Integer Factoring

ARJEN K. LENSTRA arjen Jenstrad@ citicorp.com
Citibank. N.A.. 1 Norih Gate Road. Mendham, NJ 079453104, USA

Abstract. Using simple examples and iformal discussions this article surveys the ey 1deas and major advances
of the last quarter century in integer facterization,

Keywords: Integer fctorization. quadratic sieve, number field sieve, elliptic curve method, Momson-Bnllhan
Approach

1. Introduction

Factoring a positive integer n means finding positive integers « and v such that the product
of u and v equals 2. and such that both « and v are greater than 1. Such 1 and v are called
factors (or divisors) of n.and n = u - v is called a factorization of n. Positive integers
that can be factored are called composites. Positive integers greater than | that cannot be
factored arc called primes. For example, n = 15 can be factored as the product of the
primes « = 3and v = 5. and n = 105 can be factored as the product of the prime 1 =7
and the composite v = 15. A factorization of a composite number is not necessarily unique:
n = 105 can also be factored as the product of the prime # = 5 and the composite v = 21.
But the prime factorization of a number—writing it as a product of prime numbers—is
unique. up to the order of the factors: n =3 .57 is the prime factorization of n = 105.
and n = 5 is the prime factorization of n = 5.

In this article we concentrate on finding just a factorization. The prime factorization can
be obtained by further factoring the factors that happen to be composite: both factorizations
n=7-15andn = 5-21 of n = 105 can be further refined to the prime factorization
n=3-5.70fn = 105, the first by further factoring 15. the second by factoring 21. There
are efficient methods to distinguish primes from composites that do not require factoring the
composites (cf. [29]. [50]. and Seetion 2). These methods can be used to estublish beyond
doubt that a certain number is composite without, however, giving any information about
its factors.

Factoring a composite integer is believed to be a hard problem. This is. of course. not
the case for all composites—composites with small factors are casy to factor—but, in
general, the problem seems to be difficult. As yet there is no firm mathematical ground
on which this assumption can be based. The only evidence that factoring is hard consists
of our failure so far to find a fast and practical factoring algorithm. (The polynomial-time
factoring algorithms that are based on the use of quantum compulters are not considered
to be practical and not addressed in this survey.) Interestingly. and to an outsider maybe
surprisingly. an entire industry is based on this belief that factoring is hard: the security.

i.c.. the unbreakability, of one of the most popular public key cryptosysiems relies on the
supposed difficulty of factoring (cf. Appendix).

This relation between factoring and cryptography is one of the main reasons why people
are interested in evaluating the practical difficulty of the integer factorization problem.
Currently the limits of our factoring capabilities lie around 130 decimal digits. Factoring
hard integers in that range requires cnomous amounts of computing power. A cheap and
convenient way 1o get the computing power needed is to distribute the computation over
the Internet. This approach was first used in 1988 to factor a 100-digit integer [32]. since
then to factor many integers in the 100 to 120 digit range, and in 1994 10 factor the famous
129-digit RSA-challenge number (cf. [4])." Most recently, in 1996 a 130-digit number was
fuctored. partially using a World Wide Web interface [13].

This survey is intended for people who want to get an impression how modern lactoring
algorithms work. Using simple examples we illustrate the basic sieps imvolved in the
factoring methods used to obtain the factorizations just mentioned and we explain how
these methods can be run in parallel on a loosely coupled computer network. such as the
Internet.

We distinguish two main types of factoring methods: those that work quickly if one is
lucky. and those that are almost guaranteed to work no matter how unlucky one is. The fatter
are referred 0 as general-purpose algorithms and have an expeeted run time that depends
solely on the size of the number n being factored. The former are called special-purpose
algorithms: they have an expected run time that also depends on the properties of the—
unknown—factors of 2. When evaluating the security of factoring-bused cryptosystems,
people employ general-purpose factoring algorithms, This survey therefore focuses on
this category of integer factoring algorithms, after a short description how primes can be
efficiently distinguished from composites (Section 2) and of some of the most important
special purpose algorithms in Section 3.

In Section 4 we sketch the basic approach of the general purpose algorithms. We show that
they consist of two main steps: data collection. and data processing. Section 5 concentriies
on the quadratic sieve factoring algorithm, the algorithm that was considered to be the most
practical general purpose method from 1982 to 1994. We describe the data collection
step. how it can be improved using some simple additional tricks. and how it can be
parallelized over a network. Section 5 concludes with some data from quadratic sieve
factoring cfforts.

The algorithm that is currently considered to be the most practical method (for sufficiently
Jaree numbers)—the number field sieve—is skeiched in Section 6. This sketch offers only
a vague indication of the algorithm: it omits most of the mathemaiics required to fully
understand the algorithm. In the appendix we deseribe the relation between factoring and
cryprography.

Understanding the material presented in this survey requires some willingness to bear with
a few easy examples and a few slightly more complicated formulas and descriptions, Some
of the descriptions below are oversimplified to the point of being partially inaccurite—in
particular the description of the number ficld sieve fuctoring algorithm is seriously deficient.
Nevertheless, we hope that this survey provides a useful introduction to factoring that
inspires the readers to consult the literature referred to in the references.

2. Preliminaries

Notation. By 'log," we denote the base » logarithm. and ‘In" denotes the natural logarithm,
i.e..In = log, withe & 2.71828. The largest integer <= v is denoted by *[x]'. The number
of primes < x is denoted by "7 (x)". the prime counting function: due to the Prime number
theorem [24] we know that 7(x) = x/In(x). To give an example of some values of the
prime counting function and its growth rate:

[7(10'): 1 <i < 19)

= (4,25, 168. 1229. 9592, 78498, 664579. 57 61455. 508 47534, 455052511,
4118054813, 376079 12018, 34 60655 36839, 32049417 50802,

2084 45704 22669, 27923 83410 33925, 26235571576 54233,
2473995 42877 40860, 234 05766 72763 44607}

furthermore. (418529658 1467695669) = 10" (cf. [16.27]). Building a table of all
primes < 10% or of all 256-bit primes. as has often been proposed. is therefore completely
infcasible.

Smoothness. We say that a positive integer is B-smootlifall its prime factors are <= B.
An integer is said to be smoorh with respect fo S. where § is some set of integers, if it can
be completely factored using the clements of §. We often simply use the term smooth. in
which case the bound B or the set § is clear from the context.

Smoothness probability. In the algorithms described in this paper we are interested
in the probability that randomly selected integers are smooth. Intuitively, the smaller a
number is. the higher the probability that it is smooth. For example, there are 39 positive 3-
smooth numbers < 143, but there are 29 positive 3-smooth numbers =< 72. Therefore. il we
randomly pick positive numbers = ni, we get i smoothness probability of 39/143 = 0.27
for m = 143 but a higher probability 29/72 = 0.40 for m = 72, Form = 1000 we get
87/1000 = 0.08. and for m = 10° we get only 508/10° = 0.0005.

To express how the smoothness probability depends on the smoothness bound and the
size of the numbers involved. we introduce

L. vl = *xpu‘(ln.\'I"(Inln,\')‘ 85

Let @, B. r.and s be real numbers withe, > 0,0 <r <1, and 0 < 5 < r. It follows
from [10.15] that a random positive integer = L, |r.) is L [s. Bl-smooth with probability
L.r —s.—a(r —s)/B + o) for x — oc. Thus. withr = 1 and s = 1/2. a random
positive integer < n* is Ly|1/2. B1-smooth with probability L,[1/2. —a/(2f) =~ o(1)], for
n— o,

Run times. Throughout this survey, the function L,, is often used in run time estimates.
Note that. in such applications, its first argument interpolates between polynomial time
(e = 0) and exponential time (« = 1) in Inn:

L,10. vl =expvining = (Inm)' and L[l v] = explv Inn)=n".

A run time L, [« v] with « < 1 and v constant is referred to as subexponential time.

All run times involving L, are forn — oc. Thisimplies thatthe o(1)’s that might oceurin
run time expressions go to zero, In practice. however. the o 1)'s are not zero. Therefore we
cannot encourage the practice of evaluating the run time expression for any of the factoring
methods presented here for a particular n with o(1) = 0, and to advertise the resulting
number as the ‘number of cycles’ necessary to factor n using that method. The expressions
are useful. however. to get an indication of the growth rate of the run time—they can be
used (with o(1) = 0) for limited range extrapolations to predict the expected run time for
m given the run time of . if | logm — logn| is not (oo large.

Modular arithmetic. Throughout this paper ‘x = y mod =" means thatx — y isamultiple
of =, for integers x. ¥, and z withz > 0. Similarly. ‘x # ymod z” means that x — y is not
a multiple of . Thus, 308 = 22 mod 143 because 308 — 22 =286 = 2 143 is a multiple
of 143. and 143 = 11 mod 22 because 143 — 11 = 132 = 6 - 22 is a multiple of 22 but
4% 1 mod 15 because 4 — 1 = 3is nota multiple of 15. By " mod = we mean any integer
y such that x = ymod:: in practical circumstances we often use the least non-negative
remainder. i.e.. we assume that 0 < y < z. or the least absolute remainder, i.c.. we assume
that —2/2 < y < z/2. Thus. by 143 mod 22 we mean 11. or 33, or —11. or any integer
of the form 11 + k - 22. for some integer & the least non-negative remainder and the least
absolute remainder of 143 mod 22 are both equal to 11.

Note that given x mod and y mod z itit possible to efficiently compute (x +¥) mod z. (x—
y)mod z, or (x -) mod z: simply compute (x mod 2) + (¥ mod z). (x mod z) — (y med 2),
or (xmodz) - (vmodz) and if necessary remove multiples of = from the result if least
remainders are used. The latter operation can be done using a division with remainder by .
Examples of this so-called modular arithmetic (With modulus =) can be found throughout
the paper.

To be able to divide in modular arithmetic. for instance to compute (1/x) mod . we need
a little more. An important operation on which many factoring and other algorithms rely
is finding the greatest common divisor of two non-negative integers, say x and 2. i... the
Jargest factor that v and = have in common. Of course, the greatest common divisor of x
and = (*ged(x, 2)° for short) can be found by computing the prime factorizations of .x and z
and multiplying all prime factors they have in common. A much faster method to compute
ged(x. 2) is Euclid’s algorithm. a method that was invented more than 2000 years ago. It
is based on the observation that ged(x, 0) = x. that ged(x, 2) = ged(z, xmod2) if = # 0.
and that. if x > z and least non-negative remainders are used. the ‘new’ pair (2..x mod 2)
is substantially *smaller’ than the ‘old’ pair (x. 2). As an example:

ged(308. 143) = ged(143.22) = ged(22. 11) = ged(11.0) = 11,
and
ocd(143, 19) = ged(19. 10) = ged(10.9) = ged(9. 1) = ged(1,0) = 1.

If ged(x. z) = 1 as in the latter example. we say that v and z are coprime, i.¢.. ¥ and T do
not have any factors > 1 in common.

If x and = are coprime, we can compute (1/x) mod 2, using a variant of Euclid's algorithm
that is generally referred 1o as the extended Euclidean algorithm. Actually. the extended
Euclidean algorithm does more: it computes ged(x, 2) and. if the latter equals 1, itcomputes

(1/x)mod = as well. The process is illustrated in the following example where we compute
(1/19) mod 143. In the ith line we have x = 19, = = 143 and two other numbers, »; and
s;. such that x - r; = s; mod z. Assuming that 0 < x < zwe have ry = 0.5 =zr2=1
and 52 = x. The (i + Dst line follows from the (7 — 1)st and ith by subtracting the ith
as many times as possible from the (i — D)st. without making the right hand side of the
resulting (i + 1)st line negative. The process terminates as soon as some 5, = 0: if 5z =0
then 51 = ged(x. 2). and if 5,y equals 1. thenr— = (1/x)mod z:

19.0 = 143 mod 143

19-1 = 19mod 143 (subtract [143/9] = 7 times)
19.(=7) = 10mod 143 (subtract [19/10] = | times)

19.8 = 9mod 143 (subtract [10/9] = 1 times)
19.(=15) = Imod143 (subtract [9/1] =9 times)

19.143 = Omod 143 (done).

Thus. 128 = —15 - 143 is the least non-negative remainder of (1/19) mod 143, We say
that 128 is the inverse of 19 modulo 143. Note that the numbers on the right hand sides in
the example also appear in the earlier example where we computed ged(143. 19). For more
background on Euclid’s algorithm and the extended Euclidean algorithm see [25].

Compositeness testing. A famous theorem of Fermat (his litrle theorem) says that if n
is prime and « is an integer that is not divisible by n. then

@™ ' = Imodn.
For instance, for n = 7 and a = 2 we (ind that
M —64=14+9.-7=1mod7.

This does not prove that 7 is prime, it is merely an example of Fermat's little theorem for
n = 7 and @ = 2. Note. however, that if we have two integers # > | and & such that n and
a do not have any factor in common, and such that

a"~" # 1 modn,

then 1 cannot be a prime number because that would contradict Fermat's little theorem,
Therefore, Fermat's little theorem can be used to prove that a number is composite. Ana
that can be used in this way to prove the compositeness of # is often called a wirness to the
compositeness of 7. For instance, for n = 15 and & = 2 we find that

2 = 16384 =4+ 1092 15 =4 # I mod 15,

so that 2 is a witness to the compositeness of 15.
This is certainly not the fastest way to prove that 15 is composite—indeed. it is much
faster 1o note that 15 = 3 - 5. But for general a. finding a factor of n is much harder than

computing a”~ ' mod n. because the latter can be done using a quick method called repeated
square and multiply. Using this method in the example, we compute

Pmod 15 =4.
¥ modl5=2.-(2"mod 15 mod15=2.4=8.
2 mod 15 = (2’ mod 15 mod 15 =8 mod 15 =64 =4+ 4. 15 =4mod 5.

T mod13=2-2"mod 13)mod I5=2-4=8.

and
214 hod 15 = (27 mod 15)* mod 15 = 8" mod 15 = 64 = 4mod 15.

If we use least non-negative remainders, all numbers involved in this computation are < n,
The number of squares and multiplics is bounded by 2 - log,(#). The patiern of squares
and multiplies can be found by looking at the binary representation of the exponent n — 1
(cf. [25])).

Thus. we can compute @"~' mod n efficiently, which should allow us to easily prove that
n is composite if we simplemindedly assume that witnesses are not 0o rare: simply pick
o random @ with 1 < @ < n, check that n and « are coprime®. compute "' mod» if
they are. and hope that the outcome is not equal to 1. Unfortunately, this process does not
work for all composite n: there are composite numbers for which @' = Tmodn forall a
that are coprime to n. These numbers are called Carmichael numbers: the smallest one is
561. It has recently been proved that there are infinitely many Carmichael numbers: there
are at least x27 of them < «x. once x is sufficiently large (cf. [2]). This invalidates the
simple compositeness test based on Fermat's little theorem: for a Carmichael number n
the test @~ = 1 modn never fails, if 7 and @ are coprime. and therefore never proves the
compositeness of a1,

Fortunately, there is an casy fix to this problem. if we use Selfridge’s slight variation of
Fermat's little theorem: if 2 is an odd prime. 1 — 1 = 2' -« for integers 1 and « with « odd,
and @ is an integer that is not divisible by 2. then

either ¢ = Imodn ora” " = —1modn forsome i with0 =i <1,

For odd composite # it can be proved that a randomly selected integer a € {2. 3. adt=i1}
has a chance of at least 75% not to satisfy these conditions and thereby be a witness (o
n"s compositeness (cf. [38.49]): see also [3]. This makes proving compositeness of # in
practice an easy matter: apply Selfridge’s test for randomly picked a’s, until an « is found
that is a witness to the compositeness of n. If no witness can be found after some reasonable
number of attempts. the compositeness test fails, and » is declared to be probably prime.
The chance that a composite number is declared o be probably prime after & trials is less
than 1/4%, Note that a probably prime number is only u number for which we fuiled to
prove the compositeness—this does not imply that its primality has been proved: proving
primality is an entirely different subject which will not be discussed in this paper. In [31:
2.5] it is shown how Selfridge’s test can also be used to rule out prime powers.

3. Special Purpose Factoring Algorithms

We briefly discuss six of the most important special purpose factoring methods: trial
division. Pollard’s rho method, Pollard’s p — 1 method. the elliptic curve method, Fermat’s
method, and squfof. None of these methods is currently considered to be applicable to
composites that are used in cryptosystems. But for numbers that come from diflerent
sources. and that might have small or otherwise “lucky” factors. any of these methods can
be quite useful. Examples are the eighth, tenth, and eleventh Fermat numbers (£ = 2¥ 41
for & = 8. 10. 11 ef. [8.7]). and also numbers that have to be fuctored in the course of the
general purpose algorithms described in the next seetions,

Throughout this section # denotes the number to be factored. Using the results from
Section 2 we may assume that 21 is composite and not a prime power.

Irial division. The smallest prime factor p of n can in principle be found by trying if i is
divisible by 2. 3,5, 7. 11, 13,17, ... i.e..all primes in succession. until p is reached. IFwe
assume that a table of all primes < p is available (which can be generated in approximately
p steps using for instance the sieve of Erathostenes. ¢f. [25]). this process lakes 7 (p)
division attempts (so-called ‘trial divisions®), where is the prime counting function from
Section 2. Because (p) = p/In(p). finding the fuctor p of 7 in this way takes at least
approximately p steps—how many precisely depends on how we count the cost of each
trial division. Even for fairly small p, say p > 10° trial division is already quite inefficient
compared to the methods described below.

Since 1 has at least one factor < /. factoring i using trial division takes approximately
Jn operations, in the worst case. For many composites trial division is therefore infeasible
as factoring method. For most numbers it is very effective. however. because most numbers
have small factors: 88% of all positive integers have a factor < 100. and almost 92% have
a factor < 1000,

Pollard’s rho method. Pollard’s rho method [44] is based on & combination of two ideas
that are also useful for various other factoring methods. The first idea is the well known
birthday paradox: a group of at least 23 (randomly selected) people contains two persons
with the same birthday in more than 50% of the cases. More cenerally: if numbers are
picked at random from a set containing p numbers, the probability of picking the same
number twice exceeds 30% after 1.177,/p numbers have been picked. The first duplicate
can be expected after ¢ - /p numbers have been selected. for some small constant ¢. The
second idex is the following: if p is some unknown divisor of 71 and x and y are iwo integers
that are suspected 1o be identical modulo p. i.e..x = v mod p. then this can be checked by
computing ged(|x — ¥l 1) more importantly. this computation may reveal a factorization
of 1. unless x and y are also identical modulo 7.

These ideas can be combined into a factoring algorithm in the following way. Generate o
sequencein {0, 1.....n—1] by randomly selecting xp and by defining x;.. 1 as the least non-
negative remainder of x7 4+ Imodn. Since p divides n the least non-negative renutinders
v, mod p and x; mod p are equal if and only it . and x; are identical modulo p. Since
the x; mod p behave more or less as random integers in {0, 1,....p— 1} wecun expect o
factor n by computing ged(|x; —x;|.n) fori # j after about ¢ /p elements of the sequence
have been computed.

This suggests that approximately (¢/p)2 /2 pairs x;. x, have to be considered. However.
this can easily be avoided by only computing ged(ly; = x|, 1), for:d = 0.], 75, by
generating two copies of the sequence. one at the regular speed and one at the double speed.,
until the sequence “bites in its own tail” (which explains the ‘rho’ (p) in the name of the
method): this can be expected to result in a factorization of n after approximately 2./p ged
computations.

As an example. consider n = 143 and xo = 2!

q=2+1=5xn=5+1=26:gcd(5- 261, 143) = 1.
26.x; = (26° + 1)* + 1 = 15mod 143 : ged(]26 — 15]. 143) = 1.

I

il
Il

X2

With x, = 3 it goes even faster. but we find a different factor:
X =3+ 1=10.x= 10"+ 1 =101 : gcd(]10 — 101]. 143) = 13.

The most remarkable suceess of Pollard's rho method so far was the discovery in 1980 by
Brent and Pollard of the factorization of the eighth Fermat number (cf. [8]):

27 4] = 1238926361552897 - p62.

where p62 denotes a 62-digit prime number.

Pollard’s p— | method. Pollard’s p—1 method [43] follows. very roughly, from Pollard’s
rho method by replacing the birthday paradox by Fermat's little theorem (c¢f. Section 2).
Let p again be a prime factor of n. For any integer @ with | < a < p we have. according
1o Fermat's little theorem. that @”~' = 1 mod p. so that *'*~"" = 1" = I mod p for any
integer k. Therefore. for any multiple m of p — | we have that ¢ = 1 mod p. i.e.. p divides
a” — 1. Thus, computing ged(@” — 1,2) might reveal a factorization of n. Note that it
suffices to compute ged((a” — 1) moda. n) (and that p divides (¢ — 1) modn as well,
because p divides n).

It remains to find a multiple m > 1 of p — I. The idea here is that one simply hopes that
p — 1 is B-smooth (cf. Section 2) for some relatively small bound B. i.e.. that p — | has
only prime factors < B. This would imply that an s of the form [, ., q. with the product
ranging over prime powers ¢, could be a multiple of p— 1. Since (¢" — 1)modn for
such ;1 can be computed in time roughly proportional to B. Pollard’s p — 1 method can be
used to discover factors p in time roughly proportional to the largest prime factor inp-—1.
Evidently, this is only going to be efficient for p for which p — 1 is smooth. It explains why
some people insist on using primes of the form 2¢ + 1 (with ¢ prime) in factoring-based
cryptosystems, a precaution that is rendered useless by the elliptic curve method.

As an example, let # again be 143, and let ¢ = 2. If we raise a 10 small successive prime
powers and compute the relevant ged’s. we find p = 13 = 2° - 3 + | after processing the
prime powers 2° and 3:

2! =16, ged(16 — 1, 143) = 1,
16" = (16%) - 16 = 113 - 16 = 92 mod 143, ged(92 — 1. 143) = 13.

If. on the other hand. we simply keep raising ¢ = 2 1o the next prime. we find p = 11 =
3.5 4 | after processing the primes 2. 3. and 5:

2’ =4,gedd—1.143) = 1,
4% = 64, ged(64 — 1. 143) = L.
645 = (64%)7 . 64 = 92° . 64 = 12mod 143, ged(12 ~ 1. 143) = 11.

For variations of Pollard's p — | method and fast ways to implement it refer to [39].

The elliptic curve method. The major disadvantage of Pollard’s p — 1 method is that
it only works efficiently if the number to be factored happens to have a factor p for which
p — 1 is B-smooth. for some reasonably small bound B. So. it only works for “lucky” n.
The elliptic curve method [34] can be regarded as a variation of the p — 1 method that
does not have this disadvantage. It consists of any number of trials, where each trial can be
lucky—and factor n—independently of the other trials: atrial is successful if some random
aumber close 1o some prime factor of # is smooth. Thus. the probability of success of each
trial depends only on the size and not on any other fixed properties of the factors of n (cf.
Section 2).

A detailed description of the method is beyond the scope of this survey. Roughly speaking,
the following happens. During cach trial an elliptic curve modulo i is selected at random.
For any prime p dividing 2, any point a on the curve satisfies an cquation that is similar
1o Fermat's little theorem. with two important differences. In the first place. and this is
why the elliptic curve method is so powerful, the exponent p — | is repluaced by some
random number p close to p — 1. Secondly. the exponentiation is not a regular integer
exponentiation modulo #: since a is not an integer but a point on a curve. other operations
have to be performed on it to ‘exponentiate on the curve’. The number of elementary
arithmetic operations to be carried out for such an exponentiation is a constant multiple of
the number of operations needed for a regular integer exponentiation modulo with the
same exponent.

Just as in Pollard’s p — | method it is the case that if @ is exponentiated on the curve to a
power that is a multiple of p. thena factorization of 2 may be discovered: if p is B-smooth.
then this can be done in roughly c¢(Inn)* B elementary arithmetic operations, where ¢ is o
small constant. Thus. it suffices 10 keep trying new curves (thereby getting new p’s), and
to exponentiate the points to large smooth powers, till a p divides the smooth power.

From the smoothness probability in Section 2. and assuming that p behaves as a random
positive integer close to p. it follows that p is L,[1/2. /T/2]-smooth with probability
L,[1/2. =172 + o()}, for p — oc. Therefore. if one runs L,[1/2. /1/2 + o(1)] trials
in parallel, spending time proportional to (In n)*L,[1/2. J172] per trial, one may expect o
find p. We find that the heuristic asymplotic expected run time of the elliptic curve method
to find the smallest prime factor p of n is

(Inn)>L,11/2. V2 +o(D).

for p — o¢. In the worst case. ie.p= Jn. this becomes L,[1/2. 1 + of 1)]. forn — o<
(note that the (Inn)* disappears in the o(1)). Thus. in the worst case the elliptic curve
method can be expected to run in subexponential time. This is substantially faster than any

of the other methods discussed in this section, which all have an exponential-time worst
case behavior.

Two remarkable factorizations obtained using the elliptic curve method are those of the
enth and eleventh Fermat numbers, both by Brent® [7]. In 1988 he found a 21 and a 22-digit
factor of (22" + 1)/(319489 - 974849), thereby completing the factorization of F)y:

22 41 = 319489 .974849 . | 67988 55634 17604 75137
+ 3560841 90644 58339 20513 - pS64,

where p564 denotes a 564-digit prime: and in 1995 he found a 40- digit factor of (2*" +
1)/(45592577 - 6487031809), which completed the factorization of Fio:

22" 4] = 45592577 - 6487031809
. 46597 75785 22001 85432 64560 74307 6778192897 - p252.

where p252 denotes a 252-digit prime. The largest factor found by the elliptic curve method,
as of March 1996, has 47 digits (133 bits). and was found by P. L. Montgomery. For a
complete description of the elliptic curve method refer to [34] and [29]. For implementation
details, refer to [6. 39].

Fermat’s method. In the course of the general purpose factoring methods described
below we frequently have to factor numbers n 1I1.u are suspected to have two relatively
large prime factors and for which lvp:r.‘.lll\ 22 = o< 2% 1M those factors are close
10 cach other. they can easily be found using Fermat's method. Letu = p. - pa with
py < p2.both pyand pr odd, and px — py = 2d for some \m.l” d, Then x = py, +d.
v = d satisfy n = (x = ¥)(x + v). and therefore # = x% = y2. The proper x _can thus
be found by trying x = [\/_i-—l [/_] 2 |../_]— 3. ... in succession until x* — nis a
perfect square (in which case v2 = 17 =). Obviously, lhas method is efficient only il d is
small. For the example n = 143 Fermat's method needs only one trial: the first v equals
lﬁ—ﬁ] +1=12and x* —n = 122 — 143 = 1 is u perfect square, so thatx = e I
and 143 = (12 = D12+ 1).

Congruence of squares. More generally. in Fermat's methml one attempts 10 solve o
congruence af \qmum i.e.. integers v and v such that s \- h a mudtiple of 1, Namely.
if 1 divides x2 = v, it also divides (x — ¥} + ¥) = x® — 2, Therelore, the factors of
n must be factors of & — y. or they must be factors of x + v. or some of them must be
factors of v — v and some must be factors of x + v, In the first case, is u factor ol x — v,
which can be checked easily. In the second case, » is a factor of x + y. which can also be
checked easily. If neither of those cases hold. then the factors of # must be split, in some
way, among v — y and v + y. This gives us a way to find factors of # because we have an
efficient method to find out which factors 1 and x — v have in common, and which factors n
and x + y have in common: as we have seen in Section 2 2 we simply compute gedn. v £ y),
the greatest common divisor of n and x = v. It 1 is composite, not a prime power, and x
and y arc random integers satisfying x2 = y*moda, then there is at least a 50% chuance
that gedix = v,) and ged(x + v,) are non-trivial lactors of n.

Fermat's method is surprisingly efficient in the application mentioned above, and often
more efficient than Pollard’s rho method. The reason is that Pollard’s rho method requires

rather intensive arithmetic on numbers modulo a2, which is relatively inefficient for such
small n that are nevertheless too large to be conveniently handled on most 32-bit processors.
Another method that is particularly efficient in this case is the following.

Squfof. Squfol stands for “square form factorization’. It makes use of binary quadratic
forms. @ subject that is beyond the scope of this survey. The expected time needed by
squfof to factor # is proportional to n'’%, on assumption of certain generalized Riemann
hypotheses, After a short initialization it only requires arithmetic on numbers that are at
most /1, This makes the method remarkably efficient for the application mentioned above,
when run on 32-bit processors, For a description of squtof refer to [1 1.52.53].

4. The Morrison-Brillhart Approach

Most factorizations mentioned in the introduction were obtained using the quadratic sieve
factoring ulgorithm. Carl Pomerance’s variation (1981. ¢f. [46]%) of Richard Schroeppel’s
linear sieve algorithm (1977). These are both general-purpose factoring algorithms, and
both are based on the classical congruence of squares method. on which also Fermat's
method is based. There we have seen that to factor n it is useful to find integers v and
v such that +% — v is a multiple of n. Summarizing the argument presented above, if
x2 = v> mod . then n divides (x — ¥)(X¥ + ¥). and therefore

n divides ged(x — v, n) - ged(x + vy, n).

Since ged's can be computed rapidly. one can quickly check whether the latter identity
leads 1o a factorization of a1, and if 2 is composite there is at least a4 50% chance that the
factorization is non-trivial.

Finding congruences of squares. For practical purposes in order to factor n. one need
only generate a few random looking pairs x. v such that x* = v> modn. Note that simply
picking some random positive v, computing s, as the least non-negative remainder modulo
i of v, and hoping that s, is the square of some integer v (in which case.v is set equal to v),
is unlikely to work (unless v < /i, butin that case x = ¥ and ged(x — y.n) = n): there
are only /71 squares less than 21, so the chance of hitting one of them is only 1//n. which
implies that this *factoring algorithm® cannot be expected 1o be faster than trial division.

The Morrison-Brillhart approach does something that is similar, but instead of waiting for
asingle very lucky und unlikely *big hit", it combines the results of several much more likely
~small hits': instead of randomly picking v's until one is found for which the corresponding
s, = v>modn is a perfect square, we collect v's for which &, satisfies a certain much
weaker condition. Once we have a sufficient number of pairs v, s, Wwe combine them to
solve 2 = v2 mod . Thus, the factoring process (i.¢.. the method to obtain solutions o the
congruence 1° = v* mod 1) is splitinto two main steps: the data collecrion step where v, s
pairs satisfying some particular condition are collected, and the data processing step where
the pairs are combined to find solutions to the congruence, The *much weaker condition’
on s, can informally be deseribed as *it should be casy to fully factor s, ‘..., 8, should be
B-smooth for some reasonably small B (¢f. Section 2). How the pairs v. s, can be combined
can be seen in the exumple below.

To find pairs v, 5, such that 5, is smooth Morrison and Brillhart. in their original paper that
introduced the Morrison-Brillhart approach. used a technique based on continued fractions.
For a description of their method. *CFRAC. see [42]. [t was used, in 1970. to factor the
seventh Fermat number:

27 4+ 1 =59649589127497217 - 57 04689 20068 51290 54721.

A less efficient but conceptually much easier method to find pairs v, s, such that s, is smooth
is Dixon’s algorithm: simply randomly pick v’s and keep those for which s, is smooth until
we have sufficiently many different pairs v. s, for which s, is smooth.

An example using random squares. Even though we already know that n = 143 =
11.13. here is how Dixon's version of the Morrison-Brillhart approach works forn = 143.
Since factors 2. 3. and 5 can casily be recognized. we use B = 5, i.c.. 's, should be 5-
smooth’, or "it should be possible to factor 5, completely using only 2. 3. and 5'. In general.
for larger numbers than 143, a larger B will be used. so that more primes will be allowed
in the factorization of s,. This set of primes is usually referred to as the factor base: we
will be interested in s, 's that are smooth with respecet to the factor base. In the example. the
factor basc is the set {2, 3, 5.

Since we use Dixon’s algorithm we begin by randomly selecting some integer v: let
1 = 17 be the first random choice. We find that v* = 289 = 3 + 2. 143 = 3mod 143. so
that 517 = 3. Obviously. 512 = 3 is smooth, so that we find the identity

177 =2". 3" . 5" mod 143:

thus. we keep the pair v. s, for v = 17. Such identities are often referred to as refations—
relations are the data collected during the data collection step. Since (v+1)7 = v? 4 2v+ 1.
aconvenient nextchoiceis v = 18: 187 = 1774217+ 1 = 3+35 = 38 = 2: 19mod 143.
and 515 = 2 - 19 is not smooth, so that ¥ = 18 can be thrown away. Proceeding to 19 we
find that 197 = 187 + 2. 18 + 1 = 38 + 37 = 75 mod 143. and 5,9 = 75 is smooth, so that
we keep v = 19 and have found our second relation:

19° =2".3' .5 mod 143.

The nextattempt 20° = 19° +2.19+ 1 =75+ 39 = 114 = 2.3 19mod 143 fails again.
after which we find the relation

217=20742%20 1 1=114441=155=12+143 =2%.3'. 5" mod 143.

I
o

Looking at the three relations obtained so far, we observe that the product of the first two.
the product of the last two. and the product of the first and the last all lead to a congruence
of squares:

]

Il
)
0

- 5% mod 143.
.5 mod 143, and
*. 5" mod 143.

(17-19)° =
(19.21)* =
U7:21y =

[
o
1]

I~
‘ad
[

The first of these leads to x = 17 - 19, ¥ = 3 - 5 and the factors gcd(323 - 15.143) = 11
and ged(323 + 15. 143) = 13. The second leads to x = 19-21, v = 235 and the trivial
factors ged(399 — 30, 143) = 1. ged(399+ 30, 143) = 143. The lastone gives x = 1721,
y = 2 - 3 and the factors ged(357 — 6, 143) = 13 and ged(357 + 6. 143) = 11

The first relation after the one for v = 21 would be 23* = 2%+ 3 - 5 mod 143 which
is alrcady of the form x* = y*modn. This congruence leads to x = 23, vy = 10 and
the non-trivial factors ged(23 — 10, 143) = 13 and ged(23 + 10, 143) = 11. For more
challenging numbers than 143 we cannol expect 1o be so lucky—indeed, after fuctoring
hundreds of numbers in the 70 to 130 digit range. this never huppened.

Finding the right combinations of relations. Suppose we have a set V of relations as a
result of the data collection step. In the data processing step we have to pick a subset W of
V so that the relations from W when multiplied together yield a solution to the congruence
+% = v modn. This can be achieved as follows. First observe that forany W C V the
product of the *left hand sides’ [T, v7 is @ square, since it is a product of squares. The
product of the corresponding ‘right hand sides’. however, is not always a square: for each
prime p in the factor base the exponent in the product over W is the sum of the exponents
of p in the relations in W, and this sum is not necessarily even. If we identify each relation
with the vector of its exponents with respect to all elements of the factor base. the exponents
of the factor base elements in the product over W are given by the vector that is the sum of
the vectors for the relations in W. Thus, a W for which the product of the right hand sides
is also a square can be found by looking for a subset of vectors whose sum is a vector with
all even entries.

Finding all even combinations of vectors is a common problem in linear algebra. for which
several good algorithms exist: (structured) Gaussian elimination, (blocked) Lanczos. and
(blocked) Wiedemann are currently the most popular choices for our applications (sce
[12.28.41.48] and the references therein). In general. if there are m relations and &k primes
in the factor base. we have an m x k-matrix (i.e.. a matrix consisting of m rows and &
columns. where the m rows correspond to the m different k-dimensional vectors consisting
of the k-tuples of exponents in the m relations). For the example given above. we get the
matrix

010
0012
210

If the matrix is over-square. i.e..if m > k. there are at least m — k all even combinations of
the rows (i.c.. of the k-dimensional vectors) each of which leads to an independent chance
to factor n. It follows that sufficiently many relations will in practice always lead to a
factorization: it also shows that we have been rather lucky in our example by finding so
many all even combinations in a 3 x 3-matrix.

The data processing step. i.c.. finding the right combinations of relations, is often referred
to as the matrix step.

The run time of Dixon’s algorithm. As an example we show part of the run time
analysis of Dixon's algorithm. Let g > 0. Assuming that the s, behave as random
numbers < 1. it follows from the smoothness probabilities in Section 2 thats, is L[1/2. B]-
smooth with probability L,[1/2. =1/(28) + ot 1)]. A single smooth s, can thercfore be

expected to be found after considering L,|1/2. 1/(28) + o()] different v's. The number
of smooth s,'s that are needed 1o make the matrix of exponents over-square is. roughly.
2(L,11/2. Bl) &~ L,[1/2. 81/ In(L,[1/2. B]) (cf. Section 2). which can conveniently be
writtenas L,[1/2. B+ o(1)]. It follows that atotal of L,,[1/2. B+ 1/(2) +o(1)] different
v’s have 10 be considered.

If we use trial division to check the smoothness of each s, (atacostof L,[1/2, f-+o(1)] per
s.). the data collection step for Dixon's algorithm requires L,[1/2. 28 + 1/(28) + o(1)]
clementary operations. Using traditional matrix techniques. the right combinations ol
veetors can be found in L,[1/2. +o(1)]} = L,[1/2. 38 + o(1)] operations, Combining
these run times. we find that Dixon’s algorithm requires L,[1/2, max(2f + 1/(28). 38) +
o(1)] operations, which becomes L,[1/2.2 + o(1)] for the optimal choice # = 1/2. With
this approach the data collection takes more time than the matrix step.

If we use the elliptic curve method to check the s, 's for smoothness. each s, costs only
time L,[1/2.0(1)). so that the data collection step requires L,[1/2. 8 + 1/(2f) + o(1)]
steps. Combined with the matrix step this yields L, [1/2. max(g + 1/(28). 38) +o(D)] =
La11/2.3/2 + o(1)] steps for the optimal choice # = 1/2. In this case the data collection
and matrix steps take the same amount of time. asymptotically. But note that the data
collection could have been done faster for 8 = /172, and that the matrix step forces us
to usc a # that is suboptimal for the data collection step. If we use the fuct, however.
that at most logs(n) of the L,[1/2. f + o(1)] entries per exponent-vector can be non-
zero and the fact that the Lanczos and Wiedemann methods referred to above process an
M m matrix with 1 non-zero entries in time proportional to nru. we get a combined time
Lol1/2. max(p + 1/(28), 28) + o(1)]. This becomes L, [1/2. V2 +o(1)] for the optimal
choice g = /1/2: data collection and data processing again take the same amount of time.
asymptotically,

Thus. with the elliptic curve method for trial division and a matrix step that takes advantage
of the sparsity of the matrix, the asymptotic expected run time of Dixon’s algorithm is
Lal1/2. V2 + o(1)]. for n — =¢. This expected run time can rigorously be proved and is
not based on any unproved heuristics.

5. Quadratic Sieve

Finding relations faster, sieving, The smaller |y, | can be made, the higher probability
we should get that it is smooth. Therefore, it would be to our advantage to find ways of
selecting v such that |s, | can be guaranteed to be substantially smaller than #.

For randomly sclected v, the number s, (the least non-negative remainder of v modulo
n) can be expected to have roughly the same size as #. At best we can ;.uamnle-. that |s,|
is one bit smaller than # if we redefine s, as the least absolute remainder of v* modulo n.
and we include — 1 in the factor base,

A better way 1o find small 5, 's is by taking v close to /n. Let v(i) =i + [/] for some
small integer . It follows that s, = (i + [/21])? = n and that |s,.;,| is of the same order of
magnitude as 2i V. because H»fﬁl: — | is at most 2/n, This implies that [, for small
i has a much higher chance to be smooth than s, for a randomly selected v. Note, however,
that the smoothness probability decreases if i gets larger.

Quadratic sieve (QS) combines this better way of choosing of v = v(/) with the following
important observation: if some p divides s, then p divides § .o forany integer 7. This
makes it possible to use a sieve to quickly identify many possibly smooth s, with 7 in
some predetermined interval. The sieve is used to record “hits” by the primes in the factor
base in an efficient manner: if a prime p divides a certain s, ;. then this is recorded at the
(i + 1p)th location of the sieve. for all integers 1 such that i + tp is in the interval. Thus,
for each p. we can quickly step through the sieve. with step-size p. once we know where
we have to make the first step. To make the process of “recording p” efficient, we simply
add log,, p to the relevant locations, for some appropriatcly chosen base b.

Assuming that all sieve locations are initially zero, the ith location contains (after the
sieving) the sum of the logarithms of those primes that divide s, Therefore. if the ith
location is close to log [,]. we check whether |s | is indeed smooth, simply by trial
dividing [s.,| with all primes in the factor base. This entire process is called sieving—it
is much faster than checking the smoothness of each individual |5, | by trial dividing with
all primes in the factor base®.

In the multiple polynomial variation of QS the single polynomial (X + [V —n
is replaced by a sequence of polynomials that have more or less the same properties as
(X + [/nD? = n. all for the same number # o be factored. The advantage of multiple
polynomials is that for each polynomial the same small i’s can be used, thereby avoiding
the less profitable larger i's, A second important advantage is that different processors can
work independently of each other on different polynomials. This variation is due to P. L.
Montgomery (extending an idea of Davis and Holdridge (¢f. [14])) and deseribed in[29.54].

Another way of increasing the smoothness probability is by extending the factor base
(thus relaxing the definition of smoothness), However. this also implies that more relations
have to be found to make the matrix over-square, and that the linear algebra becomes more
involved. The optimal factor base size follows from an analysis of all these issues. as shown
below and in the run time analysis of Dixon's algorithm. Refer to [37] for another informal
description of QS.

The run time of Quadratic Sieve. Assuming that s, behaves as a random integer close 1o
V. itis L[1/2, gl-smooth with probability L, [1/2. —1/(4f) + o(])]. which implies that
L,[1/2. B+ 1/(48) + o(1)] different 5,.°s have to be considered. Using the clliptic curve
method as smoothness test and taking advantage of the sparsity of the matrix (both as in the
analysis of Dixon’s algorithm), we find that QS has heuristic asymptotic expected run time
L0172, max(B+1/(46). 28) =a(1)] = L,[1/2. | +o(1)] for the optimal choice f = 1/2,

I we use sieving to check L, [1/2. B+ 1/(48) + o(1)] consecutive s, 's for L,,[1/2. B1-
smoothness we get the following. Sieving for one prime p takestime L,[1/2, f+1/(45) +
o(1)]/p. Sieving over "all’ primes therefore takes time L, [1/2. i+ 1/(48)+o(D]-X 1/ p.
where the sum ranges over the first w(L,[1/2. B]) = L,[1/2. f + o(1)] primes. The sum
Y 1/p disappears in the o(1). so that the complete sieving step takes time L,1/2.8+
1/(48) + o(1)]. The remainder of the analysis remains the same. and we conclude that QS
with sieving has the same heuristic asymptotic expected run time L, [1/2. 1 + o(1)] that
we got for QS with elliptic curve smoothness testing. Note that both the sieving und the
elliptic curve overhead disappear in the o(1). In practice. however, sieving is much faster
than elliptic curve smoothness testing.

Surprisingly. QS is not the only factoring algorithm with this subexponential expected
run time: several other methods were proposed. some radically different from QS. that all
have the same heuristic asymptotic expected run time as QS. Even the elliptic curve method
has the same worst-case heuristic expected run time (where the worst case for the elliptic
curve method is the case where the smallest factor of n is of order /u). An algorithm for
which the L,[1/2. 1 4 o(1)] expected run time can be proved rigorously was published
in [35). As a consequence of this remarkable coincidence there was a growing suspicion
that L,.[1/2. 1 + o(1)] would be the best we would ever be able to do for factoring, The
L,[1/2.1 4 o(1)]-spell was eventually broken by the number field sieve (cf. Section 6).

Large primes, partial relations, and cycles. In practice. sieving is not a precise process:
one often does not sieve with the small primes in the factor base. or with powers of elements
of the factor base: log, p is rounded to the nearest integer value: and the base & of the
logarithm is chosen so that the values that are accumulated in the s(7)'s can be represented
by single bytes. The process can tolerate these imperfections because there are plenty of
good polynomials that can be used for sieving, Itis nota problem. therefore. if occasionally
a good location is overlooked as long as the sieve identifies a sufficient number of possibly
smooth numbers as quickly as possible. How many relations we find per unit of time is
more important than how many we might have missed.

As a conscquence of the approximations that are made during the sieving. the condition
that 5(i) should be close to log,, |s,«,| should be interpreted quite liberally. This. in turn.
leads to many v(i)'s for which s,;, is "almost” smooth (i.e.. smooth with the exception of
one reasonably small factor that is not in the factor base). Such “almost smooth” relations
are often referred to as partial relations if the non-smooth factor is prime. and double partial
relations if the non-smooth factor is the product of two primes. The non-smooth primes
are referred to as the large primes. The relations for which s, ;, can be fuctored completely
over the factor base may be distinguished by calling them full relations.

Partial relations will be found at no extra cost during the sieving step, and double partial
relations at little extra cost. But keeping them. and investing that little extra effort to find
the double partials. only makes sense if they can be used in the factoring process. As an
example why partial relations can be useful, consider the example n = 143 again. The
choice v = 18 was rejected because 515 = 2+ 19 is not smooth (with respect to the factor
base {2. 3.5}). After trial dividing 55 with 2. 3. and 5. it follows immediately that 19 is
prime (from the fact that 19 < 5°). so that v = 18 leads to a partial relation with large
prime 19:

182 =2'.3".5". 19mod 143.

Another choice that was rejected was ¢ = 20, because 52 = 2+ 3 - 19, which leads, for the
same reason as above. to a partial relation—again with large prime 19:

20°

2'.3'.5". 19 mod 143.

These two partial relations have the same large prime, so we can combine them by multi-
plving them together, and get the following:

(18-20)° = 2°.3'.5". 19° mod 143,

Except for the *19°" on the right hand side. this looks like a full relation. In Section 2 we
have seen that 128 = (1/19)mod 143, Therefore. if we multiply both sides of the above
‘almost smooth’ relation by 1287, we get

(128-18:200° =27.3'.5".(128-19)° = 2% . 3" . 5" mod 143,

which is. for factoring purposes, equivalent to the full relation
?.3". 5" mod 143

because 128 - 18- 20 = 34 mod 143. Note that (1/19) mod 143 exists because 19 and 143
are coprime (cf. Section 2). If n and some large prime are not coprime. then that large prime
must be a factor of n.

Double partials can be used in a slightly more complicated but similar way: it requires the
factorization of the composite non-smooth factors of the s,,,’s. which can be done using
the methods that were mentioned at the end of Section 3. Combinations of partial and/or
double partial relations in which the large primes disappear (and that are therefore as uscful
as full relations) are often referred to as eveles. Note that the cycle that we have found
in the example does not provide any useful new information. because it happens to be the
relation for v = 17 multiplied by 2°.

How much luck is needed to find two partials with the same large primes, or to find a
double partial for which both large primes can be combined with large primes found in other
partials or double partials? The answer to this question is related to the birthday paradox
(cf. Section 3): if numbers are picked at random from a set containing r numbers. the
probability of picking the same number twice exceeds 50% after 1.177/r numbers have
been picked. In QS. the set consists of prime numbers larger than any in the fuctor base.
but smaller than a limit which is typically 2*” or so. There are only a few tens of millions
of primes in this range. so we expect to be able to find matches between the large primes
once we have more than a few thousand partial and double partial relations. As shown in
[33] the distribution of the large primes that we find in QS is not homogencous. but strongly
favors the relatively small large primes. This further increases the number of matches,

As illustrated in [32] and [33]. cycles are indeed found in practice. and they speed up the
factoring process considerably. Using partial relations makes the sicving step approximately
2.5 times faster, and using double partial relations as well saves another factor 210 2.5. There
is a price 10 be paid for this acceleration: more data have to be collected: more disk space
is needed to store the data: and the matrix problem gets a bit harder (either due to higher
density of the rows of the matrix. or to larger matrices). The time saved in the sieving step.
however, certainly justifies incurring these inconveniences. For a discussion of these issues
see (4] and [17].

QS with large primes still runs in asymptotic expected time L,[1/2. 1 + o(1)]: i.e.. all
savings disappear in the o(1).

Distributed factoring using QS. We have seen that QS consists of two major steps: the
sieving step. o collect the relations. and the matrrix step, where the relations are combined
and the factorization is derived. For numbers in our current range of interest, the sicving
step is by far the most time consuming. It is also the step that allows easy parallelization,
with hardly any need for the processors 1o communicate. All a processor needs to stay

busy for at least a few weeks is the number to be factored. the size of the factor base, and a
unique collection of polynomials to sieve with in order to find relations—the latter can be
achieved quite casily by assigning a unique integer 1o a processor, Given those data. any
number of processors can work independently and simultaneously on the sieving step for
the factorization of the same number. The resulting relations can be communicated to a
central location using electronic mail, say once per day, or each time some pre-set number
of relations has been found.

This parallelization approach is completely fault-tolerant, In the first place. the correct-
ness of all relations received at the central location can easily be verified by checking the
congruence. Furthermore, no particular relation is important. only the total number of
distinet relations received counts. Finally. there is a virtually infinite pool of *good” almost
limitless intervals in which to look for polynomials. Thus, no matter how many Processors
crash or do not use the interval assigned to them for other reasons. and no matter how mail-
ers or malicious contributors mangle the relations, as long as some processors contribute
some relations that check out. progress will be made in the sieving step. Since there is no
way 1o guarantee that relations are sent only once, all data have to be kept sorted at the
receiving site to be able to remove the duplicates. Currently there is also no way to prevent
contributors from flooding the mailbox at the central collecting site, but so far this has not
been a problem in distributed factoring,

All these properties make the sieving step for QS ideal for distribution over a loosely
coupled and rather informal network, such as the Internet. without any need to trust anyone
involved in the computation. Refer to [32] and [4] for information on how such fuctoring
efforts have been organized in the past.

The matrix step is done at a central location, as soon as the sieving step is complete (i.e., as
soon as a sufficient number of relations have been received 1o make the matrix over-square).
For details, refer to [32].

Some illustrative QS data. To give an impression of factor base sizes, the amount of
data collected, the influence of large primes. and practical run times of the sieving and
MAtrix steps. some data for the QS-factorization of a 116-digit. a 120-digit. and a 129-digit
number (from [33]. [17]. and [4], respectively) are presented in Table 1. The sieving step for
the 116-digit factorization was done entirely on the Internet using the software from [32].
For the 120-digit number it was carried out on 3 different Local Area Networks and on the
16384 processor MasPar MP-1 massively parallel computer at Bellcore, using in total four
different implementations of the sieving step. Sieving for the 129-digit number was mostly
done on the Internet using an updated version of the software from [32], with several sites
using their own independently written sieving software: about 14% of the sieving was done
on several MasPars. The matrix step for all numbers was done on Bellcore's MausPar.,

The amount of data is shown in gigabytes of disk space needed to store the data in un-
compressed format. The timing for the sieving step is given in units of MY. or *mips-years.’
By definition | MY is one year on a VAX 11/780. a relatively ancient machine that can
hardly be compared to current workstations, The timings were derived by assigning i rea-
sonable "mips-rating” to the average workstation that was used: see [17] and [4] for details.
Although this measure is not very accurate, it gives a reasonable indication of the growth
rate of the sieving time for OS. as lone as workstations are rated in 4 consictent manner

Table 1,

Nodigic 120-digit — 129-digit

size factor base 120000 2455810 524330
large prime bound 108 2 240
fulls 25301 45663 112011
partials 284750 §84323 1431337
double purtials 033242 4172512 6881138
cyeles 117420 203557 457435
amount of data 0.25GRB 1.1 GR 2GH
lming sieving step JOOMY 825 MY 5000 MY
timing matnx step 0.5 hrs < hrs 45 hrs

The numbers of fulls, partials. double partials, and cycles are given in the table as they
were at the end of the sieving step. Note that in all cases the number of fulls plus the number
of cycles is larger than the size of the factor base, with a considerable difference for the two
Internet factorizations. This overshoor is often large because the number of cyeles grows
rapidly toward the end of the sieving step: since the ‘cease and desist” message is only sent
out to the Internet-workers when the sum is large enough. and since it takes a while before
all client-processes are terminated. the final relations received at the central site cause a
large overshoot.

The timing for the matrix step is given in hours on the MasPar. By using a betteralgorithm,
the matrix timings can now be improved considerably: the matrix for the 129-digit number
can be processed in less than 10 hours on the MasPar, or in about 9 days on a Sparc 10
workstation (see [12.41], and Table 2 below).

From April 2, 1994. until April 10, 1996, the QS-factorization of the 129-digit number,
the "RSA-challenge number” (cf. [21]). was the largest factorization published that was
found using a general purpose factoring method:

RSA = 129 = 114381625 75788 88676 69235 77997 61466 1201021829 67212
4236256256 18429 35706 93524 57338 9783059712 35639 58705
05898 90751 47599 29002 68795 43541
= 349052951 08476 50949 14784 96199 03898 13341 77646 38493
38784 39908 20577
32769 13299 32667 09549 96198 81908 34461 41317 76429 67992
0425397982 88533,

6. Number Field Sieve

The number field sieve. The number ficld sicve is based on an idexa of John Pollard o
rapidly Factor numbers of the special form &' + &, for small k&, This idea first evolved in

form (similar to the form required by Pollard’s original method). In 1990 SNFS was used
1o factor the ninth Fermat number 2° + 1 (cf. [31]):

2% 41 = 2424833.
7455 60282 56478 84208 33739 57362 00454 91878 33663 42657 - p99.

where p99 denotes a 99-digit prime. The ‘special form" restrictions were later removed.
which resulted in the general number field sieve. Currently one often simply uses NFS (o
refer to the general algorithm. On April 10, 1996, NFS was used to factor the following
130-digit number, thereby breaking the 129-digit record set by QS of the largest published
factorization found using a general purpose factoring method.

RSA — 130 = 1807082088 6874048059 51656 16440 59055 66278 10251 67694
01349 1701270214 50056 66254 02440 48387 34112 75908 12303
37178 1887966563 18201 32148 80557
= 396859994595974 54290 1611261628 83786 06757 64491 12810
06483 25551 57243
4553449864 67359 72188 40368 68972 74408 86435 63012 63205
06960 09990 44599.

More importantly. the NFS-factorization of RSA-130 required much less time than the
QS-factorization of RSA-129. Details can be found below.

NFS is considerably more complicated than the methods sketched so far. In this section
we explain what relations in NFS look like. why they can be found much faster than QS-
relations. and how we distributed the relation collection over the World-Wide-Web. How
the relations are combined to derive the factorization is beyond the scope of this survey: it
can be found in [30], along with further background on NFS. For additional information.
NFS implementations and factorizations. see [9. 13. 18. 19, 23].

SNFS has heuristic asymptotic expected run time L, [1/3. (32/9"* + o(1)] == L,[1/3.
1.526+0(1)], forn — o0, The general method. NFS, runs in heuristic asymptotic expected
time L,[1/3, (64/9"* +o(1)] = L,[1/3.1.923 + o(1)]. for n — .

To put the progress from QS to NFS in perspective. note that trial division runs in exponen-
tial time #'* = L,[1. 1/2] in the worst case. and that an (as yet unpublished) polynomial
time factoring algorithm would run in time (Inn)* = L, (0. ¢]. for some constant ¢. Thus.
QS and the other algorithms with expected run time L, [1/2. v] (with v constant) are. if we
only consider the firstargument « of L, [u. v]. halfway between exponential and polynomial
time. In this metric. NFS represents a substantial step in the direction of polynomial time
algorithms,

Relations in the number field sieve. Let £ and f; be two distinet polynomials with
integer coefficients. There is no need to restrict ourselves to only two polynomials (cf.
[20]). but that is the most straightforward case. The polynomials f; and f> must both
be irreducible. and they must have a common root modulo # (i.e.. an integer m such that

Bl A R R,

not relevant here. The presentation in [30] is mostly restricted to the case where m is an
integer close to #*/“* 1) for some small integer @ (such as 4 or 5): the polynomials can
then be chosen as fi(X) = X —m and f5(X) = ¥ ¢; X', where n = Y em' with
—m/2 = ¢; < m/2is a base m representation of n.

For the factorization of 2°'* + 1 for instance, we chose n = 8- (232 4+ 1) = 255 1 8. and
ookd =5.m =2"%, fi(X)=X—=2"% and fr(X) = X* +8. Inthis case. f;(2'") =0
and f2(2'%%) = 2°1% 4 8 = . so that both fi(m) and f>(m) are divisible by n. Note that
the coefficients of f> are quite small.

Forthe factorizationof n = RSA—130weusedd = 5. = 12574411 16841 80059 80468,
filX)=X—m.and

Sr(X) = 574830224 87384 05200X " + 988226191 74822 86102X*
— 1339249938 91281 76685X " + 16875 25245 88776 84989 X >
+ 375990017 48552 08738X — 4676993055 39319 05995.

We have that fi(n) = 0 and f>(m) = n, so that f, and f> have the root m in common
modulon. Note that the coefficients of /; and /> are of roughly the same order of magnitude.
These polynomials for RSA-130 were found by Scott Huddleston,

For j = 1.2 and integers a. b, let

Ni(a.b) = fila/byb*"1),

Note that N;(a, b) is an integer too. Furthermore, for j = 1, 2, let there be some factor base
consisting of primes (up to a bound depending on f;) that may occur in the factorization of
N;(a. b) for coprime a and b. Smoothness of N;(«. b) will always refer to smoothness with
respect to the jth factor base, and « and b will always be assumed to be coprime integers
with b > 0. A relation is given by a pair a. b for which both N, («. b) and Na(a. b) are
smooth.

The following is an indication why this is considered to be a relation (i.e.. something
that can be combined with other relations to solve the congruence x* = y> modn). Let a;
denote a root of f;. The prime factorization of N, (a, b) corresponds. roughly speaking. to
the “prime ideal factorization of @ — e, b in the algebraic number ficld Q(g,). Since f; and
> have a common root i modulo n. the algebraic numbers @ — « b and @ — @b are “the
same’ when taken mod 2: let ¢; denote the homomorphism from Z[a,) to Z/nZ that maps
«; 1o m modulo n, then gy (a — «yb) = @sta — asb) mod n.

Assume that the number of relations we have is more than the sum of the sizes of the
two factor bases. This implies that we can determine, by means of the usual matrix step.
independent subsets S of the set of relations such that [, ..« N;(a. b) is a square (in Z),
both for j = I and for j = 2. For the j with degree(f;) > | this does not imply that the
corresponding y; (8) = [, 4 es(@ —a;b) isasquare in Z[e, | (for the j with degree(;) = 1
it does). But if we include in the matrix some additional information (so-called quadratic
signatures) lor each N, (a. b) with degree(f;) > 1. then we may safely assume that all
¥;(S) are squares in Z[e;] (cf. [1]). Note that ¢, (31 (5)) = ¢a(y2(S)) mod n.

Because the factorization of the norms of the ¥ ($)'s is known (from the factorizations

trivially if degree(f;) = I. usulg the method described in [40] otherwise. The resulting
squareroots satmy (@©1(B1(85)* = (@2(B1(S5))* mod a, which is the desired congruence of
the form x* = y* mod n. Note that each § leads to an independent chance to factor n.

If. for the j with degree(f;) > 1. generators for the prime ideals (and units) in Z[e;] can
be found. the squareroot can be computed faster by applying ¢; to each of those generators
(if degree(f;) = 1 the squarcroot computation is trivial, as mentioned above). In general
(in the general NFS) such generators cannot be found if degree(f;) > 1. but in SNFS it
might be possible because the f;'s of degree > 1 have small coefficients (it was used. for
instance, for the ninth Fermat number).

Thus. after the sieving step. NFS requires a matrix step to determine several subsets S.
followed by a squareroot step for each S until a lucky one that factors n is encountered. The
picture of how many relations are needed is thoroughly confused by the use of large primes,
which can occur both in Ny (a. b) and in Na(a. b). The experiments with large primes in
NFS described in [18] suggest that, unlike QS. the number of cycles that can be built from
the partial relations suddenly grows extremely rapidly. If such a cycle explosion occurs.
the sieving step is most likely complete. but when this will happen is hard to predict.

Why NFS is faster than QS. A heuristic analysis of the asymptotic expected run time
of NFS goes along the same lines as the analyses of the run times of Dixon's algorithm
and QS. Instead of giving this analysis. we give the following informal explanation why
we expect the run time of NFS to grow much more slowly than the run time of QS as the
numbers to be factored get larger.

Consider the choice f1(X) = X — mand f3(X) = Z'f o G X' with m close to n! 91,
The probability that both Ny(a.b) = a — bm and Na(a. b) = S°_, ¢,a'b*~" are smooth
depends on the sizes of a, b, m. and the ¢,'s. By their choice . m and the ¢; s are all of the
order n'/‘“*1_ The sizes of @ and b depend on how many N, (a. b) and Ns(a. b) have 1o be
considered so that we can expect enough of them to be smooth. But *enough’ and *‘smooth’
depend on the sizes of the factor bases: as in QS. a larger factor base requires more relations,
but at the same time relaxes the definition of smoothness. From an analysis of all relevant
smoothness probabilitics it follows that if d is of the order (log n/ log log n)'/*. then it may
be expected that the largest «'s and b's needed will be such that ¢/ and 57 are of the same
order of magnitude as s and the ¢;'s. i.c.. n'/“/=", This implies that Ny(a. b) and Na(a, b)
are at worst of order n*/“, Now note that 2/d — 0 for n — ¢ due to the choice of d. so
that asymptotically the numbers that have to be smooth in NFS are much smaller than the
numbers of order roughly /n that have to be smooth in QS.

Ifthe ¢;"s are small. as in SNFS. Na(a. b) is even more likely to be smooth, which explains
why SNFS is so much faster than the general NFS,

Finding relations in NFS. Since the smooth values that we are looking for are. as in QS.
values of polynomials evaluated at certain points, they can again be found using a sieve: if p
divides N (a. b) then p alsodivides N, (@ +1p. b+ wp) forany integers r and w. The earliest
NFES implementations used the following simple sieving strategy: fix b: use a sieve to find
a’s for which both N (a. b) and Na(a, b) might be smooth: and inspect those N, (a. b) and
Na(a, b) more closely (using trial division). Repeat this for different &°s until a sufficient
number of relations have been collected. This approach can be distributed over many
processors by assienine different ranees of b's to different nrocessors: i1 was tseed in 12311

and is called classical or line-by-line sieving. Since smaller b's are better than larger ones
the pool of “good” inputs (the ~'s) eventually drics out. a problem that does not exist in QS.

As shown in [45] the following is more efficient. Fix some reasonable large ¢ that can in
principle occur in the factorization of. say. Na(a. b). Again use a sieve to locate pairs a. b
for which Ny(a. b) is smooth and N (a. b) factors using only primes < ¢ from the second
factor base. but restrict the search to pairs «. b for which Na(a. b) is divisible by ¢. Repeat
this for different ¢'s until a sufficient number of relations have been collected—actually this
step should be carried out for all pairs ¢. r,, where r, ranges over all roots of f> modulo ¢.
a detail that we will not elaborate upon. Because of the restriction on the pairs a. b, fewer
pairs have to be considered per ¢, namely only those pairs that belong to a sublattice L, of
determinant ¢ of the (a. b)-plane. For this reason Pollard called this way of sieving lattice
sieving,

For general ¢. lattice sieving makes it possible and necessary to use sieving by vectors,
another term introduced by Pollard. This is a way of quickly identifying. for each p,
the proper sieve locations in a plane instead of on a line. Just as the I-dimensional line-
by-line sieve makes use. for cach p. of the shortest I-dimensional vector (p). sieving by
vectors makes use, for each p. of two 2-dimensional vectors that form a reduced basis
for the appropriate sublattice of determinant p of L,. Again. the phrase ‘for each p° is
oversimplified and should read *for each p., r,, pair’, where r,, is a root of /; modulo p (with
p<qifl j=2)

Sieving by vectors is possible because a substantial part of L, can be made to fit in
memory. It is necessary because this entire process has to be repeated for many ¢'s. The
latter implies that we cannot afford the time to look at all b-lines for all relevant p for all
these ¢'s. i.e.. that line-by-line sieving in each L, is too slow.” The details of sieving by
vectors are rather messy (though not as bad as some of the rest of NFS) and can be found
in [23]: see also [5].

Different ¢ 's may lead to duplicate a. b pairs, in particular when large primes are used,
This implies that duplicates have to be removed from the resulting relations, even in an
implementation where it can be guaranteed that cach relevant ¢ is processed only once.

Distributed factoring using NFS. Although the sieving step of NFS is entirely different
from that of QS. it can be distributed over a network in almost the same way—cxcept for
the way the inputs are handled. In the sieving step of QS it takes the average workstation
a considerable amount of time. say a few weeks. to exhaust a single input. Furthermore,
for each number to be lactored, there are millions of good inputs that are all more or less
equally productive, and that lead to distinct relations.

The first distributed NFS implementation (cf. [31]) was based on the approach of [32] and
on classical sieving. It assigns disjoint ranges of b's 1o different processors. A single b can
be processed in a matter of minutes on a workstation. so each processor needs a range of at
least a few thousand b's to stay busy for a week. Larger b's are less productive than smaller
oncs. with b’s on the order of a few million becoming almost worthless. This implies
that only a fairly limited number of ranges can be distributed, and that a range should be
redistributed when its results are not received within a reasonable amount of time. This
leads to even more duplicated results than we have to deal with in QS. but duplicates can

A more recent distributed NFS implementation (cf. [13]) is based on use of the World
Wide Web and on lattice sieving. Because processing a single ¢ takes at most a few minutes,
disjoint ranges of ¢'s are assigned to different processors. just as the b’s were distributed
in classical sieving. The size of the range assigned to each contributor depends on the
resources available to that contributor: the types of processors and the amount of available
memory and computing time per processor. An advantage compared (o classical sicving is
that the pool of ‘good” ¢s is relatively large (cf. [5. 13]). so that lattice sieving tasks can
be distributed quite liberally. Nevertheless, some ¢'s are “better’ than others. It is therefore
still a good idea to keep track of the dates the ¢'s have been distributed. and to redistribute
¢'s whose results are not received within a reasonable amount of time. Note that there are
now three reasons why duplicates may be found: because they are intrinsic to lattice sieving
with large primes. because any ¢ might be processed more than once, and because relations
from any g may be received or submitted more than once.

In [13] we describe the convenient Web-interface that takes care of most of the interactions
with the contributors. Compared to the approach from [32] this interface makes it much
casier to contribute to future distributed factoring efforts: a few mouse clicks is all that is
needed. It should therefore not be difficult to perform the sieving siep for numbers that
are considerable larger than the one reported in [13]. Once the sieving step is complete. a
non-trivial amount of computing has to be carried out ata location where enough computing
power is available. With the current state of technology, this may take considerably more
(real) time than the sieving step.

Some illustrative NFS data. In Table 2 we present some data for the general NFS-
factorizations of a 116-digit and a 119-digit number (both from [18]). and of a 130-digit
number (from [13]). For all three numbers we used two polynomials. with degree(f,) = |
and degree(f3) = 5. The 116-digit number was the first number sieved using the imple-
mentation described in [23], with very conservative (and suboptimal) choices for the factor
base sizes. The same implementation was later used for the sieving of the 119-digit number.
with a much better choice for the factor base sizes. For the 130-digit number. the imple-
mentation of [23] was extended to allow more liberal use of the large primes that define the
lattices (the ¢'s). as described in [13).

The "partials’ refer to the relations with one or more large primes: in the implementations
used relations can in principle have almost any number of large primes. though the majority
has at most 5,

For the matrix step a variety of different algorithms and implementations was used, as
shown in the table: ‘Gauss’ refers to structured Gaussian elimination (cf. [28. 48)). and
‘Lanczos’ refers to P. L. Montgomery's blocked Lanczos method (cf. [12. 41]). Note that
for the two applications of *Lanczos’ the matrix is much larger than simply the sum of the
factor base sizes. This is duc to the use of large primes and the fact that they are only
partially removed from the matrix during the cycle construction in an attempt to minimize
the run time for Lanczos: for details see [18, 13]. For the 116-digit number all large
primes were removed. All squareroot computations were carried out at the Centrum voor
Wiskunde en Informatica (CW1) in Amsterdam. using P. L. Montgomery's implementa-
tion of his own method (cf, [40]). The squareroot timings in the table give the time per

s ekl e

Table 2.

116-digit 119-digit 130-digit
size first factor base 100001 100001 250001
size second factor base 400001 360001 730001
large prime bound 2% 2% 1
fulls 61849 38741 AR400
partials 45876382 35763524 36467272
cyeles 2605463 472426 2844859
amount of data 3GB 2208 3G
timing sieving step 220 MY 250 MY 550 MY
matriy size 2 5001007 ~ [475000° = 3505000°
matrix algorithm Gauss Lanczos Lancros
running on MasPar MP-1 MasPar MP-1 CRAY C-90
a Belleore Bellcore CWl1
tming matrix step 114 hrs 60 hrs 67.5 hrs
UNUNE SQUATCTOM step 60 hrs 20 hies 49.5 hrs

Recent results. In 1998-1999 P. L. Montgomery and B. Murphy developed a new method
to select the polynomials f; and f>. Using their method the 140-digit number RSA-140
was factored on February 2, 1999, and sieving for the 155-digit (and 512-bit) number RSA-
155 was completed on July 14. 1999. At the time of writing the matrix step was still in
progress. Also, on April 8, 1999. a new SNFS record was set with the factorization of the
21 1-digit number (10°"" — 1)/9. For details on these factorizations consult the web pages
at www.cwi.nl.

Acknowledgments

This paper was written while the author was employed by Bellcore. The Isaac Newton
Institute for Mathematical Sciences is gratefully acknowledged for its hospitality. Ac-
knowledgments are due to Bruce Dodson. Matt Fante, Stuart Haber. Paul Leyland, and Sue
Lowe for their help with this paper.

Appendix

Factoring and public-key cryptography. In public-key cryptography cach party has two
keys: a public key and a corresponding secret key. Anyone can encrypt a message using
the public key of the intended recipient, but only parties that know the secret key can
decrypt the encrypted message. One way to make such a seemingly impossible system
work is based on the supposed difficulty of factoring. The RSA-system (named alter the
inventors Ron Rivest, Adi Shamir. and Len Adleman. cf, [51]) works as follows. Each
parly generates two sufficiently large primes p and ¢. selects integers e and o such that
e-d = lmod(p — 1)(g — 1), and computes the product n = p - ¢: the public key
consists of the pair (1.). the secret kev consists of the inteeer . This computation can be

probabilistic primality tests (as shown in Section 2): the density of primes is sufficiently
high (r(x) = x/Inx. ¢f. Section 2): d can be derived from e. p-and ¢. using the extended
Euclidean algorithm (if ¢ and (p — 1)(g — 1) are coprime): and multiplication is easy.

Let the message m be a bit string shorter than . To encrypt m using the public key (1. e)
onc computes E(m) = m“modn, which is equal 10 m because of Fermat's little theorem
and the Chinese remainder theorem (cf. [25]). The modular exponentiations can be done
efficiently using the repeated square and multiply method. as shown in Section 2. Since o
can be found given ¢ and the factors of n. factoring # suffices to break RSA. Conversely, it
is believed that in general. without knowledge of d. factoring n is necessary to be able to
decrypt RSA-encrypted messages.

RSA can also be used as a signature scheme: the owner of secret key d. whose public
Key is (n. ¢). is the only one who can compute the signature S(m) = m“ mod s for some
message a, but everyone can check that S(m) is the signature on a of the owner of the seeret
key corresponding to (1. ¢) by verifying that S(m) mod n equals the original message m.

Notes

L. The 116-digit factorization of a BlackNet PGP Kew deseribed in [22) used the same software as 4] but was
distributed on 3 much smaller scale than the other offorts.

2. This ¢an be done using Euclid's algorithm, as explained before, Note that it podia, m) = 1 we have found a
tactor = ol s (since | = a = n). so that # is composite,

3. "Some people have all the luck” (ef. [47]).

4 Asimilar idea can also e found in [26).

S In CFRAC v's such that s, is small are generated using continued fractions, [If @, /by s the dth continued

fraction convergent 10 /a1, then riu,) = uf - ub‘: sutisfies [rta)| < 20m. Thus, with v = g, we have that
(3| = |r{a;)] is bounded by 2/n. Even though this is smaller than the [800, " that are generated in QS,
CFRAC is less efticient than QS because the smouthness of the Is, |'s in CFRAC cinnot be detected using
sieve. but has to be checked sindividually” per s, | using trial division or elliptic curves.

6. Pollard refers to line-by-line sieving in L, as sieving by rows. For a smzll minority of ¢ 's only a few H's have
to be considered, in which cuse line-by-line (or row) sieving i the preferred strategy.

References

Lo Lo M. Adleman, Factonng numbers using singular integers, Poc, 230l Annial ACM Sy mp. on Theory of

Computing (STOC). New Orleans, (May 6-8. [99]) pp. 64=71.

W. R. Allord, A, Granwille, and C. Pomerance, There are infinitely many Carmichael numbers, Amn, of

Math, Nol, 140 (1994) pp. 703-722.

3 WO R, Altord, A, Granville, and C. Pomerance, On the difficulty of finding reliable witnesses, ANTS'04,
Leciure Notes in Compul. Sei.. 877 (1994) pp. 1-16.

4. D Atkins, M. Gralt, A, K, Lenstra, and P. C, Leylund, The magic words are squeamish ossifrage, Advancey
in Cryprology. Asinerypt'94, Lecture Notes in Comput. Sci, 917 (1995) pp. 265-277.

5. D.). Bemstein, The multiple-lattice number field sieve, Chapter 3 of PhD), thesis;
tip/ikooberanmath.uic.edu/pub/papers/minis.dyi,

6. W.Bosmzund A, K. Lenstra. An implementation of the elly puic curve integer Bictorization methol, Conpta-
tional Algebra and Number Theory (W. Bosma and A, van der Poorten, eds), Klnwer Academic Publishers,

Dordrecht. Boston. London (19953 oo 110_1 36

13

206,
2

i

28.

29,

30,

31.

. R. P Brent and J. M. Pollurd. Factorization of the eighth Fermat number, Math. Comp., Vol, 36 (1981)

pp. 627-630.

« 4. Buchmann, J. Loho, and J. Zayer. An implementation of the seneral number field sieve. Advances in

Cryprology. Crypio "93. Lecture Notes in Comput. Sei, 773 (1994) pp, 159-165,

E. R. Canfield. P, Erdis, und C. Pomerance, On i problem of Oppenheim concerning “Factorisatio Numero-
rum.” J. Number Theorv, Vol 17 (1983) pp. 1225,

H. Cohen, A course in computational number theory, Gradiare Texts in Mathentatios, Vol. 138, Springer-
Verlag, Berlin (1993).

5. Contini and A. K. Lenstra, Implementations of blocked Lanczos and Wicdemann algorithms, manuscript.

-). Cowie, B. Dodson. R. M. Elkenbrachi-Huizing, A, K. Lenstn, P, 1, Montgomery. and). Zayer, A World

Wide Number Field Sieve fuctoring record: on to 512 bits, Advances in Cryprogruphy, Asisery Pt 96,
Lecture Notes in Computer Science, 1163 (1996) pp. 382-304,

- 3. AL Davis and D, B. Holdridge, Factorization using the quadratic sieve algorithm, Tech, Report SAND

83-1346, Sandia National Laboratories. Albuquerque, NM (1983),

- N, G de Bruijn. On the number of positive integers < v and free of prime factons > v, 1L fudag. Math.,

Vol. 38 (1966) pp. 239-247.

M. Deleglise and J. Rivar, Computing 7 (x): the Meissel, Lehmer, Lagarias, Miller, Odlyzko method. Mati,
Comp., Nol. 65 (1996) pp. 235-245.

T. Denny., B. Dodson, A, K. Lenstra, and M. 8. Manasse, On the Tactorization of RSA-120, Advances in
Cryprology. Crypto "93, Lecture Notes in Comput. Sci,, 773 (1994) pp. 166-174,

B. Dodson and A, K. Lenstra, NFS with four large primes: anexplosive experiment, Advanees in Crypology.
Crypto "95, Lecture Notes in Comput. Sci., 963 (1993) pp. 372-385.

R. M. Elkenbracht-Huizing, An implementation of the number field sieve, Technical Report NM-RYS1 1,
Centrum voor Wiskunde en Informatics, Amsterdam, 1993: o appear in Experimental Mathentatics.

R. ML Elkenbracht-Huizing, A multiple polynomial general number field siove, Preproceedings ANTS 1
(H. Cohen. ed.). Université de Bordeaus (19963 pp. 101-116,

21 M. Gardner, Muthematical games, A new Kind of cipher that would take millions of years 1o break, Scientific

American (Avgust 1977) pp. 120-124,

- L Gillogly, A, K, Lenstr, P C. Leyhmed, and AL Muflett. An unnoticed factoring ek on a PGP ke,

presented at Crypto "95 mump session.
R. Golliver. A. K. Lenstra, and K, McCurley. Lattice sieving and trial division, ANTS 94, Lecture Notes in
Comput, Sei.. 877 (1994) pp. 18-27.

- G. H. Hardy and W. M. Wright, An fntreduction to the Theory of Numbers, Sthed., Oxtord University Press,

Oxford (1979),

- D.E.Knuth. Artolcomputer programming. volume 2, Semintmerical Algorithns, 2nd ed.. Addison-Wesle .

Reuding. Massachusetts (1981,

M. Kraitehik. Theorie de Nombres, 1, Gauthiers-Villars, Paris (1926) pp. 195-208.

J. €. Lagarias, V. 8. Miller, and A, M. Odlyzko, Computing z71x): The Mcissel-Lehmer Method, Math,
Comnp,, Vol, 44 (1985) pp. 537-560,

B. Al LaMucchin and A M. Odlyzko, Solving large sparse linear systems over finite fields, Advances in
Crypiology, Crypto’90, Lecture Notes in Comput, S¢i., $37 (1991) pp. 109133,

A K. Lenstr and Ho W Lensira, Jr, Algorithms in number theory, Chapter 12 in Handbook of Theoretical
Computer Science, Volume A, Mgorithms and Complexity (3, van Lecuwen. ed.), Elsevier, Amsterdam
(1990).

A K. Lenstra and H. W, Lensira, Jr. The development of the number ticld sieve, Lecture Notes in Marly.,
Springer-Verlag, Berling 1554 (1993).

A K, Lenstra, 1L W, Lenstra, I, M. S. Manasse, and J. M. Pollard. The factorization of the ninth Fermat
number, Math. Comp., Nol. 61 (1993) pp. 319-349,

- A KL Lenstrn and M. S, Manasse, Factoning by electronie mail, Advintees in Ci yprology, Eurocrypt "8y,

Lecture Notes in Comput. Sci. 434 (1990) pp. 355-371,
AL K. Lenstraand M, 8, Manasse, Factoring with two large primes. Advanees in Cryprology, Eurocrypt "9,
Lecture Notes in Comput. Sei.. 473 (1990) pp. 72-82: Math. Comp., Vol. 63 (1994) pp, 785-798,

o HoW. Lensira, Jr, Factoring integers with elliptic curves, A, of Math, Vo, 126 (1987) pp. 649-673,

% W L asstswt T and @ Pomaaa o . ' e g g

B a

36.
37.
38,
39,
40.

41,

47
48,

40,
50.

53

54,

H. W. Leastra, Jr and R, Tijdeman (eds.). Computational methods in number theory, Math. Centre Tracts.,
Vol, 154/153, Mathematisch Centrum. Amaterdam (1983),

P C. Leyland, Multiple polynomial quadratic sieve, sans math, fipe/tip.ox.ac.uk/pub/mathiesa 1 29/
mpigssansomath.Z (1994),

L. Monier, Evaluation and comparison of 1wo efficient probabilistic primality testing algorithms, Theor
Comp. Science, Vol, 11 (1980) pp, 97-108,

P. L. Montgomery, Speeding the Pollurd and elliptic curve methods of factorization, Math, Comp.. Vol, 48
(1987) pp. 243-204.

P. 1. Montgomery, Square roots of products of algebraic numbers. Proceedings of Symposia in Applied
Mathematics (Walter Gautschi, ed.). Mathematics of Computation 1943-1993, Vancouver (1993),

P. L. Momgomery, A block Lunczos algorithm tor linding dependencies over GE(2), Advinces in C ryplology,
Furocrypt93, Lecture Notes in Comput, Sei., 921 (1995) pp. 106-120,

M. A, Morrison and 1. Brillhart, A method of factoring und the fuctorization of Fr, Math. Camp., Vol. 29
(1975) pp. 183-205,

+ .M. Pollard, Theorems on lactorization and primality testing. Proc. Cambridge Philos. Soc., Vol. 76 (1974)

pp. 321528,

- J. M. Pollard. A Monte Carlo method for Factorization, BIT, Vol. 15 (1975) pp. 331-334,
45.
46,

J. M. Pollard, The lattice sieve, Lecture Notes in Marh,. Springer-Verlag. Berlin, 1553 (1993) pp. 4349,
C. Pomerance. Analysis and comparison of some integer factoring algorithms, Computitional methods in
number theory, Math. Centre Traets, Vol. 154/155, Mathematisch Centrum, Amsterdam (1983) pp. 89-139,
C. Pomerance, Private communication (March 1996),

C. Pomerance and J. W. Smith, Reduction of huge, sparse matrices over tinite fields via created catastrophes,
Experinrent. Marh., Nol. | (1992) pp. §9-94,

M. O. Rabin, Probabilistic algorithms for primality testing, J. Number Theory, Vol, 12 (1980) pp. 128138,
H. Riescl. Prime numbers and computer methods for factorization. Progs Mati., Vol. 37, Birkhiuser, Boston
11985).

R. L. Rivest. A. Shumir and L. Adleman. A method for obtaining digital signatures and public-key eryp-
tosystems, Comm, ACM, Nol, 21 (1978) pp. 120-126.

2. R. Schoof, Quadratic fields and factorization, Computational methods in number theory, Marh, Centre

Tracts, Nol. 1547155, Mathematiseh Centrum, Amsterdam (1983) pp. 235-286.

D, Shanks, Class number, a theory of factorization. and genera, Proc, Symp, Pure Matl.. Vol. XX. AMS
(1971) pp. 415440,

R. D. Silverman, The multiple polynomial quadratic sieve, Math, Comp,, Vol. 84 (1987) pp. 327-339,

