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ABSTRACT

Trajectory data play an important role in analyzing real world appli-
cations that involve movement features, e.g. natural and social phe-
nomena such as bird migration, transportation management, urban
planning and tourism analysis. Such trajectory data are a speical
kind of time series with another focus on the spatial dimension be-
sides the temporal one. Traditional time series models, especially
the ARIMA (Auto-Regression Integrated Moving Average) model,
have provided sound theoretical backgrounds and promoted many
successful applications for managing and forecasting time-relevant
sequential data. This paper aims at extending the ARIMA model
with spatial dimension, and further applying it for the network-
constrained trajectory data. We implement and evaluate the model
for trajectory database, in the context of traffic application scenario
about vehicle movement constrained under a given network infras-
tructure. The proposed Traj-ARIMA model has many application
perspectives, such as trajectory data regression and compression,
outliers detection, traffic flow and vehicle speed prediction. In this
paper, the major focus is on vehicle speed forecasting.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications—time se-
ries database, spatial databases, GIS; G.3 [Probability and Statis-
tics]: Time Series Analysis—Spatial-Time Series, Prediction

General Terms

Algorithm, Experimentation, Verification

Keywords

Trajectory Databases, Time Series Models, ARIMA, Computational
Transportation Science (CTS)

1. INTRODUCTION

With the advent of GPS and sensor-based tracking techniques,
trajectory data become easily available and ubiquitous, both tech-
nically and economically. The recorded trajectory includes a se-
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quence of data points, and can be considered as a typical scenario
of time series application. Time series analysis comprises statistical
methods (e.g. autocorrelation and spectral analysis) that attempt to
understand sequential data and do forecasting [1] [7]. With sound
theoretical backgrounds and sustaining software packages, time se-
ries have many successful applications in macroeconomics and fi-
nances. However, for trajectory data in moving object database,
time series method is still a fancy and trial topic need to be fur-
ther exposited. Even with a couple of studies focusing on similar-
ity search [4], mining periodic patterns [8], detecting outliers [9]
in time series databases, there are less interconnections with pop-
ular methods of time series analysis. In this paper, we study the
conventional time series models, especially the time-domain driven
analysis method ARIMA, and extend the model in the spatial di-
mension to analyze and predict network-constrained trajectories in
the context of moving object database.

The rest of this paper is structured as follows: after a short intro-
duction in Section 1, Section 2 reviews relevant conventional time
series model, ARIMA in particular and its possible extensions for
the spatial dimension, such as Vector-ARMA and ST-ARIMA; Sec-
tion 3 addresses trajectories in a context of moving object database,
and proposes the Traj-ARIMA model for network-constrained tra-
jectories; the initial experimental results about vehicle speed analy-
sis and prediction are presented in Section 4; and finally Section 5
points to conclusion and future work.

2. TIME SERIES MODEL AND SPATIAL
EXTENSIONS

In this section, we briefly study and review ARIMA (Autore-
gressive Integrated Moving Average) model for time series, with
the possible spatial extensions, such as the two major ones Vector
ARMA and Space-Time ARIMA.

2.1 ARIMA Model

As shown by Box and Jenkins [1], time series can be considered
as stochastic processes from the statistical point of view. Time se-
ries analysis provides models to represent the processes, in terms
of many forms for modeling variations in the level of a process.
Among those models, ARIMA (Autoregressive Integrated Moving
Average) is a top-choice linear method. ARIMA combines the idea
of the autoregressive (AR) model, the moving average (MA) model,
and the integrated (I) model. Autoregressive process is regression
on themselves, which means current value z; is a linear combina-
tion of p (p is the order of AR) historical observations, plus a white
noise €;; a moving average process of order ¢ is a linear combina-
tion of current noise and ¢ historical noises; ARMA combines them,
referring to the model with p autoregressive terms and q moving av-
erage terms. The formulas of these three models are follows,
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By using the backshift operation B (i.e. B(z:) = x¢—1), we

can rewrite the AR(p), MA(q), and ARMA(p,q) models in a more
compact way (see Formula 4-6).
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ARMA can be further extended to ARIMA, with the combination
of the integrated model (I) using the differencing operation. Before
applying autoregressive and moving average, it takes d-level dif-
ferencing. The differencing operation can transform non-stationary
time series into a stationary one, which is very useful in analyzing
the real-life time series data.
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2.2 Spatial Extensions of ARIMA

The ARIMA model reviewed in Section 2.1 only discusses the
temporal correlations among different observations in time series,
without any consideration of the spatial correlations. For trajectory
data in moving object database, however, spatial is another impor-
tant issue, which cannot be overlooked in real world applications.
For example, the vehicle speed in trajectory is not only related to
the historical speed, but also affected by the facility (e.g. traffic
flow) of the neighboring road network.

There are two major methods referring to spatial time series mod-
eling, namely Vector ARMA and Space-Time ARIMA [10] [6].
The previous ARIMA model considers the temporal correlation, fo-
cusing on univariate time series. For Vector ARMA, it estimates the
dynamic interactions among multiple time series, which can be con-
sidered as a subclass of the state-space model [10] [1]. The major
difference is changing previously mentioned univariate into multi-
variate (vector), as shown in the following formula,
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in which, X; = (241, T2, . . . ,wtk) ,E= (Etl, €12, ..., €k)" are

vectors respectively for variants and white noises; and ®, and ©,
are coefficient matrices need to be estimated in the experiment.

Space-time ARIMA (ST-ARIMA) can be approximately viewed
as a special case of vector ARIMA, which emphasizes the spatial
dimensions in terms of “spatial correlations”, not only “temporal
correlations”. Concretely speaking, ST-ARIMA expresses each ob-
servation at time ¢ and location [ as a linearly weighted combina-
tion of previous observations and innovations lagged both in space
and time [10]. Given a observation X; = (@41, Te2,...,%4) s
which means [ observed-values at time ¢ at [ different locations,
W = [wij]is1 is a l x | weighted matrix for | relevant locations. We
get the following ST"ARMA model,
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which can be rewritten by applying backshift operator B,
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then we can further apply differencing operators to combine For-
mula (9) with the I (integrated) model and obtain the ST-ARIMA
model as follows,
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3. TRAJECTORY ARIMA

In this section, we firstly discuss trajectory data management in
the context of moving object database, especially with network con-
straints; afterward, we reconsider the previous ARIMA time se-
ries model and its spatial extensions, and adapt the models to the
network-constrained trajectory data.

3.1 Trajectory Database

Trajectory data are usually detected by mobile or sensor devices,
recording the position where a moving object temporally resides
[12][13]. It can be formally defined as a sequence of spatiotemporal
points (space, time).

DEFINITION 1 (TRAJECTORY). A trajectory 7T is a sequence
of spatiotemporal points (space;,time;) of a given object. In a
conventional two dimension spatial system (not much difference
with high dimensions), we get T = {{x;,y:, t:)} (with all i dis-
tinct and ordered, x; and y; are usually latitude and longitude in
the context of GPS tracking data).

Trajectories of a moving object often have route constraints in
real world applications, which means vehicles can only move ac-
cording to a certain network infrastructure. Not only do land ve-
hicles like cars and buses have their certain route limitations; but
also ships and airplanes have restricted trajectory paths. To analyze



trajectory data and do reasonable prediction, a comprehensible so-
lution ought to consider the underlying network structure. Those
network constraints for moving object trajectories can be defined as
a network or a graph as follows,

DEFINITION 2 (NETWORK CONSTRAINTS). A network con-
strain for trajectories is a directed graph G = (V, E), in which V is
the set of vertex {111, V2, ..., Un } and & is a edge set for connecting
vertex {e1,e2,...,em}. € can be represented as a n X n matrix
of vertex, i.e. [eij]nxn, in which e;; can be 0, 1, oo respectively for
direct-connection, self-connection and no-connection .

For a traffic road network, a road segment can be modeled as a
node, and the connections among those road segments are edges.
Figure 1 shows an example road network, and the following matrix
is about the edge matrix connecting the road segments, where 0
means self-connection and co means no connection. We can use
the matrix for computing spatial lags from the spatial-time series
viewpoint, which will be further discussed in Section 3.3.
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Figure 1: A example road network
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Real world trajectories should be consistent with the underlying
network infrastructure, as an example shown in Fig. 2 (generated by
[3]), which projects the trajectories of many moving object into the
consistent network. Therefore, trajectories from Definition 1 need
to be refined with network constraints. The original GPS tracked
location (z;,y;) in a trajectory 7 need to be map-matched into
road segments in a certain road network. With the underlying net-
work, trajectory data analysis can consider the spatial correlations
between the neighboring road segments.

DEFINITION 3 (NETWORK CONSTRAINED TRAJECTORY). A
trajectory under network constraints can be defined as
TN ={TS8,G}, where TS is a set of trajectories, which might be-
long to one moving object or many different moving objects TS =
{T1,Tz,...,Tm}; G is the constrained network G = (V, £).

For each trajectory 7y, it is a sequence of GPS tracking data 7, =
{{xki, Yri, tri) }, as shown in Definition 1. By integrating network
constraints and moving object information, the trajectory can be
refined as 7, = {(Tki, Yi, tki, mo_id, road_id) }, where mo_id
means ID of the moving object, road_id means the road network
segments that the spatial location (z;, yx;) can be matched.

3.2 Time Series for Trajectories

Before proposing a fully supporting spatial-time series model for
trajectory database, we firstly just focus on the temporal correla-
tions of sequential trajectory data. The main task is to transform the

Figure 2: Network constrained trajectories

initial GPS tracking trajectory data (x:, ¢, t;) into a concrete time
series. For trajectory data about moving object, one of the major
sequential issues is about velocity analysis. With the availability
of speed model for moving object, we can do further queries about
speed forecasting and location prediction.

As GPS data are usually tracked very frequently in a short time
interval (in our experiment case, tracking one record per second),
we can approximately calculate the instant speed as the average
speed between the previous node and the subsequent node as in
Formula (12)",

{zit1, yit1) — (im1, yim1) |13 (12)
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Afterward, we can get the following trajectory speed time series

(for each moving object):
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Instead of analyzing the temporal correlations of trajectory in-
stant speed at different time observations, we can also construct an-

other time series model about distances, {(d1,t1), (d2,d2), ..., {dn,tn)}

where d; = d;_1 + ‘|<$1,yl> — (xi_l,yi_1>||§ and do = 0. In this
paper, we focus on using ARIMA and the extended spatial time se-
ries model for trajectory speed time series analysis. We can easily
adapt univariate ARIMA model from Section 2.1 to construct the
following ARIMA model:
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We follow Box-Jenkins’ typical steps to identify, estimate and
diagnose an ARIMA Model for vehicle speed time series: plot the
data and analyze the correlogram for variables; estimate parameters
and fit the model; make diagnose checking and speed forecasting
(mainly short-term forecasting). The experimental details will be
presented later.

3.3 Spatial-Time Series for Trajectories

The previous ARIMA model for trajectory speed analysis only
considers temporal dimension correlations, which means we model
and forecast trajectory speed only based on its historical speeds,

'In some data sets, if the instant speed is captured by GPS devices,
we can use is directly.



without using any knowledge about spatial neighborhood in the
underlying network. However, in a real world application, spa-
tial correlation is another important issue need to be considered
for trajectory data analysis, especially in a context of network con-
strained trajectory data management. In other words, a correct ve-
hicle speed prediction not only depends on the historical speeds,
but also is influenced by the traffic flow status in the road segments
nearby. Therefore, this section further investigates and extends Vec-
tor ARIMA and ST-ARIMA for trajectory data series.

For ST-ARIMA mentioned previously in Formula (11), all z;
in a multivariate vector time series X; belong to the same kind of
time series with similar semantic meanings. However, the spatial
correlations in trajectory speed time series cannot be modeled in
the same way, because the spatial correlation between two trajec-
tories is dynamic and affected by underlying network. We need to
construct another speed time series about road segments nearby, so
called trajectory flow. For example, to forecast a trajectory speed at
(x4, yi, t:), where location (x;,y;) can be determined at road seg-
ment 75 in Figure 1, we get the following model,

fT67fT4va37"' )

historical speed(temporal) trajectory flow(spatial)

st = F( St—1,8t—2,8t-3,...

where, s;—1, St—2, . . . are historical speeds as temporal correla-
tions, whilst fr6, fr4, ... are nearby road segment trajectory flows
as spatial correlations. Hereinafter, we need to construct the time
series for trajectory flow,

DEFINITION 4  (TRAJECTORY FLOW). A trajectory flow is a
time series belonging to a road segment, which records the average
trajectory speed passing through this road segment. For each road
segment, we get the flow time series F = {(t;, fi)} (with all i
distinct and ordered, f; is the road capacity, in our experiment we
use average speed).

In stead of Trajectory Flow with the focus on the average passing
speed at a road segment, we can also create a logically equal time
series, by using Traffic Flow which considers how many vehicles
passing through a road segment during a given time interval. For
consistent, this paper applies Trajectory Flow time series.

In Section 3.1, network constraints are defined as a graph (road
network), represented by a connecting edge matrix. We can deter-
mine the spatial lag matrix based on the connecting matrix.
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Then the weight for spatial lag 1 can be calculated with the equal
weight for all the connecting road segments.
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We can apply Dijkstra’s shortest path algorithm, for computing
weights with more than one spatial lags. For example, the two lags
connecting matrix and weight matrix are following,
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‘When only considering trajectory flow time series, we can get the
flowing model,
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For trajectory speed, it is more than just a vector time series as
we need to use trajectory flow time series for modeling and fore-
casting trajectory speed time series. Therefore, we need to combine
formula (13) and (14), respectively for temporal correlations on his-
torical speeds and spatial correlations on nearby trajectory flows.

There are three possible combinational solutions,

1) Process trajectory speed time series and trajectory flow speed se-
ries together: for the road network in Fig. 1, there are 6 segments
which means 6 trajectory flow series. Therefore, we can con-
struct the time series model similar as Formula (14), but a new
vector X, including 6 trajectory flows and 1 trajectory speed.
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2) Separately construct trajectory flow time series in advance, and
then linearly plug it into the trajectory speed time series model.
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3) Further refine 2), and consider the dynamic spatial (lags) weights
for trajectory, as different road segments are involved with the
evolution of the trajectory.

4. EXPERIMENT

This section shows the first results from our experiment, includ-
ing model identification, parameter estimation, and diagnosis check-
ing. We consider both real world traffic data set and simulated
data set. At current step, for real world data set, we validate tra-
jectory time series model, especially for trajectory speed modeling
and forecasting; for simulated data set, it is used for the verification
of spatial-time series model of trajectories.



4.

1 Scenario and Data Set
Analyzing vehicle movement data is an important issue in traffic

application. We apply and verify the proposed Traj-ARIMA model

in

two different data sets about traffic movement in a constrained

road network. The first is a huge real world data sets, about tracking
car movement in a Brazilian city; the second is data set generated
by a simulation tool Brinkhoff generator®.

1y

trajectory speed

Real World Traffic Data This data set is GPS tracking about
car movement in Rio de Janeiro in Brazil. The tracked data
are in regular form, one record per second. It is a good can-
didate for constructing trajectory speed time series. For exam-
ple, we have one car with 827,330 GPS records (z, y, t) during
more than one year. We divide the whole recording list into 364
trajectories, many of which follow the same path at different
time. For example, Figure 3 shows five time series of trajectory
speed, following the same movement route in approximately
4000 continuous seconds.
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Figure 3: five time series of trajectory speed (follow the same path)
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4.

Simulated Data set As the previous data set does not have
many cars moving at the same time, it is impossible to construct
trajectory flow time series mentioned in Section 3.3. Further-
more, as real world initial GPS data are really dirty somehow,
many researchers explore trajectory compression [5] and map-
matching [2] techniques to clean the raw GPS data. Therefore,
we plan to use some simulated traffic data for validating spatial-
time series of trajectories. Brinkhoff generator is a popular
opensource for generating spatiotemporal data under a given
network constrain [3]. It combines real data (the network) with
user-defined specifications of the properties (e.g. speed limita-
tion, vehicle features) of the resulting trajectory dataset.

2 Time Series for Trajectories
The original Box-Jenkins ARIMA modeling procedure involves

an interactive three-stage process, i.e. model selection, parameter
estimation, and model checking [1]. For our case, we do two more
explanations of the procedure, adding a stage of data preparation
and a final stage of forecasting [11].

D

Data Preparation Data preparation includes transforming the
raw GPS tracking data (x, y, t) into trajectory speed time series
(s, t) by the formula (14). From the plot of the original trajec-
tory speed time series and its autocorrelation function (ACF) at
the upper of Figure 4, we can see it has long lags and need to be
stationarized. Differencing operation is a key solution by intro-
ducing negative correlation. After one order of differencing, we
get a new stationary time series shown at the bottom of Figure
4, together with a short ACF lag.

Zhttp://www.fh-oow.de/institute/iapg/personen/brinkhoff/generator/
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Figure 4: Speed time series ACF/PACF (original vs. differenced)

2) Model Identification After a time series has been stationarized
by differencing, the next step is model selection which deter-
mines the order of AR (p) and MA (q) in fitting an ARIMA(p.d,q)
model. From the partial autocorrelation (PACF) plot of the dif-
ferenced series in Figure 4, we can see it “cuts off”at lag 2,
which means it is significant at lag 2 and not significant at any
higher order lags, therefore, we can tentatively identify the or-
der of AR (p) is 2. From the differenced ACF plot, we identify
the order of MA (q) is 6 as it “tails off’after lag 6. Therefore, a
reasonable ARIMA model for the trajectory speed time series is
ARIMA(2,1,6).

3) Parameter Estimation After determining the orders of ARIMA
model, the next step aims at training the time series and finding
the values of the model coefficients (i.e. ¢; and 6;) which pro-
vide the best fit of the data. Two typical estimation methods are
OLS (Ordinary Least Square) and MLE (Maximum Likelihood
Estimation). Here, we apply MLE which is used a lot and usu-
ally has better estimation results in time series, by Formula 17,

£6,0,1,0% 1, 0n) = = {nlogo® +1oglV(6,0)]

- n |4 70 - - n T
P )V (0.0 e )y
where {x1,...,x,} is the differenced trajectory speed time se-

ries, which is modeled as a linear function of white noise and
has a joint Gaussian distribution NV (p1,, 0%V (,6)); ¢ and @
are coefficients need to be estimated, together with ;1 and o2, by
using the following optimization function,

{6,0,i1,6} = argmax{€(,0, 0% x1,...,22)}  (18)

#,0,11,02

By using R package for Statistical Computing®, the estimated
result for the ARIMA(2,1,6) model is as follows,

xt = 1.5838x:t—2 — 0.7359x+—1 + €: — 1.2966¢€:—1 + 0.5590¢€: 2
—0.0446€;—3 — 0.0078€;—4 + 0.1087¢€;—5 — 0.0115€;_6

where the standard deviations of those parameters are respec-
tively 0.0860, 0.0641, 0.0873, 0.0525, 0.0307, 0.0295, 0.0264,
0.0254; o is estimated as 0.3029 with log likelihood = —3456.29
and AIC = 6930.58.

*http://www.r-project.org/



4) Diagnosis Checking After specifying model and estimating its
parameters, diagnose checking is concerned with testing the good-
ness of the model, whether it fits the real data set. Residual
analysis is a typical method for model diagnostics, applying
{residual = actual — predicted}. We compute and plot the
diagnostic results in Figure 5, in which top-left is the standard
residuals, we can see it looks like a typical normal distribution;
top-right is the Q-Q (quantile-quantile) plot which is an effective
tool for assessing normality; bottom-left is the ACF with clearly
cut off at lag 1; and final bottom-right shows p-values are very
close to 1. Those plots validate the good fitness of the model,
but the Q-Q plot of the residuals shows not so perfectly well.
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Figure 5: Diagnose checking plots of ARIMA

5) Forecasting One of the primary objectives of building a ARIMA
model for time series is to forecast the values at future time. The
following Figure 6 shows the forecasting results of the learned
ARIMA(2,1,6) model. Have to say, the results are not so con-
vincing. There are following possible reasons to explain this:
(1) up to now, for this data set, it is still using one dimensional
ARIMA model for trajectory data, which only focuses on tem-
poral correlations, and there is no consideration about spatial
correlations, that is why we need the spatial time series model
for trajectory data; (2) building a ARIMA model for a whole tra-
jectory is not so rational; my current research focus is on cutting
trajectories into several semantic units “stops and moves”, and
then I apply the time series model for the separated move parts
(a subsequence of a trajectory).

5. CONCLUSION

This paper has presented a spatial-time series model Traj-ARIMA
for network constrained trajectory data, based on the extension of
the conventional ARIMA model. To our knowledge, this is the first
investigation on applying traditional time series methods for tra-
jectory databases study. Besides a theoretical discussion on spatial
time series modelling for trajectories, we validate the Traj-ARIMA
model for the analysis of vehicle trajectories based on the typi-
cal time series experiment procedure. As vehicle velocity contains
many uncertainty parameters in the real world systems, globally the
prediction results we get from Traj-ARIMA are reasonable.

In addition to trajectory modelling and forecasting, we are able
to discover semantic changes in the behavior of the vehicle trajec-

speed and the forecasts (with error bounds)

30
|

25
|

speed
15
|

T T T T T
0 1000 2000 3000 4000

Time (s)

Figure 6: Trajectory Speed Forecasting

tories, such as beginning a new trajectory or stopping for a while.
In other words, when predicted results are far away from the real
measures, there are two possible explanations: the presence of tra-
jectory outliers and the change of vehicle behaviors. Therefore,
our ongoing focus is on the application of Traj-ARIMA model for
outlier detection, trajectory segmentation and stop identification,
which are important issues for trajectory analysis.
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