Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Approximability of Sparse Integer Programs
 
research article

Approximability of Sparse Integer Programs

Pritchard, David  
•
Chakrabarty, Deeparnab
2010
Algorithmica

The main focus of this paper is a pair of new approximation algorithms for certain integer programs. First, for covering integer programs {min cx:Ax≥b,0≤x≤d} where A has at most k nonzeroes per row, we give a k-approximation algorithm. (We assume A,b,c,d are nonnegative.) For any k≥2 and ε>0, if P≠NP this ratio cannot be improved to k−1−ε, and under the unique games conjecture this ratio cannot be improved to k−ε. One key idea is to replace individual constraints by others that have better rounding properties but the same nonnegative integral solutions; another critical ingredient is knapsack-cover inequalities. Second, for packing integer programs {max cx:Ax≤b,0≤x≤d} where A has at most k nonzeroes per column, we give a (2k 2+2)-approximation algorithm. Our approach builds on the iterated LP relaxation framework. In addition, we obtain improved approximations for the second problem when k=2, and for both problems when every A ij is small compared to b i . Finally, we demonstrate a 17/16-inapproximability for covering integer programs with at most two nonzeroes per column.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

453_2010_Article_9431.pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

Size

687.06 KB

Format

Adobe PDF

Checksum (MD5)

4200ead788b6ecf520d54daa29dd8746

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés