can schedule

meetings at common available time slots, groups of friends
can organize parties on weekends and people unbeknownst
to each other can engage in dating based on their common
free/busy hours.

One concern in such scheduling applications is that users
would prefer not to share all personal information with ev-
eryone. For example, they may only want to share common
availabilities, but not details about other records. They may
also have reservations about sharing personal information with
third-party service providers. Therefore, privacy of personal in-
formation, vis-à-vis service providers and peers, is paramount
for the success of such scheduling applications. For instance,
a well-known service that allows users to find all common
availabilities is Doodle [3]. However, Doodle does not provide
privacy: Each user and the doodle server see the free/busy
state of every user, and the private information that is leaked
to all users and the central server is well beyond just the
common available slots. Cultural, religious and many other
private information can be easily inferred from availability
patterns. Even if pseudonyms are used instead of real names,
the server and all peers still know what time slots are available
for everyone and how many users are free or busy.

Privacy-preserving scheduling problems have been exten-
sively studied in the past by researchers from the theoretical
perspective, for instance, by modeling them as set intersection
problems [19], [10], distributed constraint satisfaction prob-
lems [26], [27], [23], [24], secure multi-party computation
problems [17], [11] and by framing them in the e-voting
context [18]. Traditionally, there are two possible approaches
to the scheduling problems: distributed and centralized. Dis-
tributed solutions do not rely on a third-party provider (and
thus they prevent revealing information to the provider), but
have several limitations. For instance, due to the frequent
and intensive message exchanges among peers, scalability and
computational complexity is an issue when dealing with a
large number of (resource-limited) mobile devices; moreover,
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the need of sequencing among peers and the unpredictability
of scheduling results (if a user interrupts the protocol) are
two additional drawbacks. The centralized approaches, such as
cloud-based computing, are better in terms of scalability, com-
munication cost, complexity, synchronization and resilience
but usually do not provide privacy, because users are required
to transmit their personal information to the provider.

Our goal is to provide simple, practical and feasible solu-
tions to the scheduling problem which, in addition to ensur-
ing reasonable privacy guarantees, are easily integrated with
existing operational models and mobile service providers. In
this paper, we follow a centralized approach for addressing
the problem of efficient and privacy-preserving scheduling. In
the proposed schemes, users are able to determine common
time slots without revealing any other information to either
the other participants or to the central scheduling server.
Our specific contributions are as follows. First, by building
on the work of authors in related domains, we formally
define the basic privacy requirements for users in a scheduling
scenario. Second, we propose three novel privacy-preserving
scheduling algorithms that take advantage of the homomorphic
properties of asymmetric cryptosystems. Third, we implement
the proposed algorithms on real mobile devices and perform
extensive experiments using these devices in order to verify
their computation and communication overheads. Finally, we
explain how the system can be further made resilient to
collusion and other well-known active attacks. To the best of
our knowledge, we believe this is the first implementation and
extensive testing of privacy-preserving scheduling schemes on
commercial mobile devices.

The paper is organized as follows. We introduce the state-
of-the-art in Section II and the system model and problem
definition in Section III. We formalize the privacy require-
ments for the scheduling problem in Section IV and outline
our algorithms in sections V, VI and VII. We present a
comparative analysis and implementation results in Section
VIII, and we discuss the extensions of our schemes in Section
IX. We conclude the paper in Section X.

II. STATE OF THE ART

In the literature, the four most relevant bodies of work that
address privacy in scheduling or similar scenarios are based on
techniques from private set-intersection [19], [10], distributed
constraint satisfaction [26], [27], [23], [24], secure multi-party
computation [17], [11] and e-voting [18]. Hereafter, we review
the most relevant aspects of such approaches.

In the private set-intersection domain, Kissner and Song
[19] use mathematic properties of polynomials to design
privacy-preserving union, intersection and element reduc-
tion operations on private multisets by leveraging on the
Goldwasser-Micali homomorphic encryption scheme [16]. De
Cristofaro and Tsudik [10] provide efficient variations of
private-set intersection protocols and present a comparison
in terms of computational and communication complexity,
adversarial model and privacy. The authors also give informal
definitions of client and server privacy. However, PSI ap-
proaches are generally distributed, and an efficient extension to

an n-party protocol is challenging. In the meeting scheduling
scenario, for instance, a trivial extension of the 2-party PSI
to n parties (by running a 2-party protocol between each pair
of users) would undermine the privacy of users’ schedules
as well; knowing the personal availability and the aggregate
availability is sufficient to infer the other party’s schedule.

Distributed constraint satisfaction approaches were investi-
gated by Wallace and Freuder [26]: they study the tradeoff
between privacy and efficiency and show that the information
that entities learn during the negotiation of a common schedule
has, in some cases, a tremendous impact on privacy. Details
of an accept/reject response are exploited by intelligent agents
in order to successfully infer the availabilities of other peers
involved in the scheduling process. Similarly, Zunino and
Campo [28] design a scheduling system in which entities learn
and refine their knowledge about user preferences by using a
Bayesian network. Yokoo et al. [27] use secret sharing among
third-party servers in order to determine a suitable agreement
among entities in a collusion-resistant way.

Solutions based on secure multi-party computation were
investigated in [11] and a practical scheme was proposed in
[17]. Herlea et al. [17], for instance, design and evaluate a
distributed secure scheduling protocol by relying on proper-
ties of the XOR operation over binary values, in which all
users contribute to the secrecy of individual schedules while
ensuring the correctness of the results. Although not a pure e-
voting scheme, Kellerman and Böhme [18] proposed an event
scheduling protocol that inherits several security and privacy
requirements from the e-voting context. However, a formal
study of such properties and experimental performance results
are missing in their work.

In contrast to most of the above solutions, we take a more
centralized approach (with a single third-party server) for the
privacy-preserving scheduling problem. Our solutions over-
come communication and computational complexities intrinsic
to most distributed approaches discussed above, as well as
ensure that no private information (other than the resulting
common availabilities) is exposed. Moreover, our protocols
can easily fit into today’s popular provider-consumer service
architectures without incurring a huge communication cost on
the service-provider.

III. SYSTEM MODEL

In this section, we outline the network and adversary model
and formally define the scheduling problem.

A. Network Model

We assume that there is a total of N users ui, i ∈ {1 . . . N},
that want to schedule an activity (meeting, party) at a common
available time slot. Each user has a private schedule xi
represented by a string of bits xi = [bi,1, bi,2, . . . , bi,m], where
each bit bi,j ∈ {0, 1} expresses the availability of user ui in a
particular time slot j; bi,j = 1 means that user ui is available
at time slot j, whereas bi,j = 0 means that the user is not
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available.1 We assume that the length m of xi, i.e. the time
horizon of the individual schedules, is constant for all users.
The value of m can either be predecided by the participants
or fixed by the application.

Moreover, we assume that each user’s device is able to
perform public key cryptographic operations and that there
is a semi-honest [15] (as detailed in Section III-B) third-party
performing the scheduling computations. The latter must be
able to communicate with the users and run public key cryp-
tographic functions as well. For instance, a common public-
key infrastructure using the RSA [22] cryptosystem could be
employed. All communications between a user and the third-
party server will be encrypted with the latter’s public key for
the purposes of confidentiality of the schedules with respect to
other users, for authentication and integrity protection. Thus,
all users know the public key of the server but nobody, except
the server, knows the corresponding private key. For simplicity
of exposition, in our algorithms we do not explicitly show the
cryptographic operations involving the server’s public/private
key.

We assume that the N users share a common secret, which
is used to derive (i) a fresh common key pair (KP ,Ks), where
Kp is the public key and Ks is the private key, and (ii) a fresh
bit permutation function σ = [σ1, . . . , σm] before initiating the
scheduling operation. This could be achieved, for example,
through a secure credential establishment protocol [8], [9],
[20]. Thus, these keys and permutations are derived and known
to each member of the group but not to the server. We refer
to the encryption of a message M with the group public
key as EKP ,r(M) = C, where r is a random integer that
is eventually needed, and to the decryption of the encrypted
message C as DKs(C) =M . The permutation σ, although not
strictly required, is used in order to randomize the order of bits
sent to the server. This prevents the server from gaining any
knowledge about which time slot is being evaluated in each
computation.

B. Adversarial Model

Server: The third-party server is assumed to execute the
scheduling protocols correctly, but it tries to learn any in-
formation it can from the input it gets by the users and
the computations it performs. The server can accumulate the
knowledge about users in each computation it performs. We
refer to this adversarial behavior as semi-honest. More details
about the semi-honest model can be found in [15].

Users: Users also want to learn private information about
other users’ schedules and, in addition to the passive eaves-
dropping attacks, users could act maliciously by generating
fake users, manipulating their own schedules or by colluding
with other users or the scheduling server. Initially, we assume
that users are honest but curious (or semi-honest), and after-

1In general, however, users may assign not only a binary value (available
or busy) for each time slot, but they could express preferences [13], [14]. For
example, bi,j ∈ 0, . . . , 10 where bi,j = 0 means that user ui is busy in the
time slot j, whereas its preference would increase if bi,j ≥ 1. For simplicity
of exposition, we assume a binary value here. We later discuss a more general
case with non-binary costs in Section IX.

wards we present more active (or malicious) types of user
adversaries in Section IX-B.

Although the semi-honest adversarial model is sufficient in
most practical settings, considering the commercial interest of
service providers and the mutual trust among participants, it
does not include possible malicious behavior by the server
or users. For instance, the server could collude with the
participants or generate fake participants in order to obtain
private information of the participants. Similarly, users might
collude with other users or try to maliciously modify their
schedules in order to disrupt the execution of the protocol or
to gain information about other users’ schedules. We address
such active attacks by both users and server in Section IX-B,
and we describe how such attacks can be thwarted by using
existing cryptographic mechanisms.

C. Centralized Scheduling Algorithm
Given a group of N users ui, i ∈ {1 . . . N}, each with

private schedules xi = [bi,1, . . . , bi,m], the scheduling problem
is to find time slots j such that ∀i = 1 . . . N , bi,j = 1, i.e.
all users are available in the same time slot j. We refer to an
algorithm that solves the scheduling problem as a scheduling
algorithm. Formally, a scheduling algorithm A accepts the
following inputs and produces the respective outputs:
• Input: a transformation of individual schedules

f(bi,1, . . . , bi,m), ∀i = 1 . . . N.

where f is a transformation function such that it is hard
(success with only a negligible probability) to determine
the input of the function by just observing the output.

• Output: a function g(Y ), Y = y1, . . . , yj , . . . , ym where:

yj =

{
Y ES if bi,j = 1, ∀i = 1 . . . N

NO otherwise

such that each user is able to compute Y = g−1(g(Y )) using
its local data. As we will see later on, we use the well-known
cryptosytems ElGamal [12], Paillier [21] and Goldwasser-
Micali [16] as our transformation and output functions f and
g.

A centralized scheduling process works as follows. Each
user ui, i ∈ {1 . . . N} computes fi = f(bi,1, . . . , bi,m) and
sends it to the third-party server, which then executes the
scheduling algorithm A on the received inputs fi, ∀i, and
produces g(Y ) = A(f1, . . . , fN ). Finally, the server sends
g(Y ) to each user who then obtains Y = g−1(g(Y )). Figure
1 shows one execution of a generic centralized scheduling
process.

IV. PRIVACY DEFINITIONS

As mentioned earlier, in this paper we follow a centralized
approach to solve the privacy-preserving scheduling problem.
In other words, we assume that a third-party, given users’ indi-
vidual private schedules, computes their common availabilities
(time slots). /The privacy provided by a centralized scheduling
algorithm can be defined in terms of the following two
components: a) User-privacy and b) Server-privacy. Hereafter,
we formally define each of these components. The symbols
used throughout the paper are summarized in Table I.
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Figure 1. A generic scheduling protocol. Users first send their transformed schedules fi to the server, which then performs the scheduling algorithm A on
the received data and sends the encrypted output g(Y ) back to each user.

Table I
TABLE OF SYMBOLS.

SYMBOL DEFINITION 
( )LNKAdv A  Linkability advantage 

( )IDTAdv A  Identifiability advantage 

D (C) Decryption of a ciphertext C 

EK,r (m) 
Encryption of a message m using the key K and 
a random number r 

KP Shared public key of the N users 
KS Shared private key of the N users 
m Number of slots of each individual schedule 
N Number of users 

xi=[bi,1,..,bi,m] 
Schedule of user ui, where bi,j is the availability 
at time slot j 

1[ ,.. ], m    Schedule permutation function 

 
 

User-privacy: The user-privacy of any centralized schedul-
ing algorithm A measures the probabilistic advantage that any
user ui, i ∈ {1 . . . N} gains towards learning the private sched-
ules of at least one other user uj , j 6= i, except their common
availabilities, after all users have participated in the execution
of the algorithm A. In order to accurately measure users’
privacy, we need to compute the following two advantages.
First, we measure the Identifiability Advantage, which is the
probabilistic advantage of an adversary in correctly guessing a
schedule bit (which is not a common availability) of any other
user. We denote it as AdvIDTui

(A). Second, we measure the
Linkability Advantage, which is the probabilistic advantage of
an adversary in correctly guessing that any two or more other
users have exactly the same corresponding schedule bit (not
a common availability bit) without necessarily knowing the
values of those bits. We denote this advantage as AdvLNKui

(A).
We make the following straightforward observation.

Observation 1: If an adversary has identifiability advantage
over two corresponding schedule bits of two different users,
this implies that it has linkability advantage over those two
bits as well. However, the inverse is not necessarily true.

We semantically define the identifiability and linkability ad-
vantages using a challenge-response methodology. Challenge-
response games have been widely used in cryptography to

prove the security of cryptographic protocols. We now describe
such a challenge-response game for the identifiability advan-
tage AdvIDTui

(A) of any user ui participating in the algorithm
A as follows.

1) Initialization: Challenger privately collects
xi = [bi,1, . . . , bi,m] and fi = f(bi,1, . . . , bi,m) from all
users ui, i ∈ {1 . . . N}.

2) Scheduling: Challenger computes g(Y ) =
A(f1, f2, . . . , fN ) with the users and sends g(Y )
to all users u1, u2, . . . , uN .

3) Challenger randomly picks a user ui, i ∈ {1 . . . N}, as
the adversary.

4) ui picks j ∈ {1 . . . N}, s.t. j 6= i and sends it to the
challenger.

5) Challenge: the challenger picks a random time slot p ∈
{1 . . .m}, s.t., ∃bk,p = 0 for at least one k ∈ 1, . . . , N .
Challenger then sends (j, p) to the user ui. This is the
challenge.

6) Guess: User ui sends b′j,p ∈ {0, 1} to the challenger as
a response to his challenge. If b′j,p = bj,p, the user ui
(adversary) wins; otherwise, he loses.

The identifiability advantage AdvIDTui
(A) can be defined as

AdvIDTui
(A) =

∣∣∣∣Prui [b
′
j,p = bj,p]−

1

2

∣∣∣∣ (1)

where Prui
[b′j,p = bj,p] is the probability of user ui winning

the game (correctly answering the challenge in the challenge-
response game), computed over the coin flips of the challenger,
b′j,p is ui’s guess about the schedule of user uj in the time
slot p and bj,p is uj’s true availability. An external attacker,
having no access to the output of the algorithm, has obviously
no advantage at all. Thus, we focus on the non-trivial case
with participating users only.

Similarly, we describe the challenge-response game for the
linkability advantage AdvLNKui

(A) of any user ui as follows.

1) Initialization: Challenger privately collects
xi = [bi,1, . . . , bi,m] and fi = f(bi,1, . . . , bi,m) from all
users ui, i ∈ {1 . . . N}.

2) Scheduling: Challenger computes g(Y ) =
A(f1, f2, . . . , fN ) with the users and sends g(Y )
to all users u1, u2, . . . , uN .
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3) Challenger randomly picks a user ui, i ∈ {1 . . . N}, as
the adversary.

4) ui picks h, j ∈ {1 . . . N}, s.t. j 6= h, j 6= i, h 6= i and
sends (h, j) to the challenger.

5) Challenge: Challenger randomly picks a time slot p ∈
{1 . . .m}, s.t., ∃bk,p = 0 for at least one k ∈ 1, . . . , N .
Challenger then sends (j, p) and (h, p) to the user ui.
This is the challenge.

6) Guess: User ui decides if bj,p = bh,p or not. User ui
sets b′ = 1 if he decides bj,p = bh,p and b′ = 0 if he
decides bj,p 6= bh,p. User ui sends b′ to the challenger as
a response to his challenge. If bj,p = bh,p and b′ = 1 or
if bj,p 6= bh,p and b′ = 0, the user ui (adversary) wins;
otherwise, he loses.

The linkability advantage AdvLNKui
(A) can be defined as

AdvLNKui
(A) = |Prui

[((bj,p = bh,p) ∧ b′ = 1)

∨ ((bj,p 6= bh,p) ∧ b′ = 0)]− 1

2
|
(2)

where Prui
[.] is the probability of user ui winning the game,

computed over the coin flips of the challenger. As for the
identifiability advantage, an external attacker has no linkability
advantage at all.

We now define the user-privacy of the scheduling algorithm
A on a per-execution basis as follows:

Definition 1: An execution of the centralized scheduling
algorithm A is user-private if both the identifiability advantage
AdvIDTui

(A) and the linkability advantage AdvLNKui
(A) of

each participating user ui, i ∈ {1, . . . , N} is negligible.
A function f(x) is called negligible if, for any positive
polynomial p(x), there is an integer B such that for any integer
x > B, f(x) < 1/p(x) [15].

Definition 1 says that a particular execution of the schedul-
ing algorithm is user-private if and only if users do not
gain any (actually, negligible) additional knowledge about the
schedule bits of any other user, except the schedule bits that
have a value 1 for all users (common availabilities).

Server-privacy: The server-privacy of any (centralized)
scheduling algorithm A measures the probabilistic advantage
that the server (which executes the scheduling algorithm A and
observes the inputs from the users) gains towards learning the
private schedules of at least one user ui, i ∈ {1 . . . N}. As in
the case of user-privacy, we need to compute the following
two advantages. First, the advantage of the server in guessing
correctly any schedule bit of any user participating in the
scheduling algorithm, called as Identifiability Advantage and
denoted as AdvIDTS (A). Second, the advantage of the server in
guessing correctly that any two (or more) participating users
have exactly the same corresponding schedule bits without
necessarily knowing the values of those bits, called the Link-
ability Advantage and denoted as AdvLNKS (A).

The server identifiability and linkability advantages are
defined in a similar fashion as the user advantages. The
challenge-response game for the server identifiability advan-
tage AdvIDTS (A) is defined as follows.

1) Initialization: Challenger privately collects
xi = [bi,1, . . . , bi,m] and the server privately collects fi =
f(bi,1, . . . , bi,m) from all users ui, i ∈ {1 . . . N}.

2) Scheduling: Server computes g(Y ) = A(f1, f2, . . . , fN )
with the users and sends g(Y ) to all users u1, u2, . . . , uN .

3) Server picks i ∈ {1 . . . N} and sends it to the challenger.
4) Challenge: Challenger randomly picks a time slot p ∈
{1 . . .m}. Challenger then sends (i, p) to the server. This
is the challenge.

5) Guess: server sends b′i,p ∈ {0, 1} to the challenger as
a response to his challenge. If b′i,p = bi,p, the server
(adversary) wins; otherwise, he loses.

The identifiability advantage AdvIDTS (A) is defined as

AdvIDTS (A) =

∣∣∣∣PrS [b′j,p = bj,p]−
1

2

∣∣∣∣ (3)

where PrS [b′j,p = bj,p] is the probability of the server winning
the game, computed over the coin flips of the challenger.

The challenge-response game for the server linkability ad-
vantage AdvLNKS (A) is defined as follows.

1) Initialization: Challenger privately collects
xi = [bi,1, . . . , bi,m] and the server privately collects fi =
f(bi,1, . . . , bi,m) from all users ui, i ∈ {1 . . . N}.

2) Scheduling: Server computes g(Y ) = A(f1, f2, . . . , fN )
with the users and sends g(Y ) to all users u1, u2, . . . , uN .

3) Server picks h, j ∈ {1 . . . N}, s.t. j 6= h and sends (h, j)
to the challenger.

4) Challenge: Challenger randomly picks p ∈ {1 . . .m} and
then sends (j, p) and (h, p) to the server. This is the
challenge.

5) Guess: Server decides if bj,p = bh,p or not. Server sets
b′ = 1 if he decides bj,p = bh,p and b′ = 0 if he decides
bj,p 6= bh,p. Server sends b′ to the challenger as a response
to his challenge. If bj,p = bh,p and b′ = 1 or if bj,p 6= bh,p
and b′ = 0, the server (adversary) wins; otherwise, he
loses.

The linkability advantage AdvLNKS (A) is defined as

AdvLNKS (A) = |PrS [(bj,p = bh,p) ∧ b′ = 1)

∨ (bj,p 6= bh,p) ∧ b′ = 0)]− 1

2
| (4)

where PrS [.] is the probability of the server winning the game,
computed over the coin flips of the challenger.

The server-privacy of the scheduling algorithm A on a per-
execution basis can then be defined as follows:

Definition 2: An execution of the centralized scheduling al-
gorithm A is server-private if both the identifiability advantage
AdvIDTS (A) and the linkability advantage AdvLNKS (A) of the
server is negligible.

Now, it is reasonable to assume that in practice users will
be able to perform multiple executions of the scheduling
algorithm with possibly different participating sets of users.
This is especially true if such an algorithm is offered, for
example, as a service by mobile service providers to their
subscribers. Thus, privacy of the scheduling algorithm should
be defined over multiple executions. First, we define a private
execution as follows:
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Definition 3: A private execution is an execution which
does not reveal more information than what can be derived
from its result and the prior knowledge.
Based on how memory is retained over sequential executions,
we define two types of algorithm executions, namely, inde-
pendent and dependent:

Definition 4: An independent (respectively, dependent) exe-
cution is a single private execution of the scheduling algorithm
defined in Section III-C in which no (respectively, some)
information of an earlier and current execution is retained and
passed to future execution.
The information retained can include past inputs to the algo-
rithm, intermediate results (on the server) and the outputs of
the algorithm. Based on the type of executions, we define a
privacy-preserving scheduling algorithm as follows:

Definition 5: A scheduling algorithm A is execution (re-
spectively fully) privacy-preserving if and only if for every
independent (respectively all) execution(s):

1) A is correct; All users are correctly able to compute yj =
1,∀j = 1 . . .m if and only if bi,j = 1,∀i = 1 . . . N .

2) A is user-private in every execution.
3) A is server-private in every execution.

A fully privacy-preserving algorithm is a much stronger (and
difficult to achieve) privacy requirement. In this work, similar
to earlier efforts, we focus on achieving execution privacy.
The following observation gives the relationship between fully
privacy-preserving and execution privacy-preserving schedul-
ing algorithms.

Observation 2: Any scheduling algorithm A, as defined in
Section III-C, is execution privacy-preserving if it is fully
privacy-preserving, but the inverse is not true.

Next, we outline our centralized scheduling algorithms.

V. SCHEDELG ALGORITHM

In this section, we describe our first privacy-preserving
centralized scheduling scheme, which is based on the ElGamal
[12] cryptosystem. The security of the ElGamal encryption
relies on the intractability of the discrete logarithm problem
(DLP), which assumes that it is computationally infeasible to
obtain the private key Ks given the public key (g, h), where
g is a generator of a multiplicative cyclic group G of prime
order q and h = gKs mod q.

Our protocol SchedElG uses the homomorphic property of
the ElGamal cryptosystem in order to allow the scheduling
server to compute the aggregated availabilities by working
only on the encrypted individual schedules. For instance, it
can be verified that the ElGamal scheme satisfies:

D(EKP ,r1(m1) · EKP ,r2(m2)) =

D((gr1 ,m1h
r1) · (gr2 ,m2h

r2)) =

D(gr, (m1 ·m2)h
r) = m1 ·m2

where r = r1 + r2 ∈ Zq is a random integer. Moreover, being
a probabilistic encryption scheme, it follows that if r1 6= r2,
EKP ,r1(m) 6= EKP ,r2(m).

For the SchedElG algorithm, we assume that the meeting
participants represent their availabilities in the following way:
b∗i,j = 1 if bi,j = 1, but b∗i,j = R (where R ∈ Zq, R > 1 is a
random integer) if bi,j = 0.

Scheme: The privacy-preserving scheduling protocol
SchedElG is shown in Figure 2. All users first select the
sequence of time slots according to the permutation σ, i.e., σj ,
∀j = 1..m, and then encrypt individually the corresponding
schedule availabilities, i.e., Ei = [Ei,σ1

, . . . , Ei,σm
] where

Ei,σj = EKP ,ri,j (b
∗
i,σj

). Then, each user sends its Ei pri-
vately to the scheduling server that performs the multiplica-
tion

∏N
i=1Ei,σj

of all users’ encrypted schedules Ei,σj
, for

j = 1, . . . ,m. The results of such operation are the (encrypted)
aggregated availabilities of all users for each time slot j. Next,
the server replies with the aggregated encrypted result Esched
back to each user. Each slot in Esched contains a product of
the individual time-slot bits encrypted with the users’ shared
key. Finally, each user decrypts the result and obtains the
aggregated availabilities [y1 = B∗σ1

, . . . , ym = B∗σm
] of all

users ui for each time slot σj . If B∗σj
= 1, it means that all

users are available at time slot σj ; if B∗σj
> 1, then at least

one user is not available and therefore σj is not a suitable time
slot. The following result shows the correctness and privacy
properties of SchedElG.

Lemma 1: The protocol SchedElG is correct and execution
privacy-preserving.

Proof:
Correctness: From Section III-C, we know that

any scheduling algorithm should output g(Y ), on inputs
f1, f2, . . . , fN , where fi = f(b1,1, . . . , bi,m), such that each
user is able to privately compute Y = g−1(g(Y )), where
Y = y1, . . . , yj , . . . , ym. The output bit yj ,∀j should be such
that it should take some value v if and only if all users are
available. Otherwise, the output bit yj never takes value v and
should take some other value, indicating that at least one user
is not available. From Figure 2, we can see that, provided
the homomorphic properties of the ElGamal cryptosystem are
correct, we have that (with overwhelming probability) yj = 1
if and only if bi,j = 1,∀i, i.e., all users are available. The value
of yj = R, where R > 1 is some random number, otherwise.
Thus, SchedElg is correct.

Privacy: In order to be user-private, the identifiabil-
ity and linkability advantages defined in Section III must
be a negligible function. For simplicity of exposition, let
Adv...ui

(SchedElG) be denoted as Adv...ui
here. Formally, we

need that

AdvIDTui
= |Prui [b

′
j,p = bj,p]−

1

2
| < 1

p(N)

AdvLNKui
= |Prui

[((bj,p = bh,p) ∧ b′ = 1)

∨ ((bj,p 6= bh,p) ∧ b′ = 0)]− 1

2
|

<
1

p(N)

where Prui [b
′
j,p = bj,p] and Prui [(bj,p = bh,p) ∧ b′ =

1) ∨ (bj,p 6= bh,p) ∧ b′ = 0)] are the probabilities of a user
ui winning the Challenger-adversary games, and p(N) is any
positive polynomial function of N . Without loss of generality,
we assume that the Challenger chooses user u1 as the Adver-
sary. Moreover, as the computation of the availabilities for all
time slots are identical, we provide the proof for one time slot
p only.
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Figure 2. SchedElg protocol.

User identifiability advantage: First, we show a sketch of
the proof that AdvIDTui

(SchedElG) < 1/p(N), where p(N)
is any positive polynomial function of N . After step 4. of
the Challenger-adversary game, u1 knows (i) its own schedule
bit b1,p and (ii) the non-trivial result of the algorithm B∗p =
b∗1,p · . . . · b∗N,p > 1, i.e. there is at least one user that is
not available in the time slot p. Therefore, the identifiability
advantage becomes

AdvIDTui
= |Prui [b

′
j,p = bj,p|B∗p > 1, b1,p]−

1

2
|

where

Prui
[b′j,p = bj,p|B∗p > 1, b1,p] =

1∑
k=0

Pr(b′j,p = bj,p|B∗p > 1, b1,p = k) · Pr(b1,p = k|B∗p > 1)

=

1∑
k=0

1∑
z=0

{Pr(b′j,p = z ∧ bj,p = z|B∗p > 1, b1,p = k)·

Pr(b1,p = k|B∗p > 1)}

=

1∑
k=0

1∑
z=0

{Pr(b′j,p = z|B∗p > 1, b1,p = k)·

Pr(bj,p = z|B∗p > 1, b1,p = k) · Pr(b1,p = k|B∗p > 1)}

Given that the Challenger chooses a time slot p where ∃bq,p =
0, q ∈ {1, . . . , N}, we have

Pr(b′j,p = 0|B∗p > 1, b1,p = 0)

= Pr(b′j,p = 1|B∗p > 1, b1,p = 0) = 1/2

Pr(bj,p = 0|B∗p > 1, b1,p = 0)

= Pr(bj,p = 1|B∗p > 1, b1,p = 0) = 1/2

Pr(b′j,p = 0|B∗p > 1, b1,p = 1)

= Pr(bj,p = 0|B∗p > 1, b1,p = 1) =

∑N−1
m=1 C

N−1
m ·m

2N−1 · (N − 1)

=
2N−2

2N−1 − 1
Pr(b′j,p = 1|B∗p > 1, b1,p = 1)

= Pr(bj,p = 1|B∗p > 1, b1,p = 1) =

∑N−2
m=0 C

N−1
m ·m

2N−1 · (N − 1)

=
2N−2 − 1

2N−1 − 1

which implies

Prui
[b′j,p = bj,p|B∗p > 1, b1,j ]

=
a

2
+ (1− a) · 2

2(N−2) + (2N−2 − 1)2

(2N−1 − 1)2

where a = Pr(b1,p = 0|B∗p > 1). The final result is then

AdvIDTui
= |a

2
+ (1− a) · 2

2(N−2) + (2N−2 − 1)2

(2N−1 − 1)2
− 1

2
|

Figure 3 numerically shows the evolution of
AdvIDTui

(SchedElG) as N grows. It can be shown that ∀p(N)
and for any integer N , ∃n > N |AdvIDTui

(SchedElG, n) <
1/p(n).

User linkability advantage: We now show a sketch of the
proof that AdvLNKui

(SchedElG) < 1/p(N), where p(N) is
any positive polynomial function of N . By definition we have

AdvLNKui
= |Prui

[(bj,p = bh,p) ∧ b′ = 1)

∨ (bj,p 6= bh,p) ∧ b′ = 0)|B∗p > 1, b1,p]−
1

2
|

From the above, we obtain

Prui
[(bj,p = bh,p) ∧ b′ = 1) ∨ (bj,p 6= bh,p) ∧ b′ = 0)|B∗p > 1, b1,p]

=

1∑
k=0

{Pr[(bj,p = bh,p) ∧ b′ = 1|B∗p > 1, b1,p = k)]

· Pr(b1,p = k|B∗p > 1)}

+

1∑
k=0

{Pr[(bj,p 6= bh,p) ∧ b′ = 0|B∗p > 1, b1,p = k)]

· Pr(b1,p = k|B∗p > 1)}

which implies

Prui
[(bj,p = bh,p) ∧ b′ = 1) ∨ (bj,p 6= bh,p) ∧ b′ = 0)|B∗p > 1, b1,p]

=
a

2
+ (1− a) · {[( 2N−2

2N−1 − 1
)2 +

2N−3 − 1

2N−2
· 2

N−2 − 1

2N−1 − 1
]2

+ [
1

4
+

1

2

2N−2 − 1

2N−1 − 1
]2}

where a = Pr(b1,p = 0|B∗p > 1). Figure 3 shows the
evolution of the linkability advantage for growing N . It
can be shown that ∀p(N) and for any integer N , ∃n >
N |AdvLNKui

(SchedElG, n) < 1/p(n). As both identifiability
and linkability advantages are negligible functions (in the
number of participants N ), SchedElG is user-private.
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Figure 3. Identifiability and linkability advantages of an adversary.

Server advantages: The server that is performing the
computations on the encrypted schedules does not know any
user’s schedule bit, as all schedules have been encrypted by
the users prior to being sent to the server with the users’ shared
public key, and only they know the corresponding private key.
Therefore, AdvIDTS (SchedElG) = AdvLNKS (SchedElG) =
0, i.e. SchedElG is server-private.

In Figure 3, we plotted the identifiability and linkability
advantages of an adversary for SchedElg, compared with poly-
nomially (in terms of the number of participants N ) decreasing
functions p(N), for increasing values of N . As confirmed by
our analysis, the plot shows that there is always an integer
N such that for any integer x > N , the identifiability and
linkability advantages are smaller than 1/p(x).

VI. SCHEDPA ALGORITHM

In this section, we define our second privacy-preserving
scheduling scheme, which is based on the Paillier cryptosys-
tem [21]. The security of the Paillier encryption scheme is
based on the intractability of determining whether an integer r
is an n-residue mod n2, where n is a composite number. In our
protocol, we use the homomorphic properties of the Paillier
cryptosystem to compute in a privacy-preserving fashion the
availability of all users involved in the scheduling process. In
particular, one can verify that the Paillier scheme satisfies the
following:

D[EKP ,r1(m1) · EKP ,r1(m2) mod n2] = m1 +m2 mod n

D[EKP ,r(m1)
m2 mod n2] = m1 ·m2 mod n

where ri, r ∈ Z∗n are random numbers chosen by the en-
crypters, m ∈ Zn is the message to encrypt and n = pq where
p, q are two large primes. The randomness in the encryption
ensures that if r1 6= r2, EKP ,r1(m) 6= EKP ,r2(m).

To adapt our scheme to the addition property of Paillier’s
homomorphism, we take the bit value bi,j in the computation
instead of the original bit value bi,j as follows: bi,j = 0 if
bi,j = 1, and bi,j = r (where r ∈ Z∗n, r > 1 is a random
integer) if bi,j = 0.

Scheme: The corresponding privacy-preserving scheduling
protocol is shown in Figure 4. First, all users select the
sequence of time slots according to the permutation σ, i.e.,
σj , ∀j = 1, . . . ,m, and then encrypt individually the cor-
responding availabilities, i.e. Ei = [Ei,σ1

, . . . , Ei,σm
] where

Ei,σj
= EKP ,ri,j (bi,σj

). Then, each user sends its Ei privately
to the scheduling server that performs the multiplication and
exponentiation (

∏N
i=1Ei,σj )

R of all users’ encrypted sched-
ules Ei,σj , for j = 1, . . . ,m, in order to obtain the encryption
of the value Vσj

that is needed by the users. Afterwards, the
server sends the aggregated encrypted result Esched back to
each user. Each slot in Esched contains a randomly scaled sum
of the individual time-slot bits bi,σj

encrypted with the users’
shared key. Finally, each user decrypts the result and knows
that if Vσj = 0, the time slot σj is available for everybody.
If Vσj

> 1, then at least one user is not available. Note that
even if the server chooses R = 1, the privacy of the users is
preserved with bi,j . The following result shows the correctness
and privacy properties of SchedPa.

Lemma 2: The protocol SchedPa is correct and execution
privacy-preserving.

