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ABSTRACT

The shift to multi-core hardware brings new challenges to database
systems, as the software parallelism determines performance. Even
though database systems traditionally accommodate simultaneous
requests, a multitude of synchronization barriers serialize execu-
tion. Write-ahead logging is a fundamental, omnipresent compo-
nent in ARIES-style concurrency and recovery, and one of the
most important yet-to-be addressed potential bottlenecks, espe-
cially in OLTP workloads making frequent small changes to data. 

In this paper, we identify four logging-related impediments to
database system scalability. Each issue challenges different level in
the software architecture: (a) the high volume of small-sized I/O
requests may saturate the disk, (b) transactions hold locks while
waiting for the log flush, (c) extensive context switching over-
whelms the OS scheduler with threads executing log I/Os, and (d)
contention appears as transactions serialize accesses to in-memory
log data structures. We demonstrate these problems and address
them with techniques that, when combined, comprise a holistic,
scalable approach to logging. Our solution achieves a 20%-69%
speedup over a modern database system when running log-inten-
sive workloads, such as the TPC-B and TATP benchmarks. More-
over, it achieves log insert throughput over 1.8GB/s for small log
records on a single socket server, an order of magnitude higher
than the traditional way of accessing the log using a single mutex.
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1. INTRODUCTION 
Recent changes in computer microarchitecture have led to multi-
core systems, which in turn have several implications in database
management systems (DBMS) software design [6]. DBMS soft-
ware was designed in an era during which most computers were

uniprocessors with high latency I/O subsystems. Database engines
therefore excel at exploiting concurrency –support for multiple in-
progress operations– to interleave the execution of a large number
of transactions, most of which are idle at any given moment. How-
ever, as the number of cores per chip increases in step with
Moore’s law, software must exploit parallelism –support for con-
current operations to proceed simultaneously– to benefit from new
hardware. Although database workloads exhibit high concurrency,
internal bottlenecks [11] often mean that database engines cannot
extract enough parallelism to meet multicore hardware demands. 

The log manager is a key service of modern DBMSs, espe-
cially prone to bottlenecks due to its centralized design and depen-
dence on I/O. Long flush times, log-induced lock contention, and
contention for log buffers in main memory all impact scalability,
and no single bottleneck is solely responsible for suboptimal per-
formance. Modern systems can achieve transaction rates of
100ktps or higher, exacerbating the log bottleneck.1 Research to
date offers piecewise or partial solutions to the various bottlenecks,
which do not lead to a fully scalable log manager for today’s multi-
core hardware.

1.1 Write-ahead Logging and Log Bottlenecks
Nearly all database systems use centralized write-ahead logging
(WAL) [14] to protect against data corruption and lost committed
work after crashes. WAL allows transactions to execute and com-
mit without requiring that all data pages they update be written to
disk first. However, as Figure 1 illustrates, there are four main
types of delays which logging can impose on transactions:

Figure 1.  A timeline of two transactions illustrating four kinds of 
log-imposed delay: (A) I/O-related delays, (B) increased lock con-
tention, (C) scheduler overload, and (D) log buffer contention.

1. See, e.g. top published TPC-C results or performance figures reported
by main-memory databases like H-Store [22].
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I/O-related delays (A). The system must ensure that a transac-
tion’s log records reach non-volatile storage before committing.
With access times in the order of milliseconds, a log flush to mag-
netic media can easily become the longest part of a transaction.
Further, log flush delays become serial if the log device is over-
loaded by multiple small requests. Fortunately, log flush I/O times
become less important as fast solid-state drives gain popular-
ity[1][12], and when using techniques such as group commit [8].

Log-induced lock contention (B). Under traditional WAL, each
transaction which requests a commit must first flush its log records
to disk, retaining all write locks until the operation completes.
Holding locks during this final (and often only) I/O significantly
increases lock contention in the system and creates an artificial
bottleneck in many workloads. For example, the left-most bar in
Figure 2 shows CPU utilization as 60 clients run for 95 seconds the
TPC-B [24] benchmark in a modern storage manager [11] on a Sun
Niagara II chip with 64 hardware contexts (see Section 6.1 for the
detailed experimental setup). Due to the increased lock contention
the system is idle 75% of the time. Section 3 shows that even
though reduced I/O times help, the problem remains even when
logging to a ramdisk with minimal latency.

Excessive context switching (C). Log flushes incur additional
costs beyond I/O latency because the transaction cannot continue
and must be descheduled until the I/O completes. Unlike I/O
latency, context switching and scheduling decisions consume CPU
time and thus cannot overlap with other work. In addition, the
abundance of hardware contexts in multicore hardware can make
scheduling a bottleneck in its own right as runnable threads begin
to accumulate faster than the OS can dispatch them. The second
bar in Figure 2 shows for the same workload the processing time
of a system which suffers from the problem of OS scheduler over-
load. The system remains 20% idle even with transactions ready to
run. We analyze excessive context switching problem in Section 4.

Log buffer contention (D). Another log bottleneck arises as the
multicore trend continues to demand exponential increases in par-
allelism; where current hardware trends generally reduce the other
bottlenecks (e.g. solid state drives reduce I/O latencies), each suc-
cessive processor generation aggravates contention with an
increase in hardware contexts. The third bar in Figure 2 shows that
if we remove the problems of logical lock contention and exces-
sive context switching, the system utilizes fully the available hard-
ware. But, as a large number of threads attempt simultaneous log
inserts, the contention for the centralized log buffer contributes a
significant (and growing) fraction of total transaction time. We
therefore consider this bottleneck as the most dangerous to future
scalability, in spite of its modest performance impact on today’s
hardware. Section 5 focuses on this problem.

In summary, log bottlenecks arise for several reasons, and no
single approach addresses them all. A technique known as “asyn-
chronous commit” is perhaps the clearest symptom of the continu-
ing log bottleneck. Available in most DBMSs (including Oracle
[16] and PostgreSQL [17]) asynchronous commit allows transac-
tions to complete and return results without waiting for their log
entries to become durable. Skipping the log flush step sidesteps
problems A-C listed above, but at the cost of unsafe operation: the
system can lose committed work after a crash. To date no existing
proposal addresses all the bottlenecks associated with log flush,
and the looming problem of log buffer contention.

1.2 A Holistic Approach to Scalable Logging
This paper presents Aether, a complete approach towards log scal-
ability, and demonstrates how the proposed solutions address all
log bottlenecks on modern hardware, even for the most demanding
workloads. Aether combines new and existing solutions to mini-

mize or eliminate the log bottleneck. We highlight new contribu-
tions below.

First, we evaluate Early Lock Release (ELR), a promising
technique for eliminating log-induced lock contention. ELR has
been proposed several times in the past but, to our knowledge, has
never been evaluated in the literature and is not used today by any
mainstream database engine. We show that, particularly for
skewed accesses common to real workloads, ELR increases
throughput by 15%-164% even when logging to fast flash disks.

Second, we propose and evaluate Flush Pipelining, a tech-
nique which allows most transactions to commit without triggering
context switches. In synergy with ELR it achieves the same perfor-
mance with asynchronous commit without sacrificing durability.

Finally, we propose and evaluate three improvements to log
buffer design, including a new “consolidation-based backoff”
scheme which allows threads to aggregate their requests to the log
when they encounter contention. As a result, maximum log conten-
tion is decoupled from thread counts and log record sizes. Our
evaluation shows that contention is minimized and identifies mem-
ory bandwidth as the most likely bottleneck to arise next.

