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Abstract

Many facets of Bayesian Modelling are firmly established in Machine Learning and
give rise to state-of-the-art solutions to application problems. The sheer number of
techniques, ideas and models which have been proposed, and the terminology, can be
bewildering. With this tutorial review, we aim to give a wide high-level overview over
this important field, concentrating on central ideas and methods, and on their intercon-
nections. The reader will gain a basic understanding of the topics and their relationships,
armed with which she can branch to details of her interest using the references to more
specialized textbooks and reviews we provide here.

1 Introduction

Machine Learning is a hybrid of Statistics and algorithmic Computer Science. In this review,
we will mostly be concerned with the statistical side. Statistics is about managing and
quantifying uncertainty. Uncertainty may arise due to many different reasons, for example:

• Measurement noise: Measurements of physical processes are always subject to inaccu-
racies. Sometimes, low quality data may be obtained more economically. Data items
may be missing

• Model uncertainty: Models are almost never exact, we abstract away complexity in
order to allow for predictions to be feasible

• Parameter uncertainty: Variables in a model can never be identified exactly and with-
out doubt from finite data

The calculus of uncertainty is probability theory, [22] gives a good introduction. Some phe-
nomenon of interest is mapped to a model, being a set of random variables and probabilistic
relationships between them. Variables are observed or latent (unobserved). To give an ex-
ample, consider the linear model

y = wT φ(x) + ε, (1)



where ε is independent noise. This model describes a functional relationship x → y ∈ R.
It is a cornerstone of Statistics, and we will see much of it in the following. Suppose we
can measure (x, y) repeatedly and independently. Here, x and y are observed, w and ε are
latent. Latent variables are query or nuisance, we want to know only about the former.
For example, w may be query (is there a linear trend in the data? are some features more
relevant than others?), ε is nuisance. w is also called parameter or weights. It is important
to note that the classification of model variables into observed, query, or nuisance depends
on the task which is addressed by the model.

Variable

observed latent (hidden)

nuisanceinterest (query)

X Y

Some statistical tasks for this model: What is the “best”
value for w representing our data? We are looking for an
estimate ŵ for w computed from the data. But maybe we
are uncertain about w (we should always be!). How does
the data change our uncertainty from before to after having
seen data? For example, can we specify a region that w lies
in with “high confidence”? Bayesian Statistics goes beyond estimators in order to address
the second problem.

Maybe we merely want to predict y for x not seen in our measurements. Now, y is latent
query, while w becomes nuisance. This ambivalence in the role of variables is resolved in
the Bayesian paradigm by treating all variables as random variables. We note that the fail-
ure to acknowledge uncertainty can lead to unexpected problems. A good example is the
phenomenon of overdispersion. When fitting basic models to data with maximum likelihood
(see Section 2.1), it is often noted that the variance of responses predicted from the fitted
model is significantly smaller than the variance apparent in the observed data. This “phe-
nomenon” indicates that uncertainties have been ignored in the process of fitting. “Best”
parameter values have been plugged in rather than admitting to uncertainties in this choice.
If these sources of uncertainty are properly accounted for, the excess in variance typically
all but disappears.

Given several models, how to compare them? Which one explains the data “best”? For model
comparison, all latent variables are nuisance, and we need a score to rank the models, given
the data. Model comparison is related to hierarchical models in Bayesian Statistics, where
hyperparameters index models or variants of a model (an example is given in Section 2.2),
and we need to estimate a “good” value. Finally, objective model validation measures the
behaviour of the fitted model on heldout test data.

The overfitting problem is central in Statistics. At some point, we may have to estimate a
single value ŵ for w, or to prefer a single model over others. However, for finite data we can
obtain better and better fits with more and more “complicated” models, say in the linear
model above with larger and larger weights w. Such “overfits” eventually reproduce the
observed data exactly, but perform poorly in test data validation. This problem arises only
because we do make a fixed choice and ignore some uncertainty. It can be controlled how-
ever by defining appropriate notions of complexity and implementing a reasonable trade-off
between good fit of observed data and low complexity. This trade-off is inherent in Bayesian
procedures, as we will see. The overfitting problem is illustrated in Figure 1.

The Bayesian approach to Statistics is sometimes depicted as more of a “religion” than
a pragmatic problem-oriented approach. We think this misses the point, and we will not
take part in such discussions. In a nutshell, Bayesianism is about the consequent usage
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Figure 1: Illustration of overfitting problem. Noisy data from a quadratic is fitted by a
line (left), a quadratic (middle), and a sixth-order polynomial (right). Fitting is done by
least squares, which is the maximum likelihood estimate for Gaussian noise. The sixth-
order polynomial fit attains smaller residual error on the data, but at the expense of an
over-complicated solution whose specifics are determined by noise (and therefore arbitrary)
away from the data. Generalization requires some form of complexity control.

of two elementary probability operations: conditioning and marginalization. Conditioning
embodies the “what if E were known” notion via

P (A ∩ E) = P (A|E)P (E)

for events A,E, and the corresponding extension to random variables via the sigma alge-
bras generated by them.1 Marginalization is the operation for abstracting away facts, “not
wanting to know about”:

P (Y ) =
∫
P (X,Y ) dX

Both operations are integral parts of probability, and all Statisticians make use of them.
In general, Bayesian Statisticians agree that the calculus of probability may have a wider
applicability than abstracting from limits of count ratios in repeatable experiments, in that
it has the potential of formalizing subjective beliefs, connecting them with real observations,
and making valid inferences by updating the beliefs using conditioning and marginalization.
Second, Bayesians insist on the complete specification of a model as joint distribution over all
relevant variables.2 This means that even variables about which no definite prior knowledge
whatsoever is available, have to be endowed with prior distributions.3 Given a complete
model, the Bayesian program for a given task simply involves identifying the roles of all
variables, conditioning on the observed ones, and marginalizing over the latent nuisance
ones, in order to make an inference about the latent query variables.

The structure of this review is as follows. In Section 2, concepts of Bayesian statistics
are introduced using the concrete example of the linear model (Eq. 1). It is shown that
complexity control is directly embodied in Bayesian analysis via Occam’s razor. In Section 3,
we introduce graphical models as convenient framework for model building and computing
inferences, stressing the importance of latent variables in order to construct realistic models.
Several different examples of graphical models are discussed. The classification problem is

1The conditional expectation E[Y |X] is defined as best predictor of Y (in least squares) given X (a
function of X).

2Covariates, i.e. variables which are always observed, may be an exception, as we will see.
3Much work has been devoted to formalize such appropriate uninformative priors or reference priors [4].

Vague but informative priors can be created using hierarchical models.



introduced together with the logistic regression model in Section 4, where we also introduce
the notion of nonparametric models and regularized estimation. Finally, Gaussian process
models are discussed in Section 5 as example of nonparametric Bayesian models.

Sections marked with an asterisk “∗” contain additional advanced material which can be
skipped at first reading without disrupting the main flow of the text.

2 Bayesian Statistics for Machine Learning

In this Section we define and motivate basic terms of probability and Bayesian statistics
relevant for Machine Learning. The linear model is introduced, the notion of complexity
control via Occam’s razor is motivated.

2.1 Concepts of Bayesian Statistics

In this Section we introduce basic concepts of Bayesian Statistics, using the example of the
linear model (Eq. 1). A good general textbook for Bayesian analysis is [3], while [4] focus
on theory. The Bayesian approach to Machine Learning has been promoted by a series of
papers of [40] and by [47]. [7] provides an introductory textbook with emphasis on neural
networks, [41] has a wider scope and provides links with coding and information theory.

The linear model is of elementary importance in Statistics, being the essential building
block in many more elaborate models. We present some simple motivating examples in
Section 2.1.1, and the linear model will lead like a red thread though the remainder of this
text. To complete the model specification, assume that the noise is Gaussian: ε ∼ N(0, σ2),
where σ2 is the noise variance (note that y ∈ R). Here, N(x|µ,Σ) denotes the Gaussian
distribution over x with mean µ and covariance matrix Σ, and we write N(µ,Σ) if x is
clear from the context. The probability density function (pdf) of the Gaussian is given by

N(x|µ,Σ) = |2πΣ|−1/2 exp
(
−1

2
(x − µ)TΣ−1(x − µ)

)
.

The Gaussian is another cornerstone of Statistics, it is maybe the most important distri-
bution family. There are several reasons for this. First, when comparing all distributions
with a given mean and covariance matrix, the Gaussian has the least structure (or addi-
tional information) among them.4 All cumulants higher than second order vanish. Losely
speaking, a Gaussian embodies mean and covariance matrix, but nothing else. Second, it is
very easy to work with Gaussians. If x is Gaussian, conditioning on or marginalizing over
some components leaves you with another Gaussian, as does any affine mapping. No other
non-trivial family of continuous distributions has such wide-ranging closure properties. Ma-
nipulating Gaussians requires some linear algebra which can seem bewildering, but becomes
manageable by concepts such as Schur complements. [61], Appendix A, provides details.

σ2 is an example for a hyperparameter. The distinction between (primary) parameters (here:
w) and hyperparameters is ultimately artificial, but often useful in structuring a problem
into a hierarchy. Think about generating the data: first, sample hyperparameters, then

4Absence of structure or information content can be measured by the differential entropy H[P ] =
EP [− log P (x)].



parameters given hyperparameters, then data given all parameters. Such hierarchical models
are a Bayesian answer to the apparent dilemma of having to specify models and priors which
are vague (in order not to exclude important aspects of the true phenomenon) using hard
model assumptions and concise distribution families with clear semantics (such as Gaussian,
linear, etc). We come back to this aspect in Section 3. The data is D = {(xi, yi) | i =
1, . . . , n}. We assume that the (xi, yi) are independent and identically distributed (i.i.d.),
given all parameters. The (complete, or joint) likelihood is the probability of the data given
all parameters:

P (D|w, σ2) =
n∏

i=1

N(yi|wT φ(xi), σ2).

P (D|w, σ2) is a product of independent terms, due to the i.i.d. assumption on D. Note
that the likelihood is really only a density over the targets {yi}, this is because our model
is conditional: we do not care about modelling the input point x, because it will always be
available at prediction (see end of Section 2.1.1).

An estimator for w is given by

ŵML = argmax
w

P (D|w, σ2),

the maximum likelihood (ML) estimator. Maximum likelihood is a very powerful estimation
principle, and is at the heart of very many Machine Learning algorithms. Any estimator of
w implies a plug-in prediction rule as ŷML(x) = ŵT

MLφ(x). ML estimators are traditionally
analyzed in a frequentist framework, where the assumption is that there is a true underlying
parameter w∗ for which repeated samples D are drawn for the purpose of analyzing proper-
ties of the estimator. Such analysis terms are generally of the form ED|w∗ [f(ŵML(D),w∗)].
Examples include the bias ED[ŵML(D)] − w∗, the covariance VarD[ŵML(D)], or the ex-
pected squared error ED[‖ŵML(D) − w∗‖2]. An estimator is called unbiased if its bias is
zero for any w∗. Many proven frequentist properties are asymptotic, in the sense that they
hold true as the sample size n → ∞. Many theoretical results about ML can be found in
[11].

However, with ML estimation problems of overfitting arise if w is high-dimensional as com-
pared to the number of datapoints n. We also note that the model so far is not completely
specified. Namely, what are the distributions of the parameters? The Bayesian paradigm
which allows us to move beyond parameter estimation, requires that prior distributions are
specified for all variables. In our example, we might assume the prior P (w) = N(0, I),
favouring no direction in particular, but coding a bias for smaller weights w rather than
larger ones.5 Having done so, we can obtain the posterior distribution of w after having seen
the data. This is a simple exercise in probability, recalling that knowing a variable means
conditioning on it. First, we have P (D,w|σ2) = P (D|w, σ2)P (w). Next,

P (w|D,σ2) =
P (D,w|σ2)
P (D|σ2)

, P (D|σ2) =
∫
P (D,w|σ2) dw. (2)

This is sometimes called Bayes formula, but is really a basic fact of probability. Bayesians
use this formula in order to implement coherent and consistent inference (going from prior
to posterior).

5We consider σ2 fixed and given in the moment. We can always do such a conditional Bayesian analysis
first, then extend it later.



The posterior is the Bayesian solution to the “confidence region” task mentioned above. It
exactly quantifies our remaining uncertainty in w given the data. We can obtain a “Bayesian
estimate” of w by extracting mean, mode, or median, but a more useful report includes
size and shape of the region of high posterior mass. Of course, the posterior depends on
the prior, thus our report will be subjective, but it is important to note that any report
from finite data will always be subjective: why this model (and no other)? Why only these
variables (and no more)? Why Gaussian noise? While it is sometimes possible to at least
motivate certain individual choices in a more or less objective manner, this is hardly ever
possible for the combination of many choices which lead to a model specification.

The prediction task mentioned above is solved by marginalizing over (i.e. integrating out)
the parameters, in order to obtain the predictive distribution:

P (y|x,D, σ2) =
∫
P (y|x,w, σ2)P (w|D,σ2) dw.

Marginalization is the correct way of dealing with nuisance variables (recall that for the
prediction task, w is nuisance).6 Again, we can estimate our “best” prediction of y as
mean or mode of P (y|x,D, σ2), but reporting more features of the predictive distribution is
more versatile. For example, the variance of P (y|x,D, σ2) can be used to obtain “Bayesian
confidence intervals”.

We should really marginalize over σ2 as well, but we run into the most common problem
with Bayesian inference in practice: the required integral is not analytically tractable. We
can either use an approximation, or we can settle for an estimate at this point. The Bayesian
community splits at this point: some “fundamentalists” reject estimates in general, while
other empirical Bayesians advocate careful estimation procedures at least for hyperparam-
eters, keeping in mind that overfitting might arise. The normalization quantity P (D|σ2)
in Eq. 2 is called marginal likelihood (or evidence, or partition function). A general empir-
ical Bayes estimate of σ2 is obtained as a maximum of P (D|σ2), or of the hyperposterior
P (σ2|D) ∝ P (D|σ2)P (σ2). We will motivate this estimator in Section 2.3, and note here
merely that it is an instance of the maximum a posteriori (MAP) approximation: instead
of averaging P (y|x,D, σ2) over the posterior P (σ2|D), we plug in a maximum point σ̂2 of
P (σ2|D), which can be seen as “averaging” over the point distribution δσ̂2 .

More general, marginal likelihoods can be used for model comparison, for example the Bayes
factor P (D|M1)/P (D|M2) can be used to compare models M1 and M2 (with all parameters
marginalized over) [37].

2.1.1 Examples of the Linear Model [*]

In this Section, we motivate the linear model of Eq. 1 using some elementary examples. A
classic text on basic pattern recognition techniques and their analysis is [16], which contains
details about the examples here and many others. Suppose that data xi ∈ Rd can come
from two different populations ci ∈ {1, 2}. We can model this situation by assuming that
xi ∼ N(µ1,Σ) if ci = 1, and xi ∼ N(µ2,Σ) if ci = 2. Having specified P (xi|ci) this way,

6It is sometimes advocated to maximize over latent nuisance variables, but in general this leads to
unwanted bias ([72], Sect. 4.3.4, describes the problem and gives references), or to overfitting.



and assuming that P (ci = 1) = p, P (ci = 0) = 1− p, it is an easy exercise to the reader in
probability to compute the conditional distribution

P (ci = 1|xi) = λ
(
aT xi + b

)
, a = Σ−1(µ1−µ2), b = log

p

1− p
+

1
2
µT

2 Σ−1µ2−
1
2
µT

1 Σ−1µ1,

where λ(u) = (1 + e−u)−1 is the logistic function, strictly increasing from 0 to 1. Thus, our
simple class-conditional Gaussian setup implies a linear model for the conditional distribu-
tion P (ci|xi) which can be used to predict the class ci for unseen points xi. The setup also
renders particular semantics to the parameters (a, b), which hold if the class-conditional
model is reasonable for the task at hand. In this case, the parameters may be estimated by
ML (see Section 2.1) which amounts to plugging in sample averages for µ1, µ2, and Σ. This
example is interesting also because the linear model is embedded (into the logistic function)
rather than directly applied to real-valued targets as in Eq. 1. We discuss such embedded
(or generalized) linear models in Section 4.1.

Another example is given by analysis of variance (ANOVA) models of the additive type.
The general idea is that a measurement y may exhibit variance from different sources,
and an ANOVA model allows us to unravel these factors. ANOVA models are hierarchical,
associating the entity for each observation to groups at different levels. In a clinical study,
yi,j,k may be associated with gender k, age group j, and index i within gender-age group. We
could then model yi,j,k = w + wk + wj,k + εi,j,k, w being the over-all mean, wk the gender-
specific contribution, wj,k the gender-age-specific contribution, and εi,j,k accounting for
variability within gender-age group (j, k). If we collect all parameters into w, this becomes
a linear model, where the xi,j,k contain the group attributes, and φ(xi,j,k) is a vector of zeros
and ones coding these attributes. w is given a zero-mean Gaussian prior whose covariance
matrix may encode assumptions about the levels of the hierarchy. For example, w may be
thought to have higher variance than wj,k. Treating this ANOVA model in a Bayesian way
would amount to determine posterior covariances for the w components which gives an
answer to the distribution of variance problem. Details about this view on ANOVA can be
found in [8].

Finally, the Naive Bayes (or Idiot’s Bayes) classifier [42] is popular in Machine Learning.
Suppose, xi ∈ {0, 1}d has to be classified according to ci ∈ {1, . . . , C}. If d is large, the class-
conditional distributions P (xi|ci) cannot be fitted reliably from moderate amounts of data.
The Naive Bayes classifier is obtained by making the model assumption that P (xi|ci) =∏d

j=1 Pj(xi,j |ci), namely that the components of xi are independent if the class ci is known.
This assumption leads to a dramatic reduction in the number of parameters to be estimated
from data. Namely, let wj,c = log[Pj(xj = 1|c)/(1− Pj(xj = 1|c))]. We have that

Pj(xj |c) = Pj(xj = 1|c)xj (1− Pj(xj = 1|c))1−xj = exp (xjwj,c − log(1 + ewj,c)) .

Introduce w0,c and let wc = (w0,c, . . . , wd,c)T and x̃ = (1,xT )T . Then,

P (x, c) = P (c)
d∏

j=1

Pj(xj |c) = exp(wT
c x̃), w0,c = logP (c)−

∑
j

log(1 + ewj,c).

Again, (P (c|x))c is given as a increasing mapping of the linear functions wT
c x̃. The mapping

is a multivariate generalization of the logistic function and is known as softmax mapping
(see Section 4.1). The likelihood for some data {(xi, ci)} is given by exp(

∑
i w

T
ci

x̃i), which



can be maximized under a constraint on the w0,c (since
∑

c P (c) = 1). The ML estimate
can be computed analytically and amounts to plug in empirical sample counts for the
corresponding Pj(xj |c) and P (c).

Finally we note an important point. Both in the class-conditional Gaussian and in the Naive
Bayes model, the linear model can be identified as underlying building block. However, by
the class-conditional property of these models (meaning that P (x|c) are specified explicitly),
these models also come with fixed parameter semantics. In other words, if we talk about
parameter estimation in these models, we mean estimation of the class-conditional densities
(for example, of the class means and covariance matrix in the Gaussian model). The role
of the linear model in these cases is very different from the role it will play in much of
the remainder of this text, where w is typically unconstrained, and estimation of w is
based directly on the likelihood of the data yi|xi given w. The reader will appreciate this
difference by contrasting the treatment in Section 2.1 from the class-conditional examples
here, where w is in fact a mapping from the parameters of the class-conditional densities.
Members of the latter class (like Naive Bayes) are called generative, joint, or sampling
methods, while methods like the inference of Section 2.1 are called diagnostic, predictive,
conditional, or sometimes discriminative. An important property of generative methods is
that an estimate of the marginal P (x) is always obtained as side product, while this is not
the case for predictive techniques. On the other hand, predictive methods often come with
many less parameters to be fitted from data. Both paradigms come with their strong and
weak points, and it is not possible to favour one uniformly over the other. [49] give some
comparative arguments. Hybrids between joint and conditional methods are used to address
the problem of semi-supervised learning ([60] provides a review) where an additional pool
of unlabeled data is available to aid predictions x→ y from labeled data D.

2.2 The Linear Model: A Bayesian View

In this Section, we give a concrete example for Bayesian analysis for the linear model (Eq. 1).

Recall our Bayesian setup of the linear model from Section 2.1. Consider σ2 fixed for the
moment. Let y = (yi)i, ε = (εi)i, i = 1, . . . , n. Also, write X = (φ(x1) . . .φ(xn))T ∈
Rn,p, where w ∈ Rp. The joint distribution P (w,y|σ2) is Gaussian, therefore the posterior
P (w|y, σ2) is Gaussian as well and can be obtained by collecting the terms depending on
w only (exercise to the reader!):

P (w|y, σ2) = N
(
M−1XT y, σ2M−1

)
, M = XT X + σ2I. (3)

Since the posterior is Gaussian, mean and mode are the same and give rise to the Bayesian
estimate E[w] = M−1XT y. Furthermore, regions of large posterior mass are ellipsoids
around that point. The shape of these reveals how well certain linear combinations of feature
components of φ(·) can be estimated from the data. For example, if v is an unit eigenvector
with small eigenvalue λ of the posterior covariance σ2M−1 (i.e. with large eigenvalue of M ),
then the contribution of vT φ(x) to y is well determined by the data, because the posterior
variance Var[vT w] = σ2vT M−1v = λ is small. The predictive distribution is obtained by
marginalizing over w in y = wT φ(x) + ε:

P (y|x,D, σ2) = N
(
yT XM−1φ(x), σ2(1 + φ(x)T M−1φ(x))

)
. (4)



If we ignore the noise in the predictive distribution (why should our prediction be corrupted
by noise?), the “1+” is dropped. We can now compute a best estimate of y under any loss
function (by minimizing the expected loss, where we use predictive expectation) and an
uncertainty estimate from the predictive mean and variance.

What to do with the noise variance σ2? We can compute the posterior of σ2 for a reasonable
prior, but marginalizing over σ2 is not tractable. The marginal likelihood P (y|σ2) is Gaus-
sian. We have that y = Xw + ε. Since w ∼ N(0, I) and ε ∼ N(0, σ2I) are independent,
we have that

P (y|σ2) = N
(
0,XXT + σ2I

)
, (5)

because E[yyT ] = XE[wwT ]XT +E[εεT ] = XXT +σ2I. We can estimate σ2 by empirical
Bayesian maximization of logP (y|σ2), which can be done using a gradient-based nonlinear
optimizer. We then plug in this estimate σ̂2 into the predictive distribution. As mentioned
in Section 2.1, this is an example for a MAP approximation.

If the linear model is treated in a Bayesian way, many parallels to the classical treatment
open up. [8] make this point in all details, here we just note some obvious ones. The max-
imum likelihood estimator for w is known to be obtained as a solution to Gauss’ normal
equations:

ŵML =
(
XT X

)−1
XT y, (6)

if XT X has full rank. We note that if σ2 → 0, then the posterior mean E[w]→ ŵML, and
the posterior covariance converges to 0 as σ2(XT X )−1. Therefore, as the noise variance
goes to 0, we retrieve the maximum likelihood estimate together with the ML “asymptotic
variance”. It is known that noisy, high-dimensional data leads to stability problems with the
ML estimator, through the presence of small eigenvalues in XT X . The Bayesian method
suggests that this may be due to non-accountance for the noise. In fact, the “trick” of re-
placing XT X by XT X +σ2I with a small σ2 > 0 has been given a justification as shrinkage
estimator [31] seemingly independent of the Bayesian view, although the underlying idea is
the common one of having to control complexity in the presence of noise.

2.2.1 Data and Feature Dimensionality [*]

Recall that the linear model has feature (or weight space) dimensionality p and is fitted using
n datapoints. Call n the data dimensionality. Some terms important for Bayesian analysis
have been shown to be analytically tractable in Section 2.2, but for practical applications it is
important to understand how these computations scale, and whether there are alternative
forms which are cheaper and numerically more stable to compute. For the linear model,
all relevant terms (posterior mean, predictive distribution, and marginal likelihood) can
be computed in O(min{p, n}p n). We need the elementary Sherman-Morrison-Woodbury
formula, [52], Sect. 2.7:(

A + BC−1D
)−1 = A−1 −A−1B

(
C + DA−1B

)−1
DA−1, (7)

which holds whenever all inverses exist. We also have that

|I + UV | = |I + V U | . (8)

Recall that M = XT X +σ2I ∈ Rp,p. The posterior of Eq. 3 and the predictive distribution
of Eq. 4 are computed using the Cholesky factorization, [28], Sect. 7.2: M = LLT where L



is lower triangular. Computing the factorization costs O(p3) and is much more numerically
stable than inverting M . We have that M−1x = L−T L−1x, which can be computed in
O(p2) using back-substitution. But what if p > n? Let A = XXT + σ2I ∈ Rn,n. We can
employ Eq. 7 to rewrite both expressions Eq. 3, Eq. 4, arriving at (exercise to the reader!)

P (w|y, σ2) = N
(
XT A−1y, I −XT A−1X

)
and

P (y|x,D, σ2) = N
(
yT A−1Xφ(x), σ2 + ‖φ(x)‖2 − (Xφ(x))T A−1Xφ(x)

)
. (9)

For later use, we note that Eq. 9 is written entirely in terms of inner products φ(x)T φ(x′)
for x, x′, we never need to represent Rp vectors explicitly. Apart from that, the Cholesky
factorization of A (but not of M ) is required.

The marginal likelihood is P (y|σ2) = N(0,A) from Eq. 5 and can be computed us-
ing the Cholesky factorization of A. If n > p, we can use Eq. 7 once more to obtain
A−1 = σ−2(I −XM−1XT ), furthermore Eq. 8 results in |A| = (σ2)n−p|M |. Therefore,
the marginal likelihood can be computed in O(np2), requiring the Cholesky decomposition
of M .

To conclude, if data dimensionality n and feature dimensionality p are very different, the
Bayesian computations can be done in time complexity O(min{p, n}2 max{p, n}), scaling
linearly in the larger one. The space complexity is O(min{p, n}2), and the computations
which scale linear in max{p, n} are in fact inner products of columns or rows of X . Working
in the smaller of the two dimensionalities is important not only for time and memory reasons,
but also to ensure better numerical stability.

2.3 Occam’s Razor in Bayesian Statistics

We already noted in Section 1 that a central trade-off to be faced when approaching sta-
tistical problems in a feasible way, is one between data fit and model complexity. Recall
that in principle, Bayesian marginalization allows to circumvent the problem entirely: the
predictive distribution makes use of all variations of the model, or even of a number of
models, with the correct weighting being supplied by the posterior.

In practice, Bayesian marginalization is not feasible for all but very simple models. For
example, in the linear model (Eq. 1) we cannot marginalize over σ2 analytically. As noted
in Section 2.1, a general idea is to replace the marginalization of a hyperparameter α by
plugging in a maximum point of the marginal likelihood P (D|α). As with any estimation
process, overfitting may arise as a problem if we do not somehow penalize “complicated”
solutions (which always achieve a better fit than “simple” ones). However, we present some
arguments why this particular empirical Bayes procedure in fact has a strong complexity
control built in. The principle of Occam’s razor in Science makes us prefer a simpler theory
over a more complicated one (i.e. one that needs more basic axioms) if both explain obser-
vations equally well. To us, Occam’s razor is no more than an empirical observation about
how the world works, albeit an extremely powerful one. We follow [40] in motivating how
Occam’s razor is embodied in empirical Bayes. Suppose we have a model with parameters
w and hyperparameter α. If the posterior P (w|D,α) is sharply peaked around wMAP with



covariance matrix Σpost, and the prior P (w|α) spreads widely with some covariance matrix
Σprior, such that wMAP does not lie in its extreme tails, we can write

P (D|α) =
∫
P (D|w, α)P (w|α) dw ≈ P (D|wMAP , α)

(
|Σpost|1/2

|Σprior|1/2

)
. (10)
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The proof is given at the end of this Section. The right hand
side is the product of the likelihood for wMAP , measuring
the goodness of fit of our guess wMAP given α, and of the so
called Occam factor. The latter measures the complexity of
the model for fixed α. If the model is complicated, the Occam
factor is small, because the prior mass must be spread over
many values of w, and the posterior is sharply peaked due
to the specificity of the model.

On the other hand, for a simple model the Occam factor
is large, because the prior needs to cover less options, and also the posterior has a larger
spread, because more variants of the simple model are close to the best fit (which may not be
very good). Therefore, maximizing P (D|α) implements a trade-off between good fit (large
P (D|wMAP , α)) and low complexity (large Occam factor). Maximizing a marginal likelihood
is often much more robust against overfitting than maximizing a joint one. The Bayesian
paradigm states that latent variables should be marginalized rather than maximized over,
and usually it is observed to be better in practice to do part of the job than not doing
it at all. As a rule of thumb, one should preferentially integrate out variables which are
directly related to the data, in the sense that their posterior is most strongly dependent on
the data. In terms of a hierarchical model, variables at lower levels should preferentially be
marginalized over.7 In the example of the linear model, it is more sensible to integrate out
w and maximize for σ2, than vice versa (which is indeed possible as well, see Section 2.4).

We conclude that empirical Bayesian estimation embodies a strong notion of complexity
control by maximizing the marginal likelihood, in contrast to classical maximum (joint)
likelihood estimation where complex models are always preferred (there is no Occam factor).
Techniques such as regularization or penalized ML (see Section 4.2) are used to remedy the
classical techniques. However, other than Bayesian inference and marginalization, empirical
Bayes is not a generally coherent procedure. It can fail badly, and one should always try to
find independent justifications in a special case.

We finally provide the details for Eq. 10. Dropping the conditioning on α, we have that
P (D) = P (D|w)P (w)/P (w|D) for any w. We plug in ŵMAP and approximate the pos-
terior by a Gaussian with the same mean and covariance matrix, which is justified if the
posterior is sharply peaked. Thus, P (D) ≈ P (D|ŵMAP )P (ŵMAP )|2πΣpost|1/2. For a fairly
flat prior, |Σprior| is large, and P (ŵMAP ) ≈ |2πΣprior|−1/2 can be justified. Plugging this
in, we obtain Eq. 10.

2.4 Sparse Bayesian Learning. Automatic Relevance Determination [*]

Automatic relevance determination (ARD) [47] is a powerful application of empirical
Bayesian estimation relevant for Machine Learning. When applied to feature selection in

7This is merely a rule of thumb, and examples violating it can be constructed.



the linear model (Eq. 1), one obtains the framework of sparse Bayesian learning (SBL) [70].
Suppose that the p features contain many candidates, but we expect that only a small num-
ber of them are required to explain our data. In other words, we expect a good weight vector
w to be sparse, in that most components wj = 0. In SBL, this is addressed by placing a prior
P (w) on w which favours such sparse vectors. The prior P (w) = N(0, I) of Section 2.1
does not have this property.8 Let us introduce a hyperparameter λj for every component
wj of w, and let P (w|λ) = N(w|0,diag λ). λj is the prior variance of wj . Furthermore,
the λ−1

j are given independent identical Gamma hyperpriors: P (λ−1
j ) ∝ λ1−a

j exp(−b/λj).
The important point to understand is that a, b are chosen s.t. most of the hyperprior mass
is at small values of λj : effectively λj is pushed to attain very small values. Since λj is the
(prior) variance of wj around 0, this also forces wj a priori to near-zero values. On the other
hand, significant hyperprior mass is available for large λj as well, allowing some of the wj

to become large. This effect can be studied directly by observing that the marginal prior
P (w) (obtained by integrating out λ) is a product of Student t distributions, one for each
wi. The reader is encouraged to consult the plots given by [70], who compares P (w) with
the conventional N(0, I) and motivates the sparsity-favouring characteristics of the former.
Much of the mass lies in spines along the coordinate axes (for p = 2), i.e. in regions where
most of the wj are almost zero. This is not the case for N(0, I), where high mass regions
are balls or shells around 0. The setup is an example for ARD where sparsity-favouring
priors are placed on weight vectors, which lets inference make use of relevant components
only (in light of the data), forcing irrelevant ones close to zero. ARD is quite different in
spirit to other “combinatorial” feature selection techniques, such as greedy forward selec-
tion. In order to find a relevant subset, several iterations of inference with the “full” model
(all features are relevant) have to be done within a smooth non-convex optimization for the
relevance weights (the λj in our example).

A strict Bayesian treatment of this model would not even amount to the selection of features,
since w and λ were integrated out for predictions. Note that selection can be seen as a form
of estimation. However, while it is possible to marginalize over either of them in isolation, the
marginalization over both is intractable. [70] suggests to integrate out w, then to maximize
the remaining marginal likelihood P (y|λ) w.r.t. λ. On most datasets, this results in many
of the λj becoming very small, whereby they can be eliminated from the model. SBL can
be contrasted with other commonly used sparsity-favouring linear model techniques by
considering the alternative option of integrating out λ and maximizing logP (y,w) w.r.t.
w, equivalent to maximizing the sum of the log likelihood and a penalty logP (w) which is
a sum of Student t distributions. Related techniques are obtained by replacing this penalty
by ‖w‖1 =

∑
j |wj | or by ‖w‖0 =

∑
j I{wj 6=0}. Theoretical arguments suggest that ‖ · ‖0

penalization leads to sparsest solutions, then Student t, then ‖ · ‖1. On the other hand,
for ‖ · ‖1 penalization the search for w is a simple convex problem (with a unique solution
and no local minima), while for ‖ · ‖0 penalization the problem is NP hard in general. [77]
show that at least for the noiseless case (σ2 → 0 in the linear model), a corresponding
limit of the SBL technique has far fewer local minima one can get trapped in than direct
local ‖ · ‖0 minimization methods, while the methods have the same global minimum. This
strongly suggests that the maximization of P (y|λ), while being a hard non-convex problem,
is less prone to getting trapped in a shallow local minimum than direct local “hill-climbing”
methods which focus on maintaining a small ‖w‖0.

8In high dimensions, most of the mass of N(0, I) lies in a thin shell at radius ≈ √
p.



2.5 Markov Chain Monte Carlo [*]

In Section 2.1, we have already encountered a case where high-minded Bayesian inference
got stuck with an intractability (of marginalization over σ2). In fact, the basic linear model
is very special in that some of the basic inference tasks are tractable, but what if there are
uncertainties in the features, or in hyperparameters of the prior distributions? It is fair to
say that the value of the Bayesian framework to practitioners would be very low indeed,
were it not for a very general and powerful computational technique with which the required
marginalizations can be approximated: Markov chain Monte Carlo (MCMC). Originated in
Physics, this idea is used in many fields beyond Statistics. We cannot provide more than
very basic ideas here. There is a bewildering array of more or less specialized techniques,
and certainly none of them can be recommended uniformly, even for small classes of models.
MCMC in Statistics is far from a black box method and often requires considerable expert
knowledge to even assess basic validity of results. On the other hand, MCMC is converging
to the correct answer in the limit of large running time, which is not the case for most other
approximate inference techniques. A very good and detailed overview of MCMC is given by
[46], see also [19]. BUGS [66] is a general system which allows the graphical specification of
a model, for which inference is approximated using Gibbs sampling.

Marginalization boils down to computing integrals I =
∫
f(x)p(x) dx, where p(x) is a pdf.

