Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Invariances, Laplacian-Like Wavelet Bases, and the Whitening of Fractal Processes
 
research article

Invariances, Laplacian-Like Wavelet Bases, and the Whitening of Fractal Processes

Tafti, Pouya Dehghani
•
Van De Ville, Dirnitri  
•
Unser, Michael  
2009
IEEE Transactions on Image Processing

In this contribution, we study the notion of affine invariance (specifically, invariance to the shifting, scaling, and rotation of the coordinate system) as a starting point for the development of mathematical tools and approaches useful in the characterization and analysis of multivariate fractional Brownian motion (fBm) fields. In particular, using a rigorous and powerful distribution theoretic formulation, we extend previous results of Blu and Unser (2006) to the multivariate case, showing that polyharmonic splines and fBm processes can be seen as the (deterministic vs stochastic) solutions to an identical fractional partial differential equation that involves a fractional Laplacian operator. We then show that wavelets derived from polyharmonic splines have a behavior similar to the fractional Laplacian, which also turns out to be the whitening operator for fBm fields. This fact allows us to study the probabilistic properties of the wavelet transform coefficients of fBm-like processes, leading for instance to ways of estimating the Hurst exponent of a multiparameter process from Its wavelet transform coefficients. We provide theoretical and experimental verification of these results. To complement the toolbox available for multiresolution processing of stochastic fractals, we also introduce an extended family of multidimensional multiresolution spaces for a large class of (separable and nonseparable) lattices of arbitrary dimensionality.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

tafti0901.pdf

Access type

openaccess

Size

852.5 KB

Format

Adobe PDF

Checksum (MD5)

dec7843a1680a7ca7d13ab9c5e666649

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés