
Caching All Plans with Just One Optimizer Call
Debabrata Dash, Ioannis Alagiannis, Cristina Maier, Anastasia Ailamaki

Ecole Polytechnique Fédérale de Lausanne, Switzerland
{debabrata.dash,ioannis.alagiannis,cristina.maier,anastasia.ailamaki}@epfl.ch

Abstract— Modern database management systems (DBMS) an-
swer a multitude of complex queries on increasingly larger data-
sets. Given the complexities of the queries and the numerous
design features, manual design is no longer an option. Instead,
automatically designing the database is vital to maximize its per-
formance and to reduce the total cost of ownership. For this pur-
pose, commercial DBMS feature automated physical designers
suggesting an efficient DB design by using the optimizer as a cost
model. Unfortunately, consulting the optimizer is time-
consuming, an effect which is typically counter-acted by drasti-
cally pruning the search space, thereby potentially missing the
optimal solution. Recently techniques cache the optimizer’s out-
put and evaluate some plans with the cached results, reducing
the number of calls to the optimizer. Still, however, the cost of
invoking the optimizer to fill the cache is nontrivial, undermining
scalability when running workloads with thousands of queries. In
this paper, we use the intermediate optimization results in a dy-
namic programming based optimizer to reduce the cache ini-
tialization overhead. We demonstrate the accuracy and efficiency
of our techniques by implementing them on the PostgreSQL
open source query optimizer. For a star-schema workload, our
techniques build the cost model 5 to 10 times faster than the con-
ventional approach, while preserving accuracy.

I. INTRODUCTION
Modern commercial database management systems typi-

cally provide automated physical designers [1][2][3], i.e.,
tools that suggest a set of physical structures (indexes, parti-
tions, and materialized views) to improve performance of a
certain workload. Although implementation details may vary,
all designers implement the architecture shown in Figure 1: the
designer accepts as input the workload as well as a set of con-
straints, and identifies a set of candidate structures, which can
improve the performance of the workload. The designer then
invokes the optimizer repeatedly to quantify each candidate
structure’s benefit. Finally, a complex search algorithm identi-
fies the combination of structures (configuration) that provide
the maximum benefit, while satisfying the user-defined con-
straints.

The designer typically produces numerous candidates, the
evaluation of which requires substantial disk space and time.
To economise run-time resources, modern designers make
decisions based on “what-if” questions, which can be an-
swered by only creating the statistics of the candidate struc-
tures without actually building them. The optimizer only de-
pends on the statistics of the features to determine their bene-
fits; since the statistics can be accurately simulated there is no
loss of information, therefore what-if questions significantly
improve designer performance and scalability.

Unfortunately, even when asking what-if questions the
optimizer still takes a significant amount of time to compute

the benefit of each configuration: in a typical physical design
process about 90% of the time is spent on invoking the opti-
mizer [4]. To reduce this overhead, designers aggressively
prune candidate configurations through greedy algorithms,
often reducing the quality of the final solution. Two recently-
proposed approaches reduce the overhead of optimizer invo-
cation without aggressive premature pruning: parametric
query optimization (C-PQO) [5] and caching partial query
plan costs (INUM) [4].

C-PQO reuses the parametric query optimization (PQO) in-

frastructure of SQL Server to optimize a query and cache the
union of all feasible execution plans for the given query. In
terms of eliminating optimizer-caused overheads C-PQO is
currently the state-of-the-art; however, it is built into SQL
Server’s top-down query optimizer. Therefore, it is not
straightforward to port C-PQO to another query optimizer,
such as the bottom-up query optimizer of PostgreSQL.

Generally speaking, an ideal approach would drastically re-
duce the need for costly optimizer calls without binding the
process to a certain optimizer’s features. Optimizer-
independent techniques such as INUM evaluate a carefully
chosen representative set of plans for each query, build a plan-
cache and determine the costs for all possible configurations
using the cached plans. The cache eliminates optimizer calls
once it is built; filling the cache, however, still requires a non-
negligible number of optimizer calls (92 calls on average for
TPC-H queries [4]). Although caching allows for four to five
orders of magnitude more configurations to be evaluated and
offers higher-quality solutions when compared to the no-
caching approach, cache construction costs limit the scalabil-
ity of INUM. This overhead limits the applicability of
INUM’s cost model to online workloads, where the caches
need to be constructed in the order of milliseconds per query.
Lowering the cache construction overhead also helps for off-
line designers, where the indexable structures such as materi-

Figure 1 Architecture of a typical physical designer.

978-1-4244-6523-1/10/$26.00 © 2010 IEEE ICDE Workshops 2010105

alized views and partitions are created dynamically, since a
plan-cache must be built for every query using those struc-
tures.

 In this paper we look deeply into the plan-caching ap-
proach and discover that much of the information generated
during the optimization process, if exported to the designer,
can drastically reduce the related overhead. Indeed, while
evaluating each configuration, the optimizer creates and
evaluates several intermediate plans, some of which already
constitute the answer to subsequent optimizer calls. The in-
termediate plans are sub-optimal plans for the given configu-
ration, but are optimal for other configurations. If instead of
caching only the final plan we also cache the intermediate
plans, several of the subsequent calls to the optimizer can be
suppressed, minimizing the related overhead. Furthermore, the
technique does not significantly compromise the technique’s
portability and independence, as most optimizers follow a
similar evaluation process.

To demonstrate and evaluate the technique we use the dy-
namic programming-based optimization process of the Post-
greSQL open-source DBMS query optimizer. Using INUM as
the caching mechanism we implement PINUM, an index se-
lection tool for PostgreSQL. We obtain intermediate plan
evaluations piggy-backed to the answer to each what-if ques-
tion. We choose PostgreSQL because of its relatively mature
query optimizer. We select INUM as its interface with the
optimizer is lighter than C-PQO, making it more portable
across DBMS and their releases. We first implement what-if
indexes, then port INUM’s cache model to enable scalable
candidate space search. By adding a small set of query opti-
mizer hooks, we experimentally find that the additional in-
formation reduces INUM’s cache-building costs by a factor of
5 to 10. We then integrate the cache-based query cost estima-
tion with a simple index selection tool to suggest indexes that
speed up simple analytical queries by factor of 10.

Our focus on PostgreSQL is also motivated by lack of ma-
ture automated physical designers for open source DBMSs,
although they are relatively mature for commercial DBMSs.
Monterio et al. implement and design an index suggestion tool
for PostgreSQL [6]. They, however, assume the size of the
indexes to be zero, severely affecting the accuracy of the
optimizer when using their what-if indexes. Thiem et al. pro-
pose a physical designer for Ingres open source DBMS which
focuses more on efficient performance monitoring, than
physical design [7]. Kao et al. propose changing the optimizer
to store access path decisions in a data structure and suggest
the frequently requested access paths [8]. This technique,
however, cannot be applied to a bottom-up optimizer, which
does not request access paths.

The rest of the paper is organized as follows: We provide
the necessary background on INUM and PostgreSQL query
optimizer in Sections II and III respectively. Section IV analy-
ses the inefficiencies in the current approach, and Section V
discusses PINUM’s extensions and their implementation on
the query optimizer. We discuss the experimental results using
PINUM in SectionVI. Finally, Section VII concludes and dis-
cusses the future research direction.

II. INUM OVERVIEW
INUM postulates that, although selection tools must exam-

ine a large number of alternative designs, the number of dif-
ferent optimal query plans and, thus, the range of different
optimizer outputs is much smaller. Therefore, it makes sense
to reuse the optimizer output, instead of calling the optimizer
to generate plans that differ by just one access path. INUM
works by first performing a small number of key optimizer
calls per query in a pre-computation phase and caching the
optimizer output (query plans along with statistics and costs
for the individual operators). During normal operation, query
costs are derived exclusively from the pre-computed informa-
tion without any further optimizer invocation. The derivation
involves simple numerical calculations and is significantly
faster compared to the complex query optimization code. To
explain INUM’s postulations, we borrow the following defini-
tions from the literature:
1. “Configuration” is a set of indexes. A configuration is

called “atomic” with respect to a query, if for each table
in the query; at most one index is present in the configu-
ration [10].

2. An “interesting order” is a tuple ordering specified by
the columns in a join, group-by or order-by clause Error!
Reference source not found..

3. An “interesting order combination” for a query is the set
of interesting orders, where there is at most one interest-
ing order for each table involved in the query [4].

4. An index “covers” an interesting order, if the interesting
order is the first column in the index. Similarly an atomic
configuration covers an interesting order combination [4].

An interesting order of a table is a column, which, if or-
dered, reduces the query cost. For instance, in the query “se-
lect A, B from T order by A”, A is an interesting order for
table T. If there are two tables T1 and T2, and their interesting
orders are A, C respectively, then possible interesting order
combinations covered by a combination are (A,Φ), (A,C),
(Φ,C), and (Φ, Φ). We denote lack of interesting order on a
table as Φ. The atomic configuration {T1(A),T2(C)}, consist-
ing of indexes on A and C, covers the interesting order com-
bination (A,C). Let D be a non-interesting order column in T2,
the atomic configurations (T1(A)) and (T1(A),T2(D)), cover
the interesting order combination (A, Φ).

Using these definitions, the most important observations
from INUM are:

1. If a query involves only merge- and hash-join plans, the
cost of join and aggregation does not depend on the cost of
accessing data from the table or indexes. The total cost of the
query depends linearly on the cost of accessing data for each
table. The cost of accessing data includes the cost of accessing
all required rows and columns from indexes, tables, or a com-
bination of them.

2. If a query involves only merge and hash join plans, then
caching one plan per interesting order combination is suffi-
cient to find the plans for all possible atomic configurations.

3. For queries involving all join methods including Nested-
Loop Joins, it caches more than one plan per interesting order

106

combination and achieves reasonable cost approximation for
the optimal plan cost.

INUM separates the total cost of the query into “internal”
join-aggregation costs, and the “leaf” data access costs. The
internal costs, determined by join methods and join orders, are
only allowed to change between different cached plans. In a
given cached plan, the internal cost remains constant, and the
variations in the query cost comes from the variation of the
data access costs. Therefore, the cost of the plan linearly de-
pends on the data access costs, which allows easy determina-
tion of the optimal plans and the optimal cost of a query in
presence of atomic configurations.

In the rest of the paper, we denote the data access costs as
simply “access costs”, and the internal plans along with the
join method and orders as the “INUM cache”.

Using atomic configurations limits INUM from suggesting
plans involving index intersections. Typically the complexity
overhead of using intersections outweigh the modest im-
provement in performance they provide [5]. We therefore fo-
cus on improving INUM’s performance instead of extending it
to include such complex index operations.

III. THE POSTGRESQL QUERY OPTIMIZER
In this section, we describe the query optimizer in detail

and later we discuss the components we change to implement
PINUM on top of PostgreSQL [9].

Figure 2 shows the very high level architecture of the query
optimizer. Given a query the workflow in the components is
as follows:

The Query Preprocessor statically analyses the query and
identifies the opportunities to optimize it using rewriting.
Then the Sub-query Planner optimizes each sub-query that
cannot be merged into the top-level query individually. In this
step, it identifies the sub-queries and invokes the next compo-
nent on each of them.

The Grouping Planner isolates the grouping and ordering
columns. It also identifies the interesting orders for the query.
The Access Path Collector component iterates over the tables
in the from clause, and finds the costs of accessing those using
operations such as table scans, index scans, or seeks. It looks
up the statistics of the table as well as indexes from the Cata-
log schema and estimates the costs of accessing them. It also
attempts to reduce the complexity of next components by
eliminating inefficient access paths. If two indexes cover the
same interesting order, then this component filters out the
access path with the higher cost. This filtering process pro-
vides the best access path for each interesting order, therefore
preserving the potential of using the interesting order in sub-
sequent steps.

The Join Planner component implements a dynamic pro-
gramming algorithm to identify the join methods and join or-
ders. Given a query joining n relations, the join planner’s dy-
namic program consists of n-1 levels. In the first level, opti-
mal join methods are determined for every two pairs of rela-
tions. Every subsequent level adds one more relation to the
join of the previous level and finds the optimal plan for the
join. The plan is a tree of operations with the internal nodes of

the tree determining the joining method, and the leaves repre-
sent the access paths on indexes and tables. The plan also
stores the interesting order it covers. The top level provides a
set of optimal plans with different interesting order combina-
tions.

On the return path, the grouping planner adds the grouping
constructs such as group-by, order-by, distinct etc. to the plans.
If the grouping can be done using one of the interesting orders
covered by the plan then the plan is forwarded as such, other-
wise sort steps are added to provide the required ordering. The
sub-query planner then combines all sub-query paths into one
path. Finally, it returns the plan to the caller.

The optimizer maintains intermediate plans during the join
planner, and after returning from the join planner to the group-
ing planner. These plans join a subset of the queried tables, or
lack the required aggregation operations.

IV. HARNESSING THE INTERMEDIATE PLANS
In this section we describe our intuition behind harnessing
information from the intermediate plans created by the opti-
mizer towards saving future what-if questions. To illustrate
the points, we analyse the INUM plan cache when evaluating
TPC-H queries; consider, for instance, the 5th query in the
TPC-H benchmark. The query joins 6 tables in the benchmark,
and groups and orders the results. Since the join and order-by
clauses contribute to the interesting orders, the query has 648
interesting order combinations.

INUM needs to query the optimizer 648 times to fully build
the cache; if we carefully parse the plans, however, we find
only 64 unique plans in the cache; 90% of the optimizer calls
and the cached plans are therefore redundant! Furthermore,
even the optimizer call to evaluate a useful interesting order
combination finds plans for other interesting orders and dis-
cards them before reporting the optimal plan. For example, if
the optimizer is invoked with an index set covering the inter-
esting order combination (A,B,C), then the optimizer finds
many of the plans providing interesting order combinations
(A,Φ, Φ), (Φ,B,Φ) etc. It prunes the plan providing (Φ,B,Φ),
only if it costs more than a plan providing a more specific
interesting order combination, such as (A,B,Φ). All non-

Query Preprocessor

Subquery Planner

Grouping Planner

Access Path
Collector

Join Planner

Query

Catalog

Plan

Figure 2 The PostgreSQL optimizer’s architecture

107

pruned plans are collected during join optimization, only to be
discarded at the final optimization level before reporting the
optimal plan.

We can make the INUM cache construction much more ef-
ficient by collecting the discarded plans along with their inter-
esting order information. Once a set of plans is collected we
determine the next best interesting order combination to send
for optimization and greedily fill the entire cache. If we have
access to the optimizer code, however, we can do even better:
by omitting the pruning process mentioned above, a single call
to the optimizer returns the optimal paths for all possible in-
teresting order combinations. (If we use INUM we need to
request separate plans for when nested-loop joins are disabled,
so we need to make two calls.) To be fair, we do introduce a
(potentially significant) overhead, as the optimizer builds 648
plans and transfers them to the client. Section V-D describes a
pruning technique to reduce this overhead and output only the
64 useful plans.

V. DESIGN AND IMPLEMENTATION
We first modify the PostgreSQL optimizer to provide the

APIs that INUM’s cache requires, such as what-if indexes,
and optional disabling of nested-loop joins. It then tweaks the
optimizer to speed up the cache construction. Finally, it inte-
grates the cache with a simple index selection tool to auto-
matically suggest indexes.

A. What-If Indexes
 To determine the optimal plans in presence of an index,
the query optimizer uses two types of statistical information –
the size of the index, and histograms of the columns in the
index. Since the histogram information is associated with the
table, we do not replicate or modify them. To compute size,
we use the average attribute size, the total number of rows,
and the attribute alignments to find the number of leaf pages
required to store the index. We ignore the internal pages of the
B-Tree index, since they affect the relative page sizes only on
very small indexes.

B. Porting INUM to PostgreSQL
As Section 3 describes, INUM needs the index access costs

from the optimizer along with the optimal plans for each in-
teresting order combination. Since INUM considers the plans
with nested loop joins separately, the optimizer also needs to
provide a way to disable nested loop joins.

To disable the nested loop joins, we use the global parame-
ter “enable_nestloop” in the DBMS. Originally, this parameter
adds a very high overhead to the nested loop joins, thus dis-
couraging its use. Since PINUM requires the nested loops to
be completely absent from the suggested plans, we tweak the
join planner to remove nested loop operations if this flag is set.

Getting the access cost is the simpler of the two problems.
Naively, the optimizer can be queried with a single index per
each table in the query and the access cost can be determined
by parsing the generated plan. This process is relatively ineffi-
cient since it re-optimizes the entire query to find the access
cost for a small set of indexes. What follows is a discussion on
how to speed up this process.

C. Speeding up Access Cost Lookups
To speed up index access cost lookups, we modify the ac-

cess path collector module in the optimizer. Given a large set
of what-if indexes, the access path collector finds the access
paths for all those indexes and keeps only the least expensive
index access path for each interesting order. We modify the
module to keep all index access paths, instead of the least ex-
pensive one. This allows PINUM to determine the access
costs of a large set of indexes by calling the optimizer just
once.

D. Speeding up the Cache Construction
INUM caches two optimal plans for each interesting order

combination, one with nested loop joins and one without (i.e.
containing only hash and merge joins). To find these plans, it
first enumerates all combinations of the interesting orders and
invokes the optimizer for each one of them with after creating
indexes covering those interesting orders.

Instead of using ad-hoc pruning, we reduce the overhead by

observing that the join planner keeps at least one path for each
interesting order combination. It keeps them with the hope of
using the interesting order in a merge join or in the grouping
planner. Therefore, if the optimizer is invoked with all possi-
ble interesting orders, then the join planner maintains the op-
timal plans for every useful interesting order combination
until the last level. Instead of replicating INUM’s plan set
inside the optimizer, we prune away unhelpful interesting or-
der combinations by using the following condition: If plans A
and B provide interesting orders in set SA and SB, where SA �
SB and Cost(SA) < Cost(SB), then we remove Plan B.

In other words, if a plan requiring smaller interesting order
set is more efficient than a plan requiring large interesting
order, then the inefficient plan can be safely removed. This
pruning process reduces the search space of the join planner,
while preserving all useful plans.

The nested-loop joins are attractive at low access costs, but
become expensive as the access cost of the table grows.
Therefore, the same interesting order can have multiple opti-
mal plans. Which forces INUM to make multiple calls to the

Query Preprocessor

Subquery Planner

Grouping Planner

Access Path
Collector

Join Planner

Query

Catalog

PlanPlanPlans

What-If
Indexes

PlanPlanAccess
Costs

Figure 3 The modified query optimizer architecture.

108

optimizer to estimate the costs of the plans containing nested-
loop joins. Typically, only two calls to the optimizer at the
extreme access costs are sufficient to achieve reasonable accu-
racy. If higher accuracy is required, the pruning condition can
be changed to prune only when the access cost range of the
indexes are in the same range. This provides higher accuracy,
but at the cost of a bigger plan cache and slower cost lookup.

Figure 3 shows the architecture of the query optimizer after
the modifications for what-if indexes, fast access cost lookup
and fast cache construction are added. The dotted and dashed
lines represent the new data flow induced by PINUM’s access
cost and cache construction optimizations. As the figure
shows, the changes to the optimizer components are minimal
and requires only touching three files in the optimizer code-
base.

E. Integration with an Index Selection Tool
To demonstrate the effectiveness of PINUM’s caching

model we integrate it with a simple index selection algorithm
to create a complete index selection tool. The tool expects a
workload and a space budget as input. It determines a set of
indexes which occupies less than the budgeted space and at-
tempts to provide the maximum speed up to the workload.

The tool first statically analyses the queries to find a large
set of candidate indexes. It then follows an iterative algorithm,
and selects the index which provides the most benefit to the
workload. To determine the index, it iterates over all candi-
date indexes, measures their benefit if used along with the
winning indexes of earlier iterations. It adds the index with
most benefit to the winning set, and iterates till adding an in-
dex would violate the space constraint.

Although this algorithm is a very simple, it has been shown
to perform better in terms of accuracy than more complex
algorithms used in the commercial designers, mainly because
of its significantly larger candidate index set [4].

VI. EXPERIMENTAL RESULTS
This section demonstrates the accuracy of PINUM’s cost

model, and its performance advantage over INUM’s model
construction. It also shows the benefit of using PINUM on a
synthetic star-schema workload.

A. Experimental Setup
We implement PINUM on PostgreSQL 8.3.7 on the Win-

dows platform. The implementation in its existing form does
not address queries containing complex sub-queries, inheri-
tance, and outer joins. Therefore to investigate the perform-
ance and quality of the implementation, we use a synthetic
benchmark to study the behaviour of the physical designer in
presence of varying query complexity.

The synthetic workload consists of a 10GB star-schema da-
tabase, with one large fact table, and 28 smaller dimension
tables. The dimension tables themselves have other dimension
tables and so on. The columns in the tables are numeric and
uniformly distributed across all positive integers. We use 10
queries, each joining a subset of tables using foreign keys.
Other than the join clauses, they contain randomly generated
select columns, where clauses with 1% selectivity, and order-
by clauses. In this experiment PINUM generates and searches
through 1093 candidate indexes. It identifies 43 useful plans
for out of a total of 266 interesting order combinations.

Although the current limitations in our implementation pre-
vent us from using full-blown TPC-H queries, we design the
synthetic benchmark to preserve all possible complexity and
challenge to our method. The workload consists of a star-
schema workload, a well-accepted design for analytical que-
ries. It also favours nested-loop joins more than sort-merge
and hash joins. As INUM is less accurate when nested-loop
joins are used, our benchmark is more challenging when com-
pared to TPC-H in the context of a cache-based cost model.

B. What-If Index Accuracy
Initially, we use the query optimizer to compute the cost of

a query when the indexes are explicitly implemented in the
database. Then, we evaluate the cost of the same query by
simulating the presence of the same indexes using what-if
indexes in the optimizer. We repeat the same experiment 50
times for different set of indexes. The experiment shows that
the query cost estimation does not exactly match with the
optimizer’s cost: the error in the cost estimation was on aver-
age 0.33% and the highest observed error was 1.05%. The
difference in the estimated cost and the actual cost is a result
of the way we compute the number of pages for the indexes.
We compute only the sizes of the leaf pages and we do not
take into consideration the internal pages of the B-tree index,
since they affect the relative page sizes only on very small
indexes.

C. Cost Estimation Accuracy
To study the accuracy of PINUM’s cost model, we generate

1000 random atomic configurations for each query in the
workload. We then compare the cost of the queries using
PINUM’s cost model and using what-if indexes on the opti-
mizer. Out of ten queries, six had less than 1% error in cost
estimation. Further three queries had about 4% error, and only
one query had 9% error in cost estimation. This demonstrates
PINUM’s cache-based cost model provides higher accuracy
compared to INUM’s cache-based cost model that has 7%
error on average [4]. For the single poorly performing query,

Figure 4 Comparison of cache construction times.

0

1000

2000

3000

4000

5000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Ti
m

e
Ta

ke
 t

o
Bu

ild
 C

ac
he

 (
m

s)

Queries

INUM Plan Cache PINUM Plan Cache

INUM Index Access PINUM Index Access

109

PINUM returns the accurate plans. The errors in cost estima-
tion stems from our access cost generation mechanism, as it
misses several access paths generated in the join planner. In
future, we intend to investigate the addition of these access
paths to improve the model’s accuracy.

D. Performance Results
Figure 5 demonstrates the efficiency of PINUM while fill-

ing the plan cache and collecting the index access costs from
the optimizer. The x-axis shows the queries, whereas the y-
axis shows the time taken to get the plans for different inter-
esting order combinations and index access costs.
 PINUM is typically at least one order of magnitude faster
than INUM for cache construction, and 5 times faster for find-
ing the index access costs. PINUM takes a few tens of milli-
seconds to build the cache for each query, compared to a few
seconds required by INUM. Moreover, for queries involving
more than three tables in the join clause, PINUM is two orders
of magnitude faster than INUM, so PINUM is better suited for
complex queries and can scale to a much higher number of
queries in the workload. A more intelligent pruning of the
unhelpful indexes can speed up the index access cost lookup.

E. Results for the Index Selection Tool
Figure 6 demonstrates the benefit of running the prototypi-

cal index selection tool discussed in Section V-E. We run the
tool using the 10 queries in the workload, and restrict the tool
to suggest indexes taking 5GBs of space on disk. We report
the original running times of each of the queries and new run-
ning times with the suggested indexes.

Using PINUM’s suggested indexes speeds up the workload
by 95% on average. PINUM reduces the cost of the most ex-
pensive queries by building covering indexes for them. It sug-
gests four covering indexes on the fact table, and three order
indexes on the next level dimension tables.

Although we use a synthetic benchmark in the current form
of the implementation, the experimental results are indicative
of the potential of the index suggestion tool on a real-world
workload, and as this benchmark is challenging for INUM, we

expect even better performance when using a standard
benchmark such as TPC-H.

VII. CONCLUSION AND FUTURE WORK
In the process of answering what-if queries, the optimizer

evaluates many plans that often contain the answer to subse-
quent questions when evaluating candidate configurations.
Harnessing this work instead of throwing it away can speed up
candidate evaluation by an order of magnitude, thereby im-
proving solution quality as it reduces the probability that the
optimal configuration will be pruned. To demonstrate the ef-
fectiveness of the technique we build PINUM, a fast and low-
overhead proof of concept cost model for PostgreSQL DBMS.
PINUM reduces the construction overhead of a query plan
cache by a factor of at least 5, without compromising accuracy.
We build a simple index selection tool, and using a large
number of candidates select indexes which speed up typical
star-schema queries by 95% on average.

Because PINUM removes the overhead barrier from cache-
based cost models, in future we intend to use it for building
physical designers which suggest partitions, materialized
views, and subsequently online workloads.

ACKNOWLEDGEMENTS
This work was partially supported by Sloan research fel-

lowship, NSF grants CCR-0205544, IIS-0133686, and IIS-
0713409, an ESF EurYI award, and SNF funds.

 REFRENCES
[1] Bruno, N. and Chaudhuri, S. 2005. Automatic physical database

tuning: a relaxation-based approach. SIGMOD’05.
[2] Zilio, D. C., Rao, J., Lightstone, S., Lohman, G., Storm, A.,

Garcia-Arellano, C., and Fadden, S. (2004). Db2 design advisor:
Integrated automatic physical database design. VLDB’04.

[3] Performance Tuning using the SQLAccess Advisor.
http://www.oracle.com/technology/products/bi/db/10g/pdf/twp_
general_perf_tuning_using_sqlaccess_advisor_10gr1_1203.pdf

[4] Papadomanolakis, S., Dash, D., and Ailamaki, A. Efficient use
of the query optimizer for automated physical design.
VLDB’07.

[5] Bruno, N. and R. V. Nehme. Configuration-parametric query
optimization for physical design tuning. SIGMOD '08.

[6] Monteiro, J. M., Lifschitz, S. and Brayner, A.: An Architecture
for Automated Index Tuning. SBBD, 2006.

[7] Thiem, A. and Sattler, K. An Integrated Approach of Perfor-
mance Monitoring for Autonomous Tuning. ICDE’09.

[8] Kao, K. and Liao, I. An index selection method without re-
peated optimizer estimations. Inf. Sci. 09.

[9] PostgreSQL documentation manual:
http://www.postgresql.org/docs/8.1/interactive/index.html

[10] Chaudhuri, S. and V. R. Narasayya An Efficient Cost-Driven
Index Selection Tool for Microsoft SQL Server. VLDB’97.

[11] Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R.
A., and Price, T. G. Access path selection in a relational data-
base management system. SIGMOD '79.

1

10

100

1000

10000

100000

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Q
ue

ry
 E

xe
cu

ti
on

 T
im

e
(m

s)

Queries

Original Execution Time
Execution Time with Suggested Indexes

Figure 7 Workload performance improvement by using the index selection
tool.

110