For discrete x, replace the integral by a sum. If we had an i.i.d. sample {x(i)} from p, and
f is well-behaved, then n−1

∑
i f(x(i)) converges to I in probability with a rate of about

O(n−1/2). This is called a Monte Carlo estimate, and MCMC is a technique to obtain such
a sample {x(i)}. To this end, we start from an arbitrary value x1 and apply randomized
transitions xt → xt+1 until after some T steps we can be sure that the distribution of
xT is close to p. Repeating this process for independent starting values, we obtain the
desired sample. For MCMC, (xt) is a Markov chain with homogeneous transition kernel
T (x∗|x), denoting the conditional pdf of xt+1 given xt, for any t. The kernel has to fulfil the
somewhat opposite properties of ergodicity and nonperiodicity (ensuring that all transitions
between any two states do have positive probability) and of leaving the target density p(x)
invariant, meaning that if xt ∼ p, then xt+k ∼ p for all k ≥ 0. Since any kernel is a
contraction (by definition of being a pdf), the MC will converge against its unique limit
(or stationary) distribution p, meaning that for large T , the distribution of xT is ever
closer to p. Detailed balance is a simple criterion implying invariance for p: we require that
T (x∗|x)p(x) = T (x|x∗)p(x∗) for all x,x∗.

Maybe the most general way of constructing such a kernel T (x∗|x) for given p(x) is the
Metropolis-Hastings (MH) technique [44, 23]. We need some conditional proposal distribu-
tion q(x∗|x). For the step xt → xt+1, sample x∗ ∼ q(·|xt), compute

α = min
{

1,
q(xt|x∗)p(x∗)
q(x∗|xt)p(xt)

}
.

Now, with probability α accept xt+1 = x∗, otherwise reject x∗ and let xt+1 = xt. This
update satisfies detailed balance for p. Note that if q(x∗|x) = q(x|x∗) (symmetry), then
α = min{1, p(x∗)/p(xt)}, so states of higher density than the current state are always
accepted, while states of lower density are rejected with probability 1− p(x∗)/p(xt). There
is a tendency to seek regions of higher p volume (or lower p energy). It is important to
note that in order to use the MH rule, p(x) has to be known only up to a multiplicative



constant. For example, in Bayesian marginalization p is the posterior proportional to the
joint distribution of data and parameters, and the latter can often be computed easily, while
the normalization is intractable.

A special case of the MH rule is very popular in Machine Learning under the name of
Gibbs sampling [17]. Suppose that x = (xj)j , and denote x−i = (xj)j 6=i. Assume that the
full conditional densities p(xi|x−i) can all be sampled from feasibly. A single Gibbs sweep
starts from x∗ = xt, runs over the components in some order, replacing x∗,i by a sample
from p(·|x∗,−i), finally setting xt+1 = x∗. Note that there is no rejectance here, and that
the full conditionals serve as natural proposal distributions.

The main problem with MCMC in practice is to assess when convergence of the chain to
p or a distribution very close by has occurred. For simple, yet nontrivial methods, the idea
of exact sampling [53] provides an exact test, but in general for a complicated model one
can never be sure. A key idea for many convergence diagnostics is the notion that the chain
has converged once all information about the starting state x1 is lost. A good sampler
takes into account properties of the model and the data. For some applications, it makes
sense to analytically marginalize over parts of x if that is possible (Rao-Blackwellization;
the variance in the sample is reduced that way). For others, it pays to extend the state
space by auxiliary variables a, and jointly sample (x,a), which can help faster exploration
by allowing for bolder transitions (w.r.t. x) to be accepted more frequently. The auxiliary
variables can also be used to allow the resampling of x given a to somehow adapt to local
properties of p (which is important to prevent inefficient random walk exploration) while
maintaining detailed balance for the joint (x,a) chain.

3 Latent Variables. Graphical Models

In this Section, we will describe some general techniques of how to build more complicated
and useful models from simple ingredients. We will also see that Bayesian computations
such as inference and learning can be treated in a powerful common framework.

3.1 Graphical Models

The area of graphical models is of central importance today in Statistics, Machine Learn-
ing, Statistical Physics, and Information Theory, and whole conferences (such as UAI) are
devoted to this field. We cannot provide more than a simple flavour, but refer the reader to
[34, 32, 39, 51, 33]. We will be concerned mainly with directed graphical models (Bayesian
networks), alluding to undirected ones (Markov random fields) only briefly in Section 3.5,
and skipping other variants such as chain graphs.

If you scribble a model on a piece of paper, chances are you will draw something like
a Bayesian network. You will probably draw a graph with variables as nodes, and then
represent direct causal relationships by arrows (see Figure 2, left). If a node (variable) V
has parents (nodes with outgoing edges pointing to V ) W1, . . . ,Wk, you probably intend
to say that one knows how to sample a value for V , given that values for W1, . . . ,Wk are
known (and values of other nodes are not required). In probability speech:

P (V |all others) = P (V |W1, . . . ,Wk)
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Figure 2: Left: Node V and its parents Wj in a Bayesian network. Right: The linear model
as Bayesian network. The CPT P (y|x,w, σ2) is N(wT φ(x), σ2I), and P (w) = N(0, I). ε
is a pure nuisance variable and has been pruned from the model.

You will just have re-invented graphical models then! The Bayesian network graph for the
linear model is given in Figure 2, right. Given a graph, a model is completely specified by
fixing a conditional distribution P (V |W1, . . . ,Wk) for every node V with parentsW1, . . . ,Wk

(historically called conditional probability table, CPT). An exception are covariates (vari-
ables which are always known), whose CPTs do not have to be specified. x is a covariate in
the linear model. The box in Figure 2, right, is a plate: the variables inside a plate are sam-
pled i.i.d., given the variables projecting into it. Observed variables are typically represented
by shaded nodes.

Graphical models are immensely useful for designing and communicating models. Surpris-
ingly, they also allow for a unified treatment of common statistical tasks such as Bayesian
inference (computing posteriors for latent variables) or reading off implied conditional inde-
pendencies. Inference can be done by clustering nodes in a certain way, then passing “mes-
sages” (conditional distributions) between the node clusters. The complexity of inference
can be read off this cluster graph. For certain classes of models, all nodes are discrete and
all CPTs are really given as tables. For others, such as our linear one (or multi-layer percep-
trons), the CPTs are represented by (complex) functional relationships, and the graphical
model view is maybe less useful. However, it is of immense use to understand all models in
a common framework. We will give an example for this advantage through unification in
the Sections to follow.

3.2 Mixture Models. EM Algorithm

Statisticians have developed and studied a wide range of elementary distribution families,
such as the Gaussian, Gamma, multinomial, Poisson, Student t,etc, whose characteristics are
very well known. But how to model a variable x which shows non-elementary characteristics?
For example, what if we know that the density of x has more than one mode? We can build
complicated distributions from simple ones by introducing new latent variables. In almost
all cases, such latent variables are nuisance: we “invented” them to make the model more
expressive, so there is no gain in obtaining explicit information about them.
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For example, we could introduce a discrete c ∈ {1, . . . , C} and
assume that P (x|c) = N(µc, σ

2), P (c) = πc. Marginally we
have

P (x) =
C∑

c=1

P (x|c)P (c) =
C∑

c=1

πcN(x|µc, σ
2), (11)

a mixture distribution. Note that P (x) can be much more com-
plicated than a single Gaussian. It can have multiple modes,
and if C is large enough, a very large class of distributions can
be well approximated by a Gaussian mixture.

In fact, it is safe to say that almost all useful model building can be reduced to combining
elements from a rather small “statistical toolbox” by way of introducing convenient latent
variables, and using the “language” of graphical models. The step from an elementary family
(say, Gaussians) to a mixture of these is a very useful template for model building and has
been used frequently in Machine Learning, even in order to extend the linear model [35]. A
standard textbook on mixture distributions is given by [72].

Latent variables introduced for the purpose of a better model are nuisance, and the correct
way of dealing with them is to marginalize over them. The expectation maximization (EM)
algorithm [15] can be used to maximize the marginal likelihood for a mixture model. It is a
special case of a variational technique (see Section 3.2.1), and can be motivated as follows.
We have i.i.d. pairs (xi, ci), where ci is latent. If ci were known, we could write q∗i,c = I{ci=c}
(here, IA = 1 if A is true, IA = 0 otherwise), and the ML estimate would simply be

µc = (
∑

i

q∗i,c)
−1
∑

i

q∗i,cxi, πc = n−1
∑

i

q∗i,c. (12)

Note that q∗i = (q∗i,c)c are deterministic distributions. If the ci are completely unknown,
we can adopt a “Münchhausen strategy” of bootstraping. We first use the current setting
{µc,π} in order to estimate the q∗i by the posterior marginals:

qi,c ← P (ci = c|xi,µ,π) =
N(xi|µc, σ

2)πc∑
c′ N(xi|µc′ , σ2)πc′

.

The computation of qi is known as E step. Next, we plug in these estimates for the true
q∗i into Eq. 12, obtaining new parameters. This is the M step. EM involves iterating E and
M steps until convergence. We show in Section 3.2.1 that EM converges monotonically to
a local maximum of the marginal likelihood. Note that we can also maximize the marginal
likelihood by gradient ascent, the gradient computation involves marginal inference like in
E steps. The advantage of EM in practice lies in the M steps being very simple to execute.
For example, if the corresponding ML estimator is analytically tractable for all ci being
known, the M steps come in exactly the same form after some reweighting of the data.

We close this Section by a very important remark which transcendents the area of graphical
models, and for which EM is but a simple example. Learning parameters by maximum like-
lihood or related Bayesian approximations can in general be reduced to marginal inference
for the latent nuisance variables. Here, “marginal” means over cliques (maximal fully con-
nected components) of the model. This fact remains true for undirected graphical models
(see Section 3.5), but we need marginal inference over observed response variables as well.
In general, the key to successful parameter learning is a good approximation of marginal
inference.



3.2.1 Variational Mean Field [*]

In this Section, we show why the EM technique of Section 3.2 works, and how the idea
can be generalized in order to obtain variational mean field approximations to learning in
the presence of latent variables. [74] gives a wide and deep overview of variational approx-
imations, see also [33]. In a nutshell, a variational technique solves a problem of inference
or marginalization (approximately) by phrasing it as an equivalent optimization problem
(a relaxed version of) which is solved. Many variational techniques are based on convexity
properties. A good elementary book on convexity and convex optimization is given by [9],
while [56] contains a wealth of material.

Recall that the EM technique is used to minimize the negative log likelihood of
data {x1, . . . , xn} for the mixture model of Eq. 11. The criterion is a sum of terms
− log

∑
c πcP (xi|c). If we could pull

∑
c outside, this would be a standard ML estimation

problem which we know how to solve. We use a property of − log u called convexity.
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f(u) is convex if at any u0 one can find a linear lower
bound on f which touches at u0:

f(u) ≥ g(u0)(u− u0) + f(u0). (13)

Clearly, − log u is convex on its domain u > 0. If f is
convex, we have Jensen’s inequality:

E[f(u)] ≥ f(E[u])

This holds for any distribution of u with support contained in the domain of f . It is easy
to see from Eq. 13 by setting u0 = E[u]: E[f(u)] ≥ E[g(u0)(u− u0) + f(u0)] = f(u0). As for
our marginalization problem, we have

log
∑

c

πcP (xi|c) = log
∑

c

qi,c
πc

qi,c
P (xi|c) = log Eqi

[
πc

qi,c
P (xi|c)

]
≥
∑

c

qi,c log
πcP (xi|c)

qi,c

for any distribution qi over {1, . . . , C}, using Jensen’s inequality with f = − log and Eqi
[·].

We can maximize the lower bound (thus tighten the inequality) by choosing qi,c ∝ πcP (xi|c),
thus qi,c = P (ci = c|xi), the marginal posterior. Since the bound touches the true log
marginal likelihood at these qi, it is clear that the latter is never decreased in M steps. In
theory, convergence of EM may be hampered by the marginal likelihood being unbounded
above, but in practice this poses no problems. Since the bound and the log marginal likeli-
hood have the same gradient at the current parameters, convergence of EM implies that a
local maximum of the marginal likelihood is attained.

