Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Mechanistic interpretation of Alpine glacierized environments: Part 2. Hydrologic interpretation and model parameters identification on case study
 
research article

Mechanistic interpretation of Alpine glacierized environments: Part 2. Hydrologic interpretation and model parameters identification on case study

Perona, P.  
•
Pasquale, N.
•
Molnar, D.
2008
Advances in Water Resources

The differential model MIAGE (see "Mechanistic Interpretation of Alpine Glacierized Environments: Part 1. Model formulation and related dynamical properties" by Perona and Burlando, this issue) is analyzed in this work with the purpose of: (i) showing the model equivalence to a nonlinear reservoir system; (ii) identifying and correlating the model's coefficients to the hydrogeomorphological properties of a number of different Alpine basins; (iii) testing the model performances to assess the potential impact of climatic change on the hydrologic dynamics of the basins being studied. The study catchments have different topographic, morphologic and hydrologic characteristics, range in size from 4 to 3300 km2 and are 2-32% glacierized. For each basin, the model coefficients are obtained by applying a system identification technique to the mean seasonal basin behaviour. It is shown that the coefficients vary in a reasonable way according to hydrogeomorphological basin characteristics. Model coefficients provide insight into the basin drainage time, and the time dependent damping and elastic properties of the system. Despite its simplicity and in the limit of the model capabilities, results for changing climatic scenarios are also in good qualitative agreement with other well tested modelling approaches. In summary, MIAGE offers an interesting minimalist approach to shed light on the dynamics of glacierized Alpine catchments.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.advwatres.2008.03.007
Author(s)
Perona, P.  
Pasquale, N.
Molnar, D.
Date Issued

2008

Publisher

Elsevier

Published in
Advances in Water Resources
Volume

31

Issue

7

Start page

948

End page

961

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
AHEAD  
Available on Infoscience
June 28, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/51345
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés