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Abstract
Hybrid brain–computer interfaces (BCIs) are representing a recent approach to develop
practical BCIs. In such a system disabled users are able to use all their remaining
functionalities as control possibilities in parallel with the BCI. Sometimes these people have
residual activity of their muscles. Therefore, in the presented hybrid BCI framework we want
to explore the parallel usage of electroencephalographic (EEG) and electromyographic (EMG)
activity, whereby the control abilities of both channels are fused. Results showed that the
participants could achieve a good control of their hybrid BCI independently of their level of
muscular fatigue. Thereby the multimodal fusion approach of muscular and brain activity
yielded better and more stable performance compared to the single conditions. Even in the
case of an increasing muscular fatigue a good control (moderate and graceful degradation of
the performance compared to the non-fatigued case) and a smooth handover could be
achieved. Therefore, such systems allow the users a very reliable hybrid BCI control although
they are getting more and more exhausted or fatigued during the day.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Brain–computer interfaces (BCIs) allow disabled people to
establish a new communication channel between the human
brain and a machine [1]. This communication is based on
the analysis of electrophysiological brain signals recorded by
the electroencephalogram (EEG). Although BCI technology
has shown impressive progress in the last few years [2],
it cannot be compared to non-BCI control channels in
terms of performance and interaction speed. Therefore, the
development of practical BCIs for disabled people should
allow them to use all their remaining functionalities as control
possibilities and to use the currently best available ones.
Especially since the physical and mental conditions of a patient
(e.g. early stage of amyotrophic lateral sclerosis) are changing
over the day, various control strategies could be applied,
e.g. sometimes muscular activity would be available (most
likely in the morning when they are not exhausted), whereas

at other times maybe only brain signals can be voluntarily
controlled.

Such a combination and parallel usage of at least one
BCI and at least one additional communication (e.g. another
physiological signal or special assistive input devices such as
joysticks, switches) is called a hybrid BCI [3, 4]. Generally
these control channels can operate different parts of the
assistive device or all of them could be combined to allow
users to smoothly switch from one control channel to the
other, depending on their preference and performance. We
can assume that such a hybrid BCI will improve the quality of
life of a patient. The following examples of hybrid BCIs
can already be found in the literature: based on multiple
brain signals, such as the combination of a motor imagery
(MI)-based BCI with a steady-state visual evoked potential
(SSVEP)-based BCI [5], or the combination of an MI BCI
with error potential (ErrP) detection and correction of false
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Figure 1. The photograph shows a subject wearing the cap with 16 EEG electrodes over the motor cortex and 4 EMG channels at the flexor
and extensor of the left and right forearm. The diagram explains the processing and fusion principle of muscular and brain activities in a
hybrid BCI.

mental commands [6], or the combination of a SSVEP BCI
with a heart rate controlled on/off switch [7].

In the presented hybrid BCI framework we want to explore
the parallel usage of EEG and electromyographic (EMG)
activity. The control abilities of both channels will be fused,
so that subjects could achieve a good control of their hybrid
BCI independently of their level of muscular fatigue.

2. Methods

2.1. Experimental paradigm and subjects

Every trial in this synchronous BCI recording started with a
fixation cross over 3 s on a screen in front of the participants.
Afterwards the cue—an arrow pointing to the left or right—
was displayed for 5 s and the subjects had to perform repetitive
movements with their left or right hand depending on this cue,
i.e. clutching the hand in a fist. The trial ended with a random
pause between 1.5 and 2.5 s. In total, four runs (5 min each)
with 15 trials for right and 15 trials for left motor execution
were recorded per subject, resulting in 60 trials per class. The
EEG and EMG data were recorded with two g.USBamps (gtec
medical engineering, Schiedelberg, Austria) using a sampling
rate of 512 Hz and a band pass filter between 0.1 and 100 Hz
with activated notch filter.

Twelve healthy subjects (mean age 28.9 ± 5.3 years)
participated in the recordings. Unfortunately, one subject
had very strong electrode movement artefacts in the EEG
and had to be removed from further analysis. Furthermore,
another subject was excluded because no EEG classifier with
a performance better than the chance level could be identified
and a third one because an EMG electrode lost contact during
the experiment and no signal could be recorded.

2.2. Processing steps

The EEG was acquired monopolarly over the motor cortex with
16 electrodes (see figure 1). From the Laplacian filtered EEG,
the power spectral density (PSD) was estimated in the band
4–48 Hz with 2 Hz resolution over the last second [8]. The

PSD features were then estimated every 62.5 ms (i.e. 16 times
per second) using the Welch method with 5 overlapped (25%)
Hanning windows of 500 ms. Canonical variate analysis
was used to select subject-specific features that maximized
the separability between the different tasks and stable features
(according to cross validation on the training data) were used to
train a Gaussian classifier [9]. Decisions with low confidence
on the probability distribution are filtered out if they were not
above a given rejection threshold. Finally, temporary evidence
about the executed task was accumulated using an exponential
smoothing probability integration framework [10].

The EMG was acquired bipolarly over the flexor and
extensor of the left and right forearm (see figure 1). The
prehensile EMG activities were rectified and averaged over
0.3 s to extract the envelopes. The resulting features were
subject-specific thresholded per channel, normalized and
classified based on maximum distance. For estimating the
EMG thresholds a short recording with two left- and two
right-hand movements was performed before the experiment.
The EMG features were calculated and only the background
activity during the non-execution time was extracted. The
thresholds were finally set to the mean average plus three
times the standard deviation (SD) of these periods, in order
that most of the spontaneous EMG activity during the non-
execution time is not detected (similar to [11]).

2.3. Fusion techniques

The fusion module on the right side of figure 1 deals with the
probabilities of all the preceding classification modules, in our
case the EEG and EMG classifiers. In this implementation we
apply an approach with static fusion rules, since we assume
that both inputs can be used all the time (the classifier output
rates are 16 Hz).

Two fusion techniques have been tested: the first
approach uses equally balanced weights between the two
classifiers and the second one applies the naı̈ve Bayesian
fusion approach [12]. The Bayesian fusion considers the
conditional model P(C|O1,O2) to combine the decisions
from two sources (EEG and EMG), where C denotes the
class (left or right), and O1 and O2 are the decisions from the
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two classifiers corresponding to EEG and EMG, respectively.
According to the Bayes rule, we have

P(C|O1,O2) ∝ P(C)P (O1,O2|C). (1)

Assuming that the two sources are independent, we can write

P(O1,O2|C) = P(O1|C)P (O2|C). (2)

Finally we can state

Cout = argmaxc(P (C = c)P (O1|C = c)P (O2|C = c)) (3)

with c ∈ {left, right}. We assume that the prior of the two
classes P(C = c) are the same. Finally P(O1|C = c) and
P(O2|C = c) are the probability values from the confusion
matrix estimated using the training data.

2.4. Fatigue simulation

In this experiment the influence of muscular fatigue on the
fused EEG and EMG performance was investigated. To this
end, we simulated fatigue-induced EMG changes by degrading
the amplitudes of the EMG channel over the experimental
time (attenuation from 10% up to 100%), and thereby making
the EEG activity more and more important for the fusion.
Nevertheless the same classifier weights for EEG and EMG
and the same fusion rules were applied. This simulates the
realistic situation of a patient who becomes more and more
fatigued over the day.

In the literature, both decreases and increases in EMG
amplitude have been found as a sign of fatigue [13, 14]. A
detected increase is mostly triggered by the recruitment of
additional motor units to compensate the decrease of force.
As fatigue increases, EMG amplitude also increases initially
(if the participant is trying to produce the same force) and then
it strongly decreases [13]. A better measure for fatigue would
be the intracellular action potential change, which cannot be
recorded with surface EMG electrodes. A further possibility
of detecting fatigue is the analysis of the median or mean
frequency of the myoelectric signal power spectrum, which is
predominantly linearly decreasing during fatigue [15].