More generally, we have latent variables h and observed variables o, and Jensen’s inequality
gives

logP (o) ≥ EQ[logP (o,h)] + EQ[− logQ(h)]. (14)

This bound is maximized by choosing Q(h) = P (h|o), the posterior, but it holds for any
Q. In a generalization of EM, we maximize the bound w.r.t. Q in the E step, and then
maximize the lower bound w.r.t. model parameters in the M step. We see from Eq. 14 that
ML for known h = h∗ and the M step are closely related: the former uses Q = δh∗ .



The E step in EM for mixture models is simple, because the posterior over the ci factor-
izes and can be computed tractably. In general, this is not the case, and we may have to
settle for an approximate bound maximizer Q. The variational mean field9 approximation
works by allowing for factorized variational distributions Q only (completely in all compo-
nents, or in blocks of components). We can maximize the bound for any single of the Q
factors, keeping all others fixed, and the E step involves iterating this until convergence.10

Structured variational approximations follow a different line, in that they constrain Q to
lie in a simpler distribution family, for example with a graphical structure which allows for
tractable marginal inference (for example: trees, see Section 3.3). Note that the property of
EM to attain a local maximum of the true marginal likelihood is lost in general if we use
posterior approximations Q only. The link between EM and variational approximations has
been introduced to Machine Learning by [26]. EM is an instance of the class of alternating
minimization procedures which has been studied in Information Theory [14].

3.3 Hidden Markov Models. Belief Propagation

How do we model data with a dependency structure? Suppose we observe a sequence
(x1, . . . , xT ), where it does not make sense to assume the single xt are independent given
some parameters. For example, the sequence could be the acoustic recording of a spoken
sentence, a nucleotide sequence of a chromosome, or a time series of weather-related mea-
surements. We might observe a number of independent sequences of potentially different
length, but within a sequence we would like to model some temporal or spatial coherence.
A powerful and frequently used model in Machine Learning is the Hidden Markov model
(HMM) [54]. The HMM is maybe the simplest model for which the full power of the Bayesian
network view can be demonstrated, and in fact methods such as inference by message pass-
ing were developed for HMMs long before the general view was available. Its simplicity
implies that one can fit HMM parameters over very large datasets efficiently, which has
lead to enormously successful applications. State-of-the-art systems for large vocabulary
continuous speech recognition use HMMs as backbone. The HMM is the standard model
used to compare and analyze nucleotide sequences from genomes.

We introduce a corresponding sequence of latent variables (c1, . . . , cT ), ct ∈ {1, . . . , C} is
the latent state for observation xt. We assume some emission probabilities P (xt|ct) which
do not depend on t but only on the value of ct, for example P (xt|ct) = N(xt|µct , σ

2). If
all (xt, ct) were assumed independent, this would just be the mixture model introduced
above. The HMM is obtained by inserting edges ct−1 → ct as well, together with some
transition probabilities P (ct|ct−1) again assumed to be independent of t. In other words,
the ct sequence is modelled by a (first order stationary) Markov chain. The transition from
mixture model to HMM is depicted in Figure 3. Note that the Markov assumption applies
to the latent state sequence, while the observed sequence can have a much more complicated
behaviour for large state spaces.

9The term “mean field” comes from Physics and alludes to the fact that by making a factorization
assumption, we ignore dependencies between the latent components, replacing the posterior by its marginal
field.

10A subtle issue is that the E step is not a convex optimization problem, so that the iterative block updates
can get trapped in a local maximum which is not a global maximum of the bound w.r.t. Q, subject to the
factorization constraints. See [74].
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Figure 3: Illustrates dynamic Markovian extension of the mixture model to the Hidden
Markov model.

How do we learn the parameters of an HMM, i.e. the µc and transition probabilities in our
example? Again, we would like to maximize the marginal likelihood of the observed sequence
(x1, . . . , xT ) only, marginalizing over the ct. We can use the EM algorithm in the same way
as above, however what we need to compute in the E step are the posterior marginals11

P (ct, ct+1|x1, . . . , xT ). In the independent mixture model, these reduce to P (ct|xt) factors
due to the independence. It turns out that all these marginals P (ct, ct+1|x1, . . . , xT ) can be
computed in time O(T C2) using the belief propagation (BP) algorithm. We will motivate
this powerful method in the sequel, but have to refer to the graphical models literature cited
above for any details.

ct−1 ct+1

x t−1 x t x t+1

Collect

ct

Past Future

Lo
ca

l D
at

a

ct−1 ct+1

x t−1 x t x t+1

ct

Update

ct−1 ct+1ct

x t−1 x t x t+1

Distribute

Figure 4: Illustration of a local message passing update at node ct in belief propagation.
Messages are collected from all neighbors. The local belief is updated. New messages are
distributed towards all neighbors. The message that ct sends to ct+1 depends on the messages
ct received from all neighbors except ct+1.

The graph of the latent variables of an HMM as Bayesian network is a chain, which is a
special case of a tree, being a graph without cycles.12 The tree is the basic information
structure which enables dynamic programming, which is the general principle underlying
BP. Pick any node ct in a tree. The subgraphs starting from the different neighbours of ct are
trees again, and they are disjoint. Therefore, it seems possible that many functions global
to the whole tree, but centered on ct, can be computed in a “divide-and-conquer” fashion:
compute them for the neighbours of ct, then combine the results. This idea is implemented
by passing messages (local information representations) along the structure of the graph, a

11Recall from the end of Section 3.2 that learning needs inference for the latent variable cliques, which are
pairs ct, ct+1 in the HMM graphical model.

12We can ignore the observed variables in this argument, because each xt is connected to a different ct.



single local message update is depicted in Figure 4. The semantics of a message ct → ct+1 is
the belief of ct of what ct+1 should be, this belief is based on messages to ct of all neighbors
except ct+1.

For a tree-structured graphical model, BP converges in a single outward and inward sweep
starting from an arbitrary root and results in all clique marginals. The application to HMMs
is known as Baum-Welch algorithm and was in fact the first instance of BP to be proposed.
Apart from marginal inference needed for learning, one is also interested in the most likely
state sequence for an observed sequence, this is an MAP problem. Interestingly, we can use
a simple variant of BP, the max-product algorithm, in order to solve this problem with the
same complexity (for HMMs, this is known as Viterbi decoder). All we need to do is to replace
product (sum) in BP by maximum (product), together with some bookkeeping. BP and max-
product are instances of a more general distributive law [1]. If the graphical model is not a
tree, BP may not converge, and if it does, the marginals are only approximations to the true
posterior. However, this particular approximation, known as loopy belief propagation, can
be very accurate in challenging cases, and has received widespread applications in Machine
Learning and coding theory, also due to its simplicity of implementation. Meanwhile, loopy
BP has been characterized as a variational approximation, and higher order generalizations
are available, we refer to [74] for details.

3.4 Continuous Latent Variables

Another important class of graphical models make use of the idea of a latent low-dimensional
state. Suppose we want to model the distribution of x ∈ Rd, where d is fairly large. A model
such as x ∼ N(µ,Σ) makes sense only if we have enough independent data in order to be
able to estimate Σ reliably. A linear latent state model assumes that x = µ + Au + ε,
where u ∈ Rl is the latent state, l < d, A ∈ Rd,l and µ ∈ Rd are parameters, and ε is
independent noise. Different models arise with the specifications of P (u) and P (ε).

If P (u) = N(0, I), we have a linear Gaussian latent state model (LGLSM). Examples in-
clude probabilistic PCA for P (ε) = N(0, σ2I) and factor analysis (FA) for P (ε) = N(0,Ψ),
where Ψ is diagonal. Note that such linear Gaussian models do specify a marginal Gaus-
sian distribution P (x), however the covariance matrix is of the restricted form AAT + Ψ,
where Ψ is diagonal. By controlling l, we can estimate or infer these parameters even for
small datasets. If we fit A by maximum likelihood or estimate it in a Bayesian way, the
main directions of variation in the data will be extracted. In fact, [71] showed that the ML
estimate for a probabilistic PCA model is equivalent to the result of the principal compo-
nents analysis (PCA) technique, a method very widely used for dimensionality reduction,
visualization, and preprocessing for data analysis.13 By viewing PCA as a graphical model,
a host of interesting and useful extensions could be explored, and a better understanding
of the traditional PCA method was gained. Furthermore, the graphical models view allows
for generalizations to be conceived easily. For example, by introducing both a discrete latent
variable c and a continuous one u, we obtain mixture of factor analyzers models [18] which
are among the most powerful density estimation techniques used in Machine Learning. Our
presentation here is based partly on [57].

13The equivalence holds for σ → 0, while the ML solution for finite σ2 is given in terms of a damped
eigendecomposition of the data covariance matrix.



If we assume instead that P (u) factorizes, i.e. P (u) =
∏

j P (uj), we obtain models used
for independent components analysis (ICA) [2]. Such models are of use to “unmix” linear
combinations of sources whose statistics are not Gaussian. There are a host of paramet-
ric ICA methods which basically perform ML estimation of A under certain distributional
assumptions on the marginals P (uj). Ideally, one would like to use “model free” nonpara-
metric approaches (see Section 4.2) in order to be able to estimate A for a wide range of
source distributions. On the other hand, characteristics such as temporal or spatial struc-
ture in the sources may be present, and modelling such prior knowledge typically leads to
better unmixing algorithms. We note that if u lies in a finite set, i.e. the support of P (u)
is finite, the Gaussian mixture model of Section 3.2 arises as a special case of a LGLSM.
However, there are technical and didactical reasons to clearly distinguish between discrete
and continuous variables in graphical models.14

Recall that in Section 3.3, we obtained HMMs as dynamic generalization of mixture models
via a simple extension of the model graph. Given that LGLSMs and mixture models are
closely related, it is natural to ask whether we can generalize the LGLSM accordingly.
Indeed, this is possible along exactly the same lines. Namely, assume that successive latent
states ut form a Markov chain with linear Gaussian transition dynamics: P (ut|ut−1) =
N(ut|But−1,Λ), where B is invertible. The parameters can now be learned by EM, where
the E step requires inference for the P (ut,ut+1|all data). These marginals are Gaussian and
can be computed using exactly the same message passing scheme as for the HMM, again
an instance of BP. In fact, once more the whole setup was known long before in the control
literature as Kalman filter or Kalman smoother [36]. It is very instructive to compare the
Baum-Welch algorithm for HMMs with Kalman smoothing and to recognize that they are
simply two variants of the same underlying BP scheme, the reader is encouraged to do so
and to fill in the details.

3.5 Undirected Graphical Models [*]

Another important class of graphical models are undirected ones, also known as Markov ran-
dom fields (MRF). The underlying graphs have undirected edges, and nonnegative potential
functions are placed on the cliques of the graph, they do not have to be normalized con-
ditional distributions. The distribution represented by an MRF is obtained by multiplying
all potentials and dividing through a normalization constant Z (also called partition func-
tion). Conditional independence can be read off a MRF easily: variable groups A and B are
independent given C, if every path from A to B goes through C. The Hammersley-Clifford
theorem shows that for each undirected graph, the distributions with these conditional in-
dependence constraints are exactly the ones obtained by placing potentials on the cliques
[6]. MRFs are of central importance in low-level vision, where the task is to associate a
label to each pixel or local patch in a bitmap. MRFs for this task are distributions over the
label field, the observed pixels are covariates. Note that the Gibbs sampling scheme (see
Section 2.5) was introduced for MRFs by [17]. MRFs originate from Statistical Physics [29],
where they are used to study spin systems such as magnets and spin glasses. In Machine
Learning, MRF variants are known as Boltzmann machines [27], energy-based models, or
products of experts [25].

14For example, the statement (made in Section 3.2) that inference is efficient in a tree-structured graphical
model is true in general only if the model does not contain a mix of discrete and continuous latent variables.



The reader may wonder why two different notions of graphical models are required. Are
directed graphical models not powerful enough to encompass everything we need? The
answer is that there are practically important situations which can naturally be written
as an MRF, while formalizing them as causal directed Bayesian network is awkward and
may require more constraints than necessary,15 and vice versa. MRFs allow to softly enforce
local constraints by choosing the clique potentials appropriately, without having to specify a
causal generative process for the variables. In situations such as low-level vision, specifying
a causal model for the generation of a natural scene is extremely hard, while important
characteristics such as spatial coherence of texture and colour or edge features can be
modelled easily using potentials. In this respect, MRFs are more closely related to random
field models (see Section 5).

Recall from Section 3.2 that for Bayesian networks, we can typically reduce parameter
learning to marginal inference for the latent variables. If all variables in a directed model are
observed, ML estimation is straightforward. However, learning of potential parameters in a
MRF requires us to perform marginal inference over the response variables of the model (the
labels in the low-level vision example), even though they are given for the training cases. This
is due to the presence of the partition function, whose computation is typically intractable.
Belief propagation (see Section 3.3) works for MRFs as well,16 and loopy BP and its higher
order extensions are standard methods for MRFs nowadays. Alternatively, the idea of brief
Gibbs sampling [25] for learning is successful and very fast in practice, although its properties
are maybe less well understood. Very powerful MCMC methods for MRF inference have
been imported to Machine Learning from the Statistical Physics community [68]. Alongside
marginal inference, the MAP problem (finding the most likely reponses for given covariates)
is hard for general MRFs. This energy minimization problem has been studied extensively in
Machine Vision, and very efficient relaxations17 of the problem are available which make use
of graph cuts [10]. When comparing MAP and conditional inference, the former can often
be computed or approximated more efficiently. Large margin learning is a way of learning
potential parameters using MAP instead of conditional inference in the inner loop [69]. While
MRFs are typically applied to graphs such as grids, which feature hugely many cycles, they
have also been applied to tree graphs where conditional inference (and therefore learning)
is tractable and efficient (see Section 3.3). This variant is known as conditional random field
(CRF) [38]. CRFs (conditional, undirected) can be compared directly to the joint, directed
HMM. Both have a chain structure, whereby conditional inference is efficient, but they have
significantly different characteristics (global versus local normalization, see [38]). CRFs are
instances of log-linear models, in the sense that their log potentials are linear functions of
the parameters. ML (or MAP) estimation for a log-linear MRF is a convex problem with
a unique solution which can be found efficiently, given that marginal inference is tractable
(see Section 4.1 for the role of convexity). These properties may explain the large success
of CRFs in fields such as text and language modelling.

15We alluded to the fact that in general, the complexity of inference in a graphical models grows rapidly
with the number of constraints (or edges).

16In fact, directed Bayesian networks are usually converted to undirected ones before BP is run on them.
17Hard optimization problems can often be relaxed by dropping or losening problematic constraints until

the remaining relaxed problem is easy to solve (for example, because it is convex). Ideally, some worst case
guarantees of how much is lost by the relaxation are sought.



4 Classification, Regularization, and Kernels

In this Section, we show how to extend the linear model for classification tasks. We also
introduce the idea of regularization and nonparametric models, and show how penalized
likelihood kernel methods arise as limit of the linear model.

4.1 Logistic Regression

The linear model of Eq. 1 is useful for regression estimation tasks, but for other problems
such as classification, ranking, rate estimation, survival analysis, it needs to be modified.
The idea is again to introduce a latent variable, namely let u = wT φ(x) ∈ R. The linear
model is obtained by assuming that P (y|u) = N(y|u, σ2), which is often appropriate if
y ∈ R. In binary classification, we have y ∈ {−1,+1}. We will retain the latent setup
of the linear model, but choose a different distribution P (y|u) supported on {−1,+1},
arriving at a generalized linear model (GLIM) [43]. The framework of GLIM is once more a
unification of a number of common concepts valid for all members. Tasks such as maximum
likelihood estimation have generic solution methods which can trivially be adapted to special
GLIMs. We are free to choose P (y|u) from any exponential family, namely families of the
form P (y|u) = exp(uψ(y) + g(u) + f(x)). Examples of exponential families are Gaussian,
Bernoulli, binomial, Poisson, Gamma, Beta.
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For binary classification, the Bernoulli distribution is a useful
likelihood:

P (y|u) = λ(y(u+ b)), λ(s) = (1 + e−s)−1,

where λ is called the logistic function, and b is an intercept hy-
perparameter. The GLIM with a Bernoulli likelihood is known
as logistic regression model.

ML estimation for logistic regression can be dealt with in the framework of GLIM, giving
rise to a method called iteratively reweighted least squares (IRLS), which is in fact the
Newton-Raphson algorithm applied to the ML problem. In each iteration, a reweighted
version of the normal equations of Eq. 6 have to be solved:

w′ =
(
XT DX

)−1
XT r,

where D is diagonal, and both D, r depend on the data y and the current w in general.

Importantly, for each GLIM there is a unique ML point wML, and IRLS finds this point
in very few iterations. Note that for the Gaussian likelihood, we have D = σ−2I and
r = σ−2y, so that IRLS in this case converges in a single step as expected. Therefore, in
terms of tractability, ML estimation for a general GLIM resides somewhat in between a
direct analytical solution as for the linear model or ML estimation of a single Gaussian, and
first-order convergence to some local maximum as for the mixture model or HMMs. This is
because fitting GLIM parameters is a convex problem (see Section 3.2.1). By construction,
the negative log density of an exponential family is convex in u (see remark at the end of
this Section), and since concatenations of linear and convex functions are convex again, it
is easy to see that the negative log likelihood of a GLIM is convex in w. A convex function
cannot have more than a single mode, and this mode can be found in typically very few steps



using the well known Newton-Raphson algorithm. In fact, convexity is such an important
concept in optimization theory that it is nowadays equated with “simple to solve globally”
(a good textbook on convex optimization is [9]).

What about C > 2 classes? It is straightforward to generalize logistic regression (and GLIMs
in general) to this case, by allowing for C latent linear functions. We have y ∈ {1, . . . , C},
and the likelihood is P (y|u1, . . . , uc) ∝ exp(uy), the softmax mapping. For simplicity, we
restrict ourselves to the binary setup in the rest of this note.

While ML estimation is about as tractable for a GLIM than for the linear model, an exact
Bayesian analysis of the logistic regression model is not analytically tractable, and a simple
analytic form of the posterior P (w|D) is not known. Many approximations have been
suggested. If P (w) is Gaussian, it is sensible to approximate P (w|D) by a Gaussian as
well (from the unimodality of the likelihood, we know that P (w|D) is unimodal as well).
Variational approximations (see Section 3.2.1) obtain bounds on the marginal likelihood
P (D) and posterior approximations by essentially bounding the log likelihood terms or using
Eq. 14. Expectation propagation (EP) [45] is an iterative approximation technique recently
proposed in Machine Learning, which gives very promising results. If n (number datapoints)
is much larger than p (size of w), the simpler maximum a posteriori (MAP) approximation
(also Laplace approximation) can be used. We first find the mode of the posterior wMAP by
minimizing g(w) = − logP (D|w) − logP (w), using an obvious variant of IRLS. We then
expand g(w) to second order around wMAP in order to obtain the Gaussian approximation
N(wMAP ,H

−1) of P (w|D), where H = ∇∇g(wMAP ). Both EP and Laplace lead to
approximations of the marginal likelihood P (D) as well, so that hyperparameters may be
adjusted by empirical Bayes, as discussed in Section 2.1. We note that the difference between
ML and MAP is the presence of the logP (w) term, which in the case of a Gaussian prior
penalizes large w. This regularization of the ML estimator is discussed in more detail in the
next Section.

We close by noting that a central feature of GLIMs is that the likelihood P (y|u) is a
log-concave function of u, in that − logP (y|u) is convex. This implies convexity of ML
estimation, and also makes it much easier to approximate inference in GLIMs by variational
techniques or even by MCMC. As such, one could generalize GLIMs further by allowing for
log-concave likelihoods which are not exponential families. An example is the probit binary
classification likelihood P (y|u) =

∫ y(u+b)
−∞ N(s|0, 1) ds, where the sigmoidal function is the

c.d.f. of a Gaussian. The concept of log-concavity is reviewed in [9], Sect. 3.5.

4.2 Regularization and Nonparametric Models

We have seen that a sensible estimation method from noisy data has to incorporate some sort
of complexity control, if the number of parameters is not much smaller than the number of
datapoints. Complexity can be restricted a priori by choosing a simple model. For example,
in the linear model we can choose a small number p of features. However, in most cases we
do not know a small number of features from the start which lead to a useful model. Another
idea is to use a large model, but to penalize complexity within the model family itself. In
the linear model, even if the number of features is large, very complicated functions u(x)
can only arise for large w. We can regularize ML estimation by adding a complexity penalty
(or regularizer) to the negative log likelihood to be minimized. For example, a regularizer
α−1‖w‖2 penalizes large weights. In contrast to the classical ML estimate, the penalized one



satisfies a trade-off between data fit and complexity, and overfitting problems are typically
alleviated.

Recalling the MAP (Laplace) approximation to Bayesian inference from the previous Sec-
tion, we note that there is a simple connection to regularization. Namely, for any prior P (w),
the term − logP (w) can be used as a penalty. The squared penalty α−1‖w‖2 corresponds
to a Gaussian prior P (w) = N(0, αI). This does not mean that the Bayesian framework is
equivalent to the idea of regularization. Recall from Section 2.3 that marginalization should
always be preferred over regularized optimization, if it is feasible. And even in intractable
situations such as logistic regression, better approximations to Bayesian marginalization
than MAP are often available (see Section 4.1).

Suppose now that we want to perform binary classification with the linear logistic regression
model discussed in Section 4.1, but in fact we do not really want to spend the effort of
carefully constructing or selecting features for φ(·). Rather, we would like to impose some
properties on the latent function u(·) directly, for example it should vary smoothly. Given
that regularization is in place, there is really no reason anymore to restrict the number of
features at all, we could even allow for infinitely many, as long as we make sure that most of
them can make no more than a infinitesimal contribution to the latent function. Following
these ideas will provide us with a bridge between GLIMs and a class of models which have
very different properties: nonparametric models. For example, a nonparametric model gives
rise to the well known nearest neighbour rule. In order to classify a pattern x based on data
{(xi, yi)}, find k such that |x−xk| ≤ |x−xi| for all i, then output yk. This is very different
from logistic regression (which is a parametric model). There are no apparent parameters to
be estimated or to be inferred, and the complete dataset has to be used for each prediction.
Nonparametric regression techniques try to estimate or infer the latent function u(·) directly
from the data. For example, the Parzen windows method represents u as weighted sums of
kernels placed on each point xi.

However, in general the term “nonparametric” is frequently misunderstood to mean that
the model has no parameters at all. It rarely makes sense to conceive of a statistical method
without any free parameters to be adjusted from observed data. Learning about unknown
parameters from data is what much of Statistics is about. Even a simple histogram method
comes with a bin width and a smoothing parameter which have to be adjusted. The correct
distinction between parametric and nonparametric methods is as follows. Suppose a model
P (x) for x is fitted to data D, in order to predict x (if there are covariates, we ignore them
in the moment). A method gives rise to a predictor P (x|D), which could be a predictive
distribution or simply a point estimate. A method is parametric if there exists a representa-
tion r(D) ∈ Rq for some finite q independent of D and its size: P (x|D) = P̃ (x|r(D)) for all
x,D. Otherwise, the method is nonparametric. r(D) is also called sufficient statistic. For
example, the ML plug-in rule for the model P (x|µ) = N(x|µ, 1) is parametric, because the
ML estimate µ̂ = n−1

∑
i xi ∈ R is a sufficient statistic of size 1. The ML plug-in rule for

the linear model has sufficient statistic ŵML ∈ Rp, and Bayesian prediction for the linear
model has a sufficient statistic of size O(p2). In contrast, for many nonparametric methods,
we cannot find any sufficient statistics significantly smaller than D itself, and D in a more
or less uncompressed form has to be available for each prediction.

Parametric and nonparametric models have very different characteristics. A parametric
model is fundamentally limited by the fixed form of the distribution it represents. A lin-
ear model can represent linear functions only, a single Gaussian will represent multimodal



data poorly. These limitations do not vanish with growing dataset size, as opposed to the
situation for many nonparametric models which can be shown to be universally consistent,
i.e. they can represent any data source given enough data. On the other hand, if the data-
generating process or important aspects of it are well understood, a parametric model can
deliver a much better representation from finite data than a nonparametric model whose
prior assumptions are typically much weaker. A major advantage of parametric models is
scalability for large datasets. ML estimation or inference approximations typically scale
linearly with the dataset size n, and both prediction time and learned representation size
are independent of n. The reader may object that in practice, the representation size of
parametric models such as mixtures or multi-layer perceptrons are chosen depending on n.
Indeed, some nonparametric models are close to parametric ones, in that they extend them
by making the size choice automatically from the data. An example are Dirichlet process18

mixture models [48] which are effectively used to infer a mixture model with a number of
components appropriate for the given data, although from another point of view they are
universal density estimators.

It is important to note that while regularization or Bayesian complexity control can be
beneficial with parametric models, it becomes indispensable with nonparametric ones. It is
not possible to estimate the optimal u(·) from finite data without any restriction of how
u may change with x. For many nonparametric models, the concrete regularizer or the
Bayesian model are opaque or not even explicitly known, but we will see in the sequel that
a proper limit of the linear model gives rise to regularized and to Bayesian nonparametric
models.

4.3 Penalized Likelihood Kernel Methods

In Section 4.2, we noted that with proper regularization in place, we could take the number
of features in the linear model of Eq. 1 to infinity. This astonishing idea leads to kernel
methods.

Recall from Section 2.2.1 that if p > n, it makes sense to write the Bayesian predictive
distribution in the form of Eq. 9. Nothing in these formulae really scales with p, except
for inner product terms φ(x)T φ(x′). If we define a kernel K(x, x′) = φ(x)T φ(x′), we have
that XXT = K = (K(xi, xj))i,j and Xφ(x) = (K(xi, x))i, and any variable scaling as p
has disappeared. This means that within the linear model, it is actually sufficient to know
the “correlations” between any two feature vectors φ(x), φ(x′) in the form of K(x, x′), we
do not need to specify the φ(x) themselves. Merely the kernel has to be specified. Now, a
kernel does not constitute a prior distribution, and in any case: a prior distribution over
what? The correct link between the Bayesian linear model and kernels will be drawn in
Section 5.1, where we will also gain more understanding about the role of the kernel.

Suppose now we use the MAP approximation for the linear model with Gaussian prior
P (w) = N(0, αI), and we want to allow for p → ∞, specifying the kernel K(x, x′) only.
Since K(x, x′) is an inner product, it must be positive definite:∑

i,j

aiajK(xi, xj) ≥ 0 (15)

18DP mixture models are another important example of nonparametric Bayesian models which have been
employed successfully in Machine Learning. They are useful for density estimation and clustering. Their
introduction requires some advanced MCMC arguments, which are not in the scope of this review.



for all xi, ai ∈ R. We also have that each positive definite form K(x, x′) is an inner product,
although we may not be able to compute φ(·). The latent function is u(x) = wT φ(x),
and the likelihood is a function of the u(xi) only. One can show that the correct “limit” of
the regularizer α−1‖w‖2 is in fact α−1‖u(·)‖2K , the squared norm in a reproducing kernel
Hilbert space (RKHS; a function space depending on K) of u(·). Penalized likelihood kernel
methods can therefore be seen as minimizing the sum of a negative log likelihood and the
penalty α−1‖u(·)‖2K directly for the function u(·). Here, the regularization term penalizes
complicated behaviour of u(·), the specifics depend on K. We will obtain a clearer picture
of the role of K in the next Section.19 Kernel and RKHS inner product are linked by the
reproducing property: (K(·, x),K(·, y))K = K(x, y). Since the likelihood depends on the
u(xi) only, one can show that the minimizer must have the form u(x) =

∑
i αiK(xi, x), a

kernel expansion, and by the reproducing property we have that ‖u(·)‖2K = αT Kα in this
case. Let us recapitulate the steps in this chain. (1) The limit p → ∞ of the MAP linear
model results in the ‖u(·)‖2K penalty. (2) The form of the likelihood implies20 that any
minimizer of the penalized criterion is a kernel expansion. (3) ‖u(·)‖2K for a kernel expansion
can be computed tractably by the reproducing property. Our problem is now reduced to
finding α ∈ Rn, which in the penalized GLIM case can be done by a variant of IRLS (again,
there is a unique minimum point α̂). This argument is the “kernel trick”, which allows to
reduce the optimization of a penalized likelihood functional over a function space to the
estimation of n coefficients. Note that the resulting method is clearly nonparametric, since
all of the xi are required for each prediction. Kernelized GLIMs are discussed in detail by
[21]. They are equivalent to what is called “exponential family kernel methods” in Machine
Learning.
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LOG. REGR.The support vector machine (SVM) is among the most popular

penalized likelihood kernel methods in Machine Learning. We
cannot go into details, but refer to [58] who also give details on
RKHS. In the SVM, the negative log likelihood is replaced by a
particular empirical risk term of the form

∑
i[1−yiu(xi)]+, where

[z]+ = zI{z>0}. Just as in logistic regression, a pattern (xi, yi) is
misclassified iff yiu(xi) < 0.

In SVM, a clear separation with “margin” is enforced by penal-
izing yiu(xi) < 1 already. On the other hand, if yiu(xi) ≥ 1, the pattern does not induce
any loss, a fact which can be shown to lead to sparse solutions α̂ (many α̂i = 0) on simpler
classification problems. α̂ can be obtained as the solution of a quadratic program, and much
work has been concentrated in obtaining specialized algorithms and implementing efficient
software.21 Many theoretical aspects of SVM are well understood now, and due to their
attractive computational properties, they have had a host of successful Machine Learning
applications ([58] give many references).

Note that the SVM problem is not an MAP approximation to inference for any probabilistic
model [59], because the hinge loss does not correspond to a negative log likelihood. Indeed,
[30] emphasize that the SVM and other large margin techniques (see Section 3.5) are in-

19Within much of the non-probabilistic kernel methods field in Machine Learning, the kernel K is unfor-
tunately regarded as something of a “black box”, and the precise regularization characteristics of different
kernels are typically ignored.

20The likelihood for a density estimation model does not have this property, it depends on global nonlinear
functionals of u(·). It is an open problem to do tractable Bayesian density estimation with a GP model.

21The web page www.kernel-machines.org has links to papers and software for SVM and related methods.



stances of maximum entropy methods (ME), an inference paradigm quite different from
the Bayesian one. Rather than combining observed data with prior knowledge by using a
probabilistic likelihood function which is multiplied with the prior to obtain the posterior
through renormalization, the maximum entropy approach is to find a predictive distribution
(which is the analogue to the posterior) closest to a vague prior (which often has maximal
entropy, i.e. uncertainty), subject to constraints given by the observations. Typically, the
constraints are linear in the predictive distribution, and frequently, they are “softened” by
allowing for slack variables. For a large margin method, an observation introduces one or
more constraints forcing this observation to be classified correctly by some margin, i.e. to
outvote all possible competitors distinctively. ME and Bayesianism come with respective
strengths and weaknesses. In simple cases, ME methods result in straightforward convex
problems with linear constraints which can be solved exactly and efficiently. The deep algo-
rithmic knowledge surrounding structured linear programs can be tapped [69]. The presence
of hard constraints means that final solutions often exhibit sparsity, in the sense that many
representation variables are zero. On the other hand, it is not clear how to deal with latent
variables and hierarchical models correctly and efficiently in ME. More importantly, the
predictive distribution computed by ME does not serve as a useful uncertainty estimate, in
a way the Bayesian posterior does. Among all solutions fulfilling the data constraints, ME
always picks the most uncertain one, rather than ranking the solutions w.r.t. a concept such
as likelihood.

We finally note that nonparametric methods are sometimes branded as “infinite models”.
While this can be a useful way of thinking about these models, as demonstrated here, the
view has its pitfalls. What is really meant is that the statistics we extract from the data
to fit our model simply cannot be limited in size before we have seen D. The advantage of
nonparametric models is not that they are “infinite” for finite data, but rather that their
representation size grows with D in an automatic fashion.

5 Gaussian Processes for Machine Learning

In this Section we introduce probabilistic models based on Gaussian processes (GP). This
will turn out to be the correct nonparametric generalization of the linear model (and GLIMs)
to infinitely many features, so Bayesian analysis becomes possible. We will also get a clear
intuition about the role of the kernel w.r.t. regularization in these methods. We can only
give some intuition here, for details and many more facettes the reader may look at [62, 55].
A wealth of material is collected at the web page http://www.gaussianprocess.org/.

5.1 The Infinite Limit of the Linear Model

The Bayesian treatment of the linear model has been given in Section 2.2. We have already
motivated the step to penalized likelihood kernel methods in Section 4.2, by letting the
number of features p grow to infinity, while assuming that the kernel K(x, x′) = φ(x)T φ(x′)
can be computed without having to access the feature map directly.

We noted that predictive distributions and marginal likelihood for the linear model are
finite expressions even for p = ∞, if all feature inner products are replaced by kernels.
However, in order to arrive at a sound probabilistic model, we have to clarify the relevant



latent variables and their prior distributions exactly. Recall that u(x) = wT φ(x) with
w ∼ N(0, I) a priori for any finite p. We are looking for a distribution over u(·), also
called a process. Note that E[u(x)] = 0 and E[u(x)u(x′)] = φ(x)T φ(x′) = K(x, x′). Indeed,
for any finite x1, . . . , xm, we have that u = (u(xi))i ∈ Rm is jointly Gaussian with zero
mean and covariance K = (K(xi, xj))i,j . All these properties do not depend on φ(·) or
on p, and in fact they characterize22 a valid process, called Gaussian process (GP). We
merely require that K(x, x′) is positive definite (Eq. 15), which is clearly necessary, since
0 ≤ E[(

∑
i aiu(xi))2] =

∑
i,j aiajK(xi, xj). We can close the link to the infinite linear model

and in fact construct a GP u(·) explicitly by invoking the Mercer eigenexpansion of the
kernel and the Karhunen-Loeve representation u(x) =

∑
i≥1wiφi(x) with infinitely many

independent wi ∼ N(0, 1), [62] gives the details.

While an explicit construction of a GP u(·) with covariance function K(x, x′) is necessary
in order to arrive at a well defined nonparametric model, for practical purposes the working
definition of a GP via its finite-dimensional marginals is all that is needed in order to
perform inference. For example, the marginal likelihood of Eq. 5 can be computed using
u = (u(xi))i ∼ N(0,K) only, with u ∈ Rn, noting that XXT = K . For the predictive
distribution of Eq. 9, we need one more variable u(x), so n + 1 in total. The limit of the
linear regression model becomes the standard GP regression model with Gaussian noise,
and Bayesian inference is done in the same way as described in Section 2.2.1. Rather than
having to deal with infinite feature vectors, we have to be able to do numerical linear algebra
with large dense matrices, expressed in terms of the kernel matrix K ∈ Rn,n. Bayesian GP
models as developed here have been suggested by [50]. The topic has been introduced to
Machine Learning by [47] who observed that under certain assumptions, the limit of an
infinitely large Bayesian multi-layer perceptron gives rise to a GP model. Early work in
Machine Learning has been done by [75, 76], a more complete list of references can be
found in [62, 55]. It is clear that the link between linear and GP models extends to GLIMs,
although just as in the linear case, Bayesian analysis becomes intractable in general. We
mentioned some approximation techniques in Section 4.1, they can be applied to GP GLIMs
just as well. The general idea is to approximate the intractable posterior process by a GP
itself, whose mean function constitutes our best prediction of u(·).
It is instructive to compare the predictive distributions from a linear model with features
φ(x) = (1, x)T and from a GP regression model. In Figure 5, we depict these by drawing
samples from the posteriors. For the linear model, these sample paths must be lines, while
for the GP model they are smooth functions of appropriate complexity. The reader should
note the significant differences in the predictive uncertainties. For the linear model, these
local uncertainties are mediated entirely by the global uncertainty in the line itself. This is
correct, given that the model cannot even hypothesize any nonlinear contributions. If most
of the data is represented well by a narrow range of lines, the predictive uncertainty at all
locations will be small. For example, the point with x closest to 0 lies far from the predicted
line, yet the uncertainty there is very small. The local predictive uncertainties behave much
more reasonably for the GP model: they grow where data is sparse.

GP models can be contrasted with Gaussian random fields [13]. The latter is an undirected
graphical model (see Section 3.5) on a grid. Since a GRF has continuous variables and
Gaussian potentials, conditional inference is tractable and is made efficient (linear time

22The GP is not uniquely characterized by these properties, but differences between GP distributions with
the same mean and covariance function are technical and not important in our context here.
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Figure 5: Comparison of predictive distributions from linear model (above) and GP regres-
sion model (below). Pictures courtesy of Malte Kuss.

in the number of nodes) by the fact that the inverse covariance matrix is sparse [73]. A
GRF with stationary potentials does not correspond to a GP model,23 because the joint
distribution is not consistent under marginalization of some of the variables. GRFs have
been used extensively in Computer Vision and Geostatistics, and they have recently been
applied to semi-supervised learning [78].

We finally note a remaining subtle issue. In Section 4.3, we obtain penalized likelihood kernel
methods as limit of an MAP approximation to the finite linear model. In this Section, we
showed that the limit of the finite Bayesian model is well defined and corresponds to a
GP regression model. But can a kernel method be obtained as MAP approximation to
a GP regression model? The difficulty here is that it is not immediately clear how to
define a density for a GP, for example what is an appropriate dominating measure? We can
obtain a density for u(·) using its Karhunen-Loeve representation, and one can show that
logP (u(·)) .= −(1/2)‖u(·)‖2K , up to a term independent of u, which however diverges24 as
i → ∞ in the series representation for u. If we drop this normalization term, we see that
MAP for a GP GLIM is indeed equivalent to penalized likelihood. Details for this argument
are given by [62].

23Although some Machine Learning researchers confused the two concepts.
24This is in line with the somewhat surprising fact that for the RKHS HK = {u | ‖u‖K < ∞}, we have

that Pr{u ∈ HK} = 0 under the GP distribution. This contradicts the (mistaken!) claim that a GP is a
distribution over its RKHS.



5.2 The Kernel as Covariance Function

In a model based on a GP u(·), the kernel K has a clear meaning as (prior) covariance
function:

K(x, x′) = E[u(x)u(x′)].

Note that this assumes that the GP is zero mean: E[u(x)] = 0. It is now possible to clearly
understand how functions are regularized through the GP prior, and what role the kernel
K plays. For example, if x ∈ Rd and K(x,x′) = K(d), d = ‖x − x′‖ (such covariance
functions are called isotropic), the correlation between the values u(x), u(x′) decay with
increasing distance d. For very close x, x′, the correlation (therefore the dependence: we
talk about Gaussians!) will be ≈ 1, while points far apart are almost uncorrelated (nega-
tive correlations are possible under some kernels as well). Although all u(x) are random,
variables for nearby x are strongly correlated, implying smoothness of the underlying ran-
dom process. There is a rich theory of how characteristics of K imply properties of the
process u(·) and its sample paths [67]. If we restrict kernels to be stationary, meaning that
K(x,x′) = K(x − x′), then Bochner’s theorem provides a characterization. K(d) is a co-
variance function with K(0) = 1 iff it is the characteristic function of some distribution:
K(d) = E[exp(idT ω)] for some random ω ∈ Rd. This connection provide us with a rich
set of (stationary) covariance functions which can be taylored to prior knowledge about our
task. For example, the Gaussian covariance function

K(x,x′) = v exp
(
− b

2
‖x − x′‖2

)
, v, b > 0, (16)

is frequently used in Machine Learning, it is the characteristic function of N(ω|0, bI). This
kernel comes with a variance parameter v and an inverse squared length-scale parameter
b. We have Var[u(x)] = v for each x, while b−1/2 is the average distance along which u(·)
varies significantly.

We can generalize the Gaussian covariance function of Eq. 16 by replacing the radial squared
distance b‖x − x′‖2 by the weighted distance

∑
j dj(xj − x′j)

2, dj > 0. Here, we allow
for a different length-scale along each dimension. Bayesian estimation of dj via marginal
likelihood maximization implements a form of ARD (see Section 2.4), in that if a component
j of x is not relevant for predicting y, the corresponding dj is driven towards zero. This is
a powerful feature (or attribute) selection technique.

Probably the best way of choosing a kernel for a particular application is to consider theo-
retical arguments such as given by [67], and ideally vote for a class which comes with free
hyperparameters determining the implied smoothness, variance, and length-scales for u(·).
These parameters may be fitted from data using the empirical Bayesian method, for exam-
ple. Stein recommends the Matérn class whose members arise as characteristic functions of
t distributions. This class comes with a hyperparameter regulating the degree of smoothness
of the sample functions u(·), and it contains the Gaussian kernel in the limit of very high
smoothness. If x is of low dimensionality (for example in spatial problems), using a Matérn
kernel with appropriate degree of smoothness can result in much better predictions than
using the Gaussian kernel. We can also get some feeling for a covariance function by simply
plotting samples of the corresponding u(·), examples can be found in [62, 55].

The use of finite-dimensional covariance functions is widespread in Machine Learning. By
this we mean kernels which do have a feature map φ(·) of finite dimensionality. An example



is the polynomial kernel K(x,x′) = (v + xT x′)q, v ≥ 0, q ∈ N, whose feature map contains
all monomials in x of total degree ≤ q. In fact, following our definition above, methods
based on such kernels are parametric, since they can always be written as finite-dimensional
linear models. Kernel methods have also been applied to settings where input points x are
structured objects, such as variable-length sequences of symbols or graphs. Kernels for
such objects can be constructed using the principles described by [24]. Applications are in
Bioinformatics, language modelling, and in Computer Vision [20]. For polynomial and string
kernels, the feature space dimensionality is vastly larger than the input dimensionality, so
the “kernel trick” is still important in those situations.

5.3 Practical Inference with Gaussian Process Models

In this Section, we provide details for the GP regression model. We then discuss a prin-
cipal drawback of inference in GP models, namely the heavy scaling with the number of
datapoints, and suggest approximations which overcome this problem.

The GP regression model is the limit of the linear one, so we only need to rewrite the
equations of Section 2.2. Let u = (u(xi))i ∈ Rn and K = (K(xi, xj))i,j . We have that
P (u) = N(0,K). From Eq. 9 we see that we need to solve linear systems with A = K+σ2I.
Since A is symmetric positive definite, the numerical method of choice for doing this is to
compute the Cholesky decomposition (see Section 2.2.1):

A = K + σ2I = LLT ,

where L is lower triangular with positive elements on the diagonal. We can now write the
predictive distribution as

P (y|x,D, σ2) = N
(
bT v, σ2 +K(x, x)− ‖v‖2

)
, v = L−1(K(xi, x))i., b = L−1y.

Here, L−1a is computed by a backsubstitution which can be done in O(n2) due to the lower
triangular structure of L. If only the predictive mean is required, we can also precompute
p = L−T b (another backsubstitution), whence the mean is pT (K(xi, x))i, which costs O(n)
only.

The empirical Bayesian estimation of σ2 and parameters of the covariance function K, for
example of v, b in Eq. 16, uses the criterion

− logP (y|σ2) = − logN(y|0,A),

namely the negative log marginal likelihood. This criterion is continuously differentiable in
the hyperparameters, but it is usually not convex and can have local minima. It can be
optimized using a gradient-based scheme (the gradient can be computed in O(n3)) such as
conjugate gradients or Quasi-Newton.

The GP regression model is a very powerful technique to address the curve smoothing task,
especially if the covariance function is chosen carefully and free parameters are chosen using
empirical Bayes (or are even marginalized over using MCMC, see Section 2.5). However,
it cannot be used for many Machine Learning applications due to its scaling behaviour.
The running time requirements are O(n3), and n × n matrices have to be stored, either is
prohibitive for large datasets. Do we have to drop the model and settle for simpler linear



ones, or multi-layer perceptrons? The answer is no, if we are prepared to make further
approximations. Much recent work has concentrated on finding sparse approximations to
inference in GP models. We can only provide basic intuitions here. A detailed discussion
of aspects of sparse approximations can be found in [61, 63], also containing many relevant
references which we omit here. Recall that we have P (u) = N(0,K) (prior) and P (y|u) =
N(y|u, σ2I) (likelihood) in the regression model, and note that the likelihood is a function
of u. Let I ⊂ {1, . . . , n} be a subset of size d < n, called active set, and let uI = (ui)i∈I

be the corresponding subvector of latent variables. Suppose that we replace the likelihood
by a positive function f(uI) of uI only, so that the posterior P (u|D) is approximated by
Q(u) ∝ P (u)f(uI). Under this replacement, the running time scaling for GP inference
reduces to O(nd2), an improvement by a factor of (d/n)2.

Given this observation, we need to address two points: how to choose f(uI) for fixed I, and
how to choose I? For the first task, some principled methods have been suggested. First,
f(uI) should be chosen s.t. Q(u) is a good approximation to the true posterior P (u|D). For
example, we can choose f(uI) in order to minimize the relative entropy D[Q(u) ‖P (u|D)].25

Another related likelihood approximation is suggested by [64]. An even faster approximation
(by a constant factor) is obtained by simply choosing f(uI) = P (yI |uI), effectively throwing
away the observations yi, i 6∈ I [63]. The second and harder problem is how to choose26 I.
This is a combinatorial problem in general, but one we have to address in time no more than
O(nd2). At the expense of O(nd) memory, this can be done using a greedy forward selection
strategy. The idea is to keep the marginal distributions Q(ui) for all components of u up-
to-date at any time, and to score candidates for inclusion into i by comparing the marginal
with the true target. Care has to be taken to choose a good representation of Q(u) which
can be updated in a numerically stable manner, and which allows for efficient updating of
the marginals. Sparse approximations can be generalized to GP GLIMs with non-Gaussian
likelihood, by using the expectation propagation scheme mentioned in Section 4.1. We can
even compute a sparse approximation to the marginal likelihood and optimize it in order
to select hyperparameters by Bayesian estimation [61, 63].

6 Discussion

With this tutorial review, we aim to give a wide high-level overview over concepts of prob-
abilistic modelling and Bayesian Statistics relevant for Machine Learning. Our focus is on
stressing key concepts and cornerstones, on pointing out where they loom in the background
of more complicated techniques, on showing connections between seemingly unrelated con-
cepts, and in general on preparing the interested reader for further detailed studies along
the references we provide here.

It has not been our goal to treat any of the topics here in great or even proper details, but in
all cases we know of comprehensive reviews or textbooks, we have included their references.
Apart from this guideline, our choice of references is subjective and pragmatic rather than
complete in any sense. Given the limited size of this review versus the enormous scope of a

25In a sense, the best f(uI) would be the one minimizing D[P (u|D) ‖Q(u)], but it cannot be determined
efficiently (see [61], Lemma 4.1).

26It has been noted that uI do not have to be a part of u, they could be situated at any d points xj .
Under this more general view, the problem of selecting I as a subset of {1, . . . , n} is replaced by optimizing
for the d active points xj .



heterogeneous field such as probabilistic Machine Learning, we also had to be selective in
terms of topics, skipping central fields such as multi-layer perceptrons and other “neural”
architectures (see [7] for a textbook), reenforcement learning (see [5] for a textbook), density
estimation and clustering, or information and coding theory (see [12, 41] for textbooks).
Neither did we discuss any of the many application areas close to Machine Learning in
much detail, although we hope that this review will be useful to practitioners of these areas
as well. We can only hope to have met a central goal of ours, namely to convey some of the
excitements about the dynamic and diverse field of probabilistic Machine Learning.
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