2. RELATED WORK
As a core database service, logging has been the focus of extensive
research. Virtually all database engines employ some variant of
ARIES [14], a sophisticated write-ahead logging system which
integrates concurrency control with transaction rollback and disas-
ter recovery, and allows the system to recover fully even if recov-
ery is interrupted repeatedly by new crashes. To achieve its high
robustness with good performance, ARIES couples tightly with the
rest of the system, particularly the lock and buffer pool managers,
and has a strong influence on the design of access methods such as
B+Tree indexes [13]. The log is typically implemented as a single
global structure shared by every transaction, making it a potential
bottleneck in highly parallel systems. Even in a single-threaded
database engine the overhead of logging accounts for roughly 12%
of the total time in a typical OLTP workload [7].

Several recent studies [12][3] evaluate solid state flash drives
in the context of logging, and demonstrate significant speedups
due to both better response times and also better handling of the
small I/O sizes common to logging. However, even the fastest
flash drives do not eliminate all overhead because synchronous log
flush requests still block and therefore cause OS scheduling.

Log group commit strategies [8][18] reduce pressure on mag-
netic log disks by aggregating multiple requests for log flush into a
single I/O operation; fewer and larger disk accesses translate into

Figure 2.  Breakdown of CPU time showing work and contention 
due to the log vs other parts of the system, when 60 clients run the 
TPC-B benchmark, as we remove log-related bottlenecks.
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significantly better disk performance by avoiding unnecessary
head seeks. Unfortunately, group commit does not eliminate
unwanted context switches because transactions merely block
pending notification from the log rather than blocking on I/O
requests directly.

Asynchronous commit [16][17] extends group commit by not
only aggregating I/O requests together, but also allowing transac-
tions to complete without waiting for those requests to complete.
This optimization moves log flush times completely off the critical
path but at the expense of durability. That is, committed work can
be lost if a crash prevents the corresponding log records to become
durable. Despite being unsafe, asynchronous commit is used
widely in commercial and open source database systems because it
provides a significant performance boost. In contrast, Aether
achieves this performance boost without sacrificing durability.

DeWitt et al. [4] observe that a transaction can safely release
locks before flushing its log records to disk provided certain condi-
tions are met. IVS [5] implemented this optimization but its cor-
rectness was proven more recently [21]. We refer to this technique
as early lock release (ELR) and evaluate it further in Section 3. 

Main-memory database engines impose a special challenge
for log implementations because the log is the only I/O operation
of a given transaction. Not only is the I/O time responsible for a
large fraction of total response time, but short transactions also
lead to high concurrency and contention for the log buffer. Some
proposals go so far as to eliminate the log (and its overheads)
altogether [22], replicating each transaction to multiple database
instances and relying on hot fail-over to maintain durability.
Aether is especially well-suited to in-memory databases because it
addresses both log flush delays and contention at the log buffer. 

3. MOVING LOG I/O LATENCY OFF THE 
CRITICAL PATH
During its lifecycle a transaction acquires database locks to ensure
consistency and logs all actions before performing them. At com-
pletion time –after writing a commit record to non-volatile stor-
age– the transaction finally releases the locks it has accumulated.
Releasing the locks only after the commit record has reached disk
(or been flushed) ensures that other transactions do not encounter
uncommitted data, but also increases lock hold time significantly,
especially for in-memory workloads where the log commit is the
longest part of many transactions. 

3.1 Early Lock Release
DeWitt et al. [4] observe that a transaction’s locks can be released
before its commit record is written to disk, as long as it does not
return results to the client before becoming durable. Other transac-
tions which read data updated by a pre-committed transaction
become dependant on it and must not be allowed to return results
to the user until both their own and their predecessor’s log records
have reached the disk. Serial log implementations preserve this
property naturally, because the dependant transaction’s log records
must always reach the log later than those of the pre-committed
transaction and will therefore become durable later also. Formally,
as shown in [21], the system must meet two conditions for early
lock release to preserve recoverability:

1. Every dependant transaction’s commit log record is written to
the disk after the corresponding log record of pre-committed
transaction.

2. When a pre-committed transaction is aborted all dependant
transactions must also be aborted. Most systems meet this con-
dition trivially; they do no work after inserting the commit
record, except to release locks, and therefore can only abort
during recovery when all uncommitted transactions roll back. 

Early Lock Release (ELR) removes log flush latency from the crit-
ical path by ensuring that only the committing transaction must
wait for its commit operation to complete; having released all held
database locks, others can acquire these locks immediately and
continue executing. In spite of its potential benefits modern data-
base engines do not implement ELR and to our knowledge this is
the first paper to analyze empirically ELR’s performance. We
hypothesize that this is largely due to the effectiveness of asyn-
chronous commit [16][17], which obviates ELR and which nearly
all major systems do provide. However, systems which do not sac-
rifice durability can benefit strongly from ELR under workloads
which exhibit lock contention and/or long log flush times.

3.2 Evaluation of ELR 
We use the TPC-B benchmark [24] to evaluate ELR. TPC-B was
designed as a database stress test and also exhibits significant lock
contention. The benchmark executes on a 64-context Niagara II
server running the Shore-MT storage manager [11] (further details
about the platform and experimental methodology can be found in
Section 6.1). Figure 3 shows the benefit of ELR over a baseline
system as we vary the two major factors which impact its effec-
tiveness: lock contention and I/O latency. The y-axis shows
speedup due to ELR as the skew of zipfian-distributed data
accesses increases along the x-axis. Lower skew leads to more uni-
form accesses and lower lock contention. Different log device
latencies are given as data series ranging from 0 to 10ms. The first
series (0ms) is measured using a ramdisk which imposes almost no
additional delay beyond a round trip through the OS kernel (40-
80µs). The remaining series are created by using a combination of
asynchronous I/O and high resolution timers to impose additional
response times of 100µs (fast flash drive), 1ms (fast magnetic
drive), and 10ms (slow magnetic drive). 

As shown in the graph, ELR’s speedup is maximized (35x)
for slower devices, but remains substantial (2x) even with flash
drives if contention is present. This effect occurs because transac-
tions are short even compared to 100µs I/O times, and ELR eases
contention by removing that delay from the critical path. As write
performance of most flash drives remains unpredictable (and usu-
ally slower than desired) ELR remains an important optimization
even as systems move away from magnetic media.

Varying lock contention impacts performance in three phases.
For very low contention, the probability of a transaction to request
an already-held lock is low. Thus, holding that lock through the log
flush does not stall other transactions and ELR has no opportunity
to improve performance. At the other extreme, very high skew
leads to such high contention that transactions encounter held
locks even with no log flush time. In the middle range, however,

Figure 3.  Speedup due to ELR when running the TPC-B bench-
mark and varying I/O latency and skew in data accesses.
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ELR significantly improves performance because holding locks
through log flush causes stalls which would not have arisen other-
wise. The sweet spot becomes wider as longer I/O times stretch out
the total transaction length in the baseline case. Finally, by way of
comparison, the intuitive rule that 80% of accesses are to 20% of
the data corresponds roughly to a skew of 0.85. In other words,
workloads are likely to exhibit exactly the contention levels which
ELR is well-equipped to reduce. 

In conclusion, we find that ELR is a straightforward optimi-
zation which can benefit even modern database engines. Further,
as the next section demonstrates, it will become an important com-
ponent in a safe replacement for asynchronous commit.

4. DECOUPLING OS SCHEDULING 
FROM LOG FLUSH OPERATIONS
The latency of a log flush arises from two sources: the actual I/O
wait time and the context switches required to block and unblock
the thread at either end of the wait. Existing log flush optimiza-
tions, such as group commit, focus on improving I/O wait time
without addressing thread scheduling. Similarly, while ELR
removes log flush from the critical path of other transactions
(shown as (B) in Figure 1) the requesting transaction must still
block for its log flush I/O and be rescheduled as the I/O completes
(shown as (A) in Figure 1). Unlike I/O wait time, which the OS
can overlap with other work, each scheduling decision consumes
several microseconds of CPU time which cannot be overlapped.

The cost of scheduling