Before performing our experiment we investigated the
validity of using amplitude reduction as fatigue simulation.
Thereby the subjects were repeatedly executing left and right
hand movements with hand grippers, until they could not do
the exercise any longer. The recorded EMG showed first a
stable amplitude; with advancing fatigue the amplitude level
first increased by a factor of 2 and then decreased to 10%
(similar to the results reported in [13]). We also found the
decrease in the median frequency at later fatigue stages.

3. Results

In our experiment, the BCI can be controlled either by a single
modality (EEG or EMG) or by the fused activity of both. In
total we have compared six different conditions in figure 2:
two single modalities and four fused activities with increasing
levels of muscular fatigue (i.e. 0%, 10%, 50%, 90% attenuation

Figure 2. Mean ± SD of correctly classified samples over the whole
task period (0–5 s) for the six conditions. The leftmost (red) and
rightmost (green) conditions correspond to the single modalities,
EMG and EEG, respectively. The four conditions in the middle
correspond to the fusion of EEG and EMG with different levels of
remaining amplitude (i.e. 0%, 10%, 50%, 90% attenuation). For
each of these conditions we provide two performances according to
the fusion modality: simple fusion (left side in black) and Bayesian
fusion (right side in blue).

of EMG amplitude). The reported performance measures were
calculated based on the number of correctly classified samples
over the task time (0–5 s) and were evaluated by a 4×4 cross
validation.

The average performance of all subjects for the EEG
activity alone was 73% and for EMG activity alone was 87%.
In the first fusion approach (equally weighted sources) the
fused activity achieved an increase to 91%. Remarkably,
thanks to the fusion of EEG and EMG, increasing muscular
fatigue (from 10% to 50% to 90% attenuation) led to a
moderate and graceful degradation of performance: 90%, 85%
and 73% accuracy, respectively. It is worth noting that in
the case of fusion with only 10% of EMG amplitude (90%
attenuation), the performance is the same as for EEG alone
despite the fact that the fusion weights are the same over all
conditions.

The second fusion technique based on the Bayesian
approach achieved similar results but with smaller SD (see
figure 2). Interestingly the Bayesian fusion performance is
very stable over the first three fatigue conditions. Especially
in the 50% EMG condition, a tremendous increase could be
achieved compared to the other fusion technique (statistically
significant from 85.1% to 92.0%). In contrast, in the last
condition (90% EMG attenuation) the Bayesian approach
failed and had a result of 60.4%, which is worse than EEG
alone. The reason is that the confusion matrices of the
Bayesian fusion have been calculated using a non-fatigued
subject and the method assumes that the sources do not change
over time. However, a strong level of EMG fatigue leads to
almost a removal of this source, thus causing the significant
performance decrease.
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Figure 3. Examples of raw signals and averaged classifier outputs (integrated probabilities; mean in solid lines ± SD in dotted lines) of
EEG (left) and EMG (right). The cue appeared at 0 s.

4. Discussion

This experiment demonstrates the benefits of a hybrid BCI.
Multimodal fusion of muscular and brain activity yielded
better and more stable performance compared to the single
conditions. Furthermore, the increasing muscular fatigue led
only to a moderate and graceful degradation of performance
compared to the non-fatigued case. Therefore, such a system
allows the user a very reliable hybrid BCI control, even though
she/he is getting more and more exhausted or fatigued during
the day.