Proof:
Correctness: From Section III-C, we know that

any scheduling algorithm should output g(Y ), on inputs
f1, f2, . . . , fN , where fi = f(b1,1, . . . , bi,m), such that each
user is able to privately compute Y = g−1(g(Y )), where
Y = y1, . . . , yj , . . . , ym. The output bit yj ,∀j should be such
that it should take some value v if and only if all users are
available. Otherwise, the output bit yj never takes value v and
should take some other value, indicating that at least one user
is not available. From Figure 2, we can see that, provided
the homomorphic properties of the Paillier cryptosystem are
correct, we have that (with overwhelming probability) yj = 0
if and only if bi,j = 1,∀i, i.e., all users are available. The value
of yj = R, where R > 1 is some random number, otherwise.
Thus, SchedPa is correct.

User advantages: The knowledge that any user ui
has in the SchedPa game is the same as in SchedElG.
In particular, ui knows that Vp = R ·

∑N
k=1 bk,p > 0

and therefore it knows that there is at least one user uk,
k ∈ {1, . . . , N} that is not available in the time slot p.
Moreover, each user ui knows its own schedule bi,p. As a con-
sequence, AdvIDTui

(SchedPa) = AdvIDTui
(SchedElG) and

AdvLNKui
(SchedPa) = AdvLNKui

(SchedElG) and therefore,
as shown in Figure 3, SchedPa is user-private.

Server advantages: As in the SchedElG algorithm, the
server performing the SchedPa algorithm does not have access
to any schedule bit and therefore SchedPa is server-private.

VII. SCHEDGM ALGORITHM

In this section, we present our last privacy-preserving
scheduling algorithm, which is based on the Goldwasser-
Micali (GM) cryptographic scheme [16]. The security of the
GM encryption relies on the intractability of the quadratic
residuosity problem, i.e. on the infeasibility of determining
whether or not an integer r is a quadratic residue mod n when
the Jacobi symbol for r is 1, given n = pq where p, q are large
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Figure 5. SchedGM protocol.

primes. SchedGM makes use of the following homomorphic
property of the GM cryptosystem:

D[EKP ,r1(m1) · EKP ,r2(m2)] = m1 �m2

The intuition behind the protocol is based on the work by
Herlea et al. [17], in which users privately establish a global bit
mask (unknown to any user) and then compare all the masked
availabilities without knowing the true bit value bi,σj

of the
other users. If all users have the same masked bit value for a
given time slot σj , then each user knows that everybody else
has the same availability, which can be inferred by looking at
the private unmasked bit value bi,σj

. Although initially used
in a distributed scenario, we extend the general idea to the
centralized scheme as well.

Assumption: Each user ui generates a private random bit
mask si = [ci,1, ci,2, . . . , ci,m], ci,j ∈ {0, 1}, of the same
length of the schedule xi.

Scheme: The privacy-preserving scheduling algorithm is
shown in Figure 5. Each user first selects the sequence of time
slots according to the permutation σ, i.e., σj , ∀j = 1, . . . ,m,
and then masks the corresponding schedule bits, i.e. b�i,σj

=
bi,σj

� ci,j . Then, each user encrypts individually both its
bit mask, i.e. Eci = [EKP ,ri,1(ci,1), . . . , EKP ,ri,m(ci,m), and
the masked availabilities, i.e. Ei = [Ei,σ1 , . . . , Ei,σm ], where
Ei,σj

= EKP ,ri,j (b
�
i,σj

). Afterwards, each user ui sends its
Ei and Eci to the server, which computes the multiplication
of the received Ei,σj

with the encrypted masks of all other
users uk,∀k 6= i, obtaining E�

i,σj
= Ei,σj

·
∏
k 6=iEKP

(ck,j),

∀i ∈ 1, . . . , N and ∀j = 1, . . . ,m. Afterwards, the server
sends all individual schedules, masked by a global mask
c1,j� . . .�cN,j , to each user in a random order. As a result, a
user will not know his own schedule (masked with the global
mask), otherwise he would be able to determine the global
mask. Finally, each user decrypts the received messages and
compares all masked individual schedules. If for a given time
slot σj they all have the same value, then each user ui can
infer whether the time slot σj is available by looking at its own
schedule bi,σj

. The following result shows the correctness and
privacy properties of SchedGM.

Lemma 3: The protocol SchedGM is correct and server-
private.

Proof:
Correctness: From Section III-C, we know that

any scheduling algorithm should output g(Y ), on inputs
f1, f2, . . . , fN , where fi = f(b1,1, . . . , bi,m), such that each
user is able to privately compute Y = g−1(g(Y )), where
Y = y1, . . . , yj , . . . , ym. The output bit yj ,∀j should be such
that it should take (with overwhelming probability) some value
v if and only if all users are available. Otherwise, the output
bit yj never takes value v and should take some other value,
indicating that at least one user is not available. In the case
of SchedGM, each g(yj) (output by the server) consists of
N different bits, one for each user, where each bit is the
corresponding bi,j (schedule bit j of user ui) masked by a
global mask. From Figure 5, we can see that yj = ”Y ES”,
for a particular user ui, if and only if all of the N bits in g(yj)
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are equal and bi,j = 1 (user ui is available), and yj = ”NO”
otherwise. It is straightforward to see that all N bits in g(yj)
will be equal only in two cases: 1) bi,j = 1,∀i (all users
are available) or 2) bi,j = 0,∀i (all users are not available).
Thus, yj = ”Y ES” if and only if all users are available and
yj = ”NO” for any other case. Thus, SchedGM is correct.

User identifiability advantage: As for the previous two
algorithms, the identifiability advantage of any user ui for the
SchedGM protocol is defined as

AdvIDTui
(SchedGM) =

∣∣∣∣Prui [b
′
j,p = bj,p|r > 1, bi,p]−

1

2

∣∣∣∣
where 1 ≤ r ≤ bN/2c is the number of output elements
that have the same value. Note that in SchedGM each user
gets N masked output values b�i,p, ∀i ∈ {1, . . . , N}, for each
time slot p ∈ {1, . . . ,m}, but it cannot unmask them as it
does not possess the global mask. Therefore, any user knows
that there are r masked bit values of one kind and N − r
of the other kind, without knowing whether one or the other
kind corresponds to bi,p = 1. For simplicity of exposition, let
Adv...ui

(SchedGM) be denoted as Adv...ui
here. Without loss

of generality, we assume that the Challenger chooses user u1
as the Adversary and we focus on the non-trivial case N > 2.
By expanding the first term, we have

Pru1 [b
′
j,p = bj,p|r > 1, b1,p]

=

1∑
k=0

Pr(b′j,p = bj,p|r > 1, b1,p = k) · Pr(b1,p = k|r > 1)

=

1∑
k=0

1∑
z=0

{Pr(b′j,p = z|r > 1, b1,p = k)

· Pr(bj,p = z|r > 1, b1,p = k) · Pr(b1,p = k|r > 1)}

From the above, we obtain

Pr(b′j,p = 0|r > 1, b1,p = 0)

=
1

2
· C

N
r · r

CNr ·N
+

1

2
·
CNN−r · (N − r)

CNr ·N
=

1

2

Pr(b′j,p = 1|r > 1, b1,p = 0) =
1

2
Pr(b′j,p = 0|r > 1, b1,p = 1)

= Pr(b′j,p = 1|r > 1, b1,p = 1) =
1

2

which implies

Prui
[b′j,p = bj,p|r > 1, bi,p] =

1

2

and thus the final result

AdvIDTui
(SchedGM) = 0, ∀N > 2

User linkability advantage: Hereafter we intuitively show
that ∃N > 2|AdvLNKui

(SchedGM) ≥ 1/p(N), where p(N)
is any positive polynomial function of N . After Step 4 of
the Challenger-adversary game, the Adversary u1 knows (i)
its own schedule bit b1,p and (ii) the number r of masked
schedules of one particular kind. Even though u1 cannot
determine with certainty whether the r elements correspond
to the “available” or to the “busy” state, it knows that the

Figure 6. Frontend of the scheduling application on a Nokia N810.

challenger picks the two other bits bh,p, bj,p, j 6= h 6= i, at
random and therefore it also knows that the lower the value
r, the greater the probability that any two bits in the sequence
under consideration have the same value. Intuitively, if r = 1
it means that there are N − 1 schedules of one kind and only
one schedule of the other kind. Therefore, the probability that
any two users have same schedule value is greater than, for
instance, when r = bN/2c. Thus, the linkability advantage
AdvLNKui

(SchedGM) is not less than 1/p(N), ∀N > 2, as
∃r ∈ {1, . . . , bN/2c}|AdvLNKui

(SchedGM) ≥ 1/p(N) for
some positive polynomial p(N).

Server advantages: As in SchedElG and SchedPa, the
server performing the SchedGM algorithm does not have
access to any schedule bit. Therefore, SchedGM is server-
private.

VIII. IMPLEMENTATION AND DISCUSSION

Before presenting the implementation details, let us first
perform a comparative analysis of the asymptotic complexities
of the proposed protocols, as shown in Table II. In order to
compare our three algorithms with an equivalent security, we
set the bit-lengths of the ElGamal modulus q and the Paillier
and GM modulus n to 1024 bits. A time-slot availability would
then be encrypted to a 2-tuple of 1024-bit ciphertexts for
ElGamal, to a 1024-bit ciphertext for GM and to a 2048-bit
ciphertext for the Paillier encryption scheme.

From Table II we can see that the SchedElG and SchedPa
protocols are very efficient, both in terms of communication
O(m), where m is the number of time slots, and computation
complexity O(m). Moreover, these two algorithms provide
strong privacy guarantees. SchedGM, on the other hand, is
comparatively less efficient due to the greater number of
exchanged messages (O(N · m), where N is the number of
participants). From the privacy perspective, SchedGM reveals
more information: users can infer the ratio of free/busy par-
ticipants for each time slot without identifying the ones that
are busy and the ones that are free. Because in all schemes,
the server operates only on encrypted data, it cannot gain any
knowledge about the users’ private schedules.

Distributed [23], [17] and hybrid [27] solutions proposed
in the literature are less efficient from the communication
standpoint as compared to the proposed protocols. Moreover,
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Figure 7. Client implementation performance.

the computational complexity of these schemes is higher than
SchedElG and SchedPa, and this undermines their applicability
on resource-constrained mobile platforms. Even though the
hybrid approach [27] has comparable computation complexity,
it is not completely reliable from the privacy point of view
because it assumes that the server(s) can get clear-text access
to the individual availabilities.

Table II
EFFICIENCY AND PRIVACY OF SCHEDULING PROTOCOLS (DISCSP [27],

MPC-DISCSP2 [23] AND SDC [17])

.
  

Per-user 
encr. 

Per-user 
decr. 

Per-user 
comm. 

Order of an 
encr. availab. 

Privacy 
properties 

C
en

tr
al

iz
ed

 SchedElG O(m) O(m) O(m) 1024 bits User-private  
Server-private 

SchedPa O(m) O(m) O(m) 2048 bits User-private  
Server-private 

SchedGM O(m) O(N · m) O(N · m) 1024 bits User-private # 
Server-private 

Naïve 0 0 O(m) 1 bit * None 
    

H
yb

ri
d 

DisCSP 
protocol O(m) O(m) O(N · m) 1024 bits Private  

    

D
is

tr
ib

ut
ed

 MPC-
DisCSP2 
protocol 

O(N · m) O(m) O(N · m) 2048 bits Private 

SDC 
protocol O(N2 · m) O(N · m) O(N · m · 

log2(N)) 1024 bits Private 

 (*) The naïve algorithm does not encrypt the schedule bits 
 (#) Adv IDT is a negligible function, whereas, for some output Y of the algorithm, Adv LNK is  
                     non-negligible 
 

We further evaluate the performance of SchedElg, SchedPa
and SchedGM by implementing the client component of the
protocols and primitives on Nokia N810 mobile devices with
400 MHz CPU and 128 MB RAM (Figure 6), and the server
component on a desktop computer with 2 GHz CPU and 3 GB
RAM. The results of the experimentation are shown in Figure
7 and 8.

Client encryption: As we can see from Figure 7, the time
required to perform the scheduling operations increases with
the number of time slots for all the proposed algorithms, which
is intuitive. With respect to encryption performance, Figure
7(a) shows that SchedElg is the most efficient scheduling
algorithm, requiring 4 seconds to encrypt 45 time slots (a
typical weekly schedule on a per hour basis). The same

task is accomplished by SchedGM and SchedPa in 7 and 14
seconds respectively. These results might be explained by the
following. First, the cryptographic primitives for the ElGa-
mal scheme are implemented in a standard well-optimized
library, libgcrypt, present in most Unix-based operating sys-
tems. SchedGM, on the contrary, does not use a standard
library. We implemented the Goldwasser-Micali cryptosystem
libraries, and as such it is likely that further optimization could
significantly improve the performance. Second, the encrypted
elements in SchedPa have twice the bit-length of the ones used
in the other two algorithms, and therefore the same operations
(multiplications and exponentiations) require more time.

Client decryption: Figure 7(b) shows the time required
for decrypting the final result (common availabilities) of the
scheduling algorithms at the client. Similarly to the encryption
time, the fastest algorithm for the decryption is SchedElg,
which takes 4 seconds in order to obtain the aggregated
availabilities for a 45 time-slot period. For the same number
of time slots, SchedPa takes approx. 7 seconds, which is
almost twice the best performance. The decryption times for
both SchedElg and SchedPa are independent of the number
of participants. The performance of SchedGM, due to the
fact that the final output of the algorithm is a sequence of
vectors instead of just a single aggregated vector, is decreasing
with the number of users as well as with the number of
time slots. Thus, for a reasonable number of participants (e.g.
N = 5), SchedGM is still practical enough to be implemented
on resource-constrained mobile devices, although it is not the
preferred solution.

Client communication: Figure 7(c) shows the (application
layer) data that each client exchanges during one execution of
the scheduling algorithm. In general, all the proposed privacy-
preserving scheduling algorithms have reasonable communi-
cation costs. SchedElg and SchedPa are the most efficient
algorithms and they require 22 kB of data in order to compute
the aggregated availabilities of a 45 time-slot period, whereas
SchedGM requires 39 kB for the same result. As previously
mentioned, SchedGM uses a sequence of masked vectors in
order to compute the final availabilities of the users, and
therefore the amount of data is proportional both to the number
of users and time-slots.
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Server performance: The scheduling server’s performance
is shown in Figure 8. As it can be seen, the time required
to perform the scheduling operations on encrypted values
increases with both the number of users and time slots,
which is intuitive. Even with a large number of users and
time slots, the amount of time required for the operations is
still below 0.2 second, which suggests that the load on the
server is limited, which allows it to efficiently handle multiple
scheduling events, without incurring in huge computational
overhead.

IX. EXTENSIONS

In this section, we show how SchedPa can be easily
extended to the case where user schedules are non-binary,
i.e., each time slot is a non-negative cost Ci,j that indicates
ui’s preference for time-slot j. We also describe several
active attacks on the proposed scheduling schemes, such as
collusion between users-server and data modification by the
users, and how these attacks can be mitigated by using existing
cryptographic mechanisms. Finally, we discuss some further
enhancements for the privacy of users’ schedules and how to
implement them.

A. Non-binary Schedules

The goal here is to find, in a privacy-preserving fashion,
the time-slot with the minimum aggregated cost. The scheme
works as follows:

1) Each user ui reorders its cost sequence Ci,1 . . . Ci,m
using the shared permutation σ and encrypts each cost
Ci,σj

in the sequence using the Paillier cryptosystem
with the shared group key KP . It then passes the result
(EKP ,ri,1(Ci,σ1

) . . . EKP ,ri,m(Ci,σm
)) to the server.

2) The server computes the encrypted sum of costs
EKP ,rj (R ·

∑N
i=1 Ci,σj ),∀j, where R is a random integer

greater than one chosen by the server.
3) The server selects a pre-determined user uk and passes

a randomly ordered (different from σ) sequence of the

encrypted aggregated costs to it. This is to prevent uk
from learning the aggregated cost function.

4) User uk decrypts all the elements passed from the server,
and identifies the minimum aggregated cost.

5) User uk then queries the server for the index of the
(encrypted) minimum aggregated cost. The server then
distributes the queried index to all users.

It can be easily shown that the above scheme is execution
privacy-preserving. For conciseness, we do not discuss the
details of the privacy analysis here.

B. Active Attacks

There are five kinds of possible active attacks on the
scheduling schemes: (i) collusion between the scheduling
server and users, (ii) collusion among users, (iii) fake user
generation by the server, (iv) individual user schedule modifi-
cation and (v) integrity and replay attacks.

In order to thwart the first issue, the invited participants
could agree on establishing a shared secret using techniques
from threshold cryptography, such as [25]. The server should
then collude with at least a predefined number of participants
in order to obtain the shared secret and learn the individual
availabilities. The second concern may arise if k colluding
users set their schedules to all-available, and try to learn
the schedules of other users. Assuming that N is the total
number of participants and k the number of colluding ones,
our schemes would provide some level of schedule privacy
to honest users as long as N − k ≥ 2. Only if all but one
users collude, then they are able to determine the schedule of
the remaining user. In order for the third attack to succeed,
the server would need to generate fake users and convince
the true participants about the legitimacy of the fake users.
In practice, this is a non-trivial task to achieve, and thus
the attack has a very slim chance of succeeding. Moreover,
the effectiveness of such attack could be further reduced
by adopting the threshold cryptographic scheme mentioned
previously, because the server would then need to generate k
fake users and validate them as true participants.

The fourth attack is also not able to succeed in revealing
the availability of other meeting participants, as the best a
malicious user can do is to set its own schedule to all-available,
and then guess the availabilities of the other N−1 participants.
Even if a malicious user attempts to modify its own schedule
with invalid values, such as negative values, the message
domain restrictions of cryptosystems (such as ElGamal and
Paillier) would prevent such modifications. Thus, malicious
attacks consisting of manipulating the final result by using
invalid negative values as schedule values are not possible in
the proposed protocols.

The last attack concerns the integrity and freshness of the
encrypted schedules. The participants are the only entities
in the system that know the secret that has been used to
generate the public/private key pair, and therefore they are
the only ones that can generate and verify the integrity of the
encrypted data. Moreover, using the shared common secret,
each participant could generate a fresh nonce at each algorithm
execution and send it (in encrypt form) to the server during
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Figure 9. Extended algorithm scheme for revealing a single available time slot.

the scheduling process. The server would then forward these
encrypted nonces to each participant, who could verify that
all received nonces are equal. If not all nonces are equal, then
the participants know that there has been at least one replay
attack, and thus the schedule results are not to be trusted.

C. Single Available Time Slot

The output of conventional, not privacy-preserving schedul-
ing services (such as Doodle [3] or Outlook [5]) consists of
time slots in which all participating users are available. The
proposed schemes follow this paradigm and they provide, in an
efficient and privacy-preserving way, all time-slots for which
all users are available.

In some cases, however, it might be desirable to limit the
disclosure of common availabilities to only one time-slot,
instead of the set of all available time-slots. This would provide
an additional layer of privacy for the individual schedules,
as the participants would be given a single feasible solution.
Hereafter we describe one simple way to adapt the proposed
schemes to support this feature (Figure 9).

First, all users participating in the scheduling process per-
form step 1 of the respective algorithm (SchedElg, SchedPa or
SchedGM). Second, the server performs step 2 but it does not
send the final output to each user. Instead, it randomly chooses
a private time-slot permutation function θ = [θ1, . . . , θm] and
applies it to the elements of the final output vector(s) Esched.
We call this new vector(s) Eθsched. At this point, the schedules
have been permuted twice, once by the users prior to the
encryptions (with σ) and once by the server (with θ).

Next, the server sends Eθsched to the user who started the
activity scheduling (the initiator), which then gets the common
availabilities but in a doubly permuted order. The initiator is
able to determine the available slots in this doubly permuted
time slot list, but he is not able to determine the time slots they
correspond to in the original schedule. The initiator selects one
commonly available time slot θk and securely sends the index
θk to the server. Fourth, the server (i) replaces all availabilities
other than θk in Eθsched with random numbers, (ii) reverts the

permutation θ, and (iii) sends this new vector(s) Êsched to
each user. Finally, each user decrypts and reverts the initial
permutation σ of the received vector(s) and determines which
time slot j is the only commonly available time slot.

This simple solution that reveals only a single available time
slot to all the participants involves one extra message exchange
between the initiator and the scheduling server, as shown in
step 3 of Figure 9. Although the permutation θ performed
by the server preempts the initiator from knowing the true
common availabilities, he might still want to maliciously
modify the permuted availabilities. However, the only action
the initiator can do is to choose one of the permuted time
slots and communicate its index θk to the server, as it is the
server who will then revert the permutation θ and send the
final vector(s) Êsched to all users.

X. CONCLUSION AND FUTURE WORK

Activity scheduling applications are increasingly used by
people on-the-move to efficiently and securely manage their
time. In addition to privacy, which is paramount, such services
should also be practical and feasible to implement, given
the client-server paradigm that most providers are using. In
this paper, we have provided a framework for the formal
study of privacy properties in such applications, and we
have proposed three novel privacy-preserving protocols that,
in addition to guaranteeing privacy, are more efficient than
similar solutions in terms of computation and communication
complexities. Moreover, the implementation and extensive
performance evaluation on real mobile devices showed that
our privacy-preserving schemes are well suited to practical
network architectures and services.

As part of our future work, we intend to further optimize the
implementation of the proposed scheduling algorithms for per-
formance on mobile devices, and to include user preferences
and security related features described in the previous section.
We also plan to release the source code of the proposed
scheduling schemes to the general public under the GPL
licence.
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