Comparing the behaviour of the two fusion techniques,
it is obvious that the Bayesian fusion achieved a constant
performance over a wide range of muscular fatigue, compared
to the steadily decreasing performance in the case of the
simple fusion. However, the Bayesian approach yielded the
worst performance in case of 10% EMG, even lower than the
EEG alone condition. This behaviour can be explained by
the dominance dependence of the Bayesian fusion approach
on the EMG classifier output. For fatigue levels of 50% and
lower the output of the classifier was still reliable and therefore
the Bayesian approach achieved better results. However,
in the conditions in which the quality of the EMG input
signals dropped below a certain threshold the results were
worse. The reason is the strong violation of the assumption
that the input patterns are stationary over time, necessary
to compute the Bayesian confusion matrices. This problem
could be overcome by adapting the way we consider the
contribution of the different modalities. In this work we have
chosen a static approach (computed once and kept constant
over time). Instead we should dynamically update these
coefficients based on the reliability of the input channels, or
the confidence/certainty the system has on its outputs.

Surprisingly, the fused activity resulted in a 6%
improvement in classification compared with the EMG alone
condition. One may expect that EMG classification leads to
a perfect classification of 100%. The reason for the ‘non-
perfect’ classification of the single EMG condition is based
on the fact that the movements were repetitively executed and
that the number of correctly classified samples over the whole
task time is used as a performance measure. A glance at the
raw signals and the extracted classifier outputs exemplifies the
behaviour (see figure 3). The EEG classifier had a smooth but
stable improvement over the trial time compared to the fast and
strong but fluctuating response of the EMG classifier, which

also had a large variation over time. The EMG fluctuation
over time can be explained by the repetitive execution of
the hand movements during the task time. Sometimes the
subject executes the movements and sometimes pauses them.
Thereby the EMG power drops below the detection threshold
and therefore is counted as not detected. On the other side,
repetitive movements are commonly used in BCI research,
since they lead to more discriminative and stable EEG patterns.

Generally speaking, besides muscular fatigue a mental
fatigue could also appear. This would influence the reliability
of the EEG signal in a similar way as the simulated muscular
fatigue influenced the performances of the EMG channel.
Such a reliability could be estimated from supervision signals
such as cognitive mental states in the case of EEG (e.g. fatigue,
error potentials) and physiological parameters (e.g. median
frequency of the myoelectric signal power spectrum in the
case of muscular fatigue). Another possibility is to analyse the
performance of the individual classifiers in achieving the task
(e.g. stability over time, influence of noise, etc) and thereby
adapt the fusion weights.

In our future work we will implement hierarchical
probabilistic approaches, where each channel is modelled
independently and exploits appropriate priors. Thereby the
possibility of monitoring mental states and other physiological
parameters—which are a source of meta-control signals for
weighting the contributions of the single modalities and/or
switching between them—can be incorporated. Online
monitoring of mental states is indeed a critical source of
information to facilitate and improve BCI use over long
periods of time. EEG correlates of mental states associated
with fatigue, attention and workload can modify online the
behaviour of the BCI in two ways. The first one is rather direct
via shared control [3] by setting the level of assistance received
by the user to compensate for his/her reduced attention due
to an increase in fatigue or workload. Similarly, the level of
assistance would decrease whenever the user could sustain a
high level of attention. The second way we can incorporate
measures of mental states is through the hybrid architecture
where these measures weight the contribution of the EEG
channel. Indeed, these measures are a good estimator of the
reliability of the EEG channel: for instance, if the user has a
high attentional level to cope with the workload of the task,
then we can trust the output of the EEG channel; otherwise,
we might not trust it to such an extent [3].

Finally, patients with progressive loss of muscular activity
(as in muscular dystrophy, amyotrophic lateral sclerosis and
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spinal muscular atrophies) could benefit from such a hybrid
BCI with dynamic fusion. For example, during early hybrid
BCI training the user could still exploit her/his residual motor
functions, while with increasing long-term use of the assistive
product the transition between the hybrid assistive device and
pure BCI (when muscular activity is too weak to operate them)
would be smooth. Furthermore, with the proposed hybrid
approach of smoothly merging the various inputs, we can
expect that users can naturally cope with fatigue (muscular
as well as mental) as they can rely on the best input at any time
which would allow them to recover quickly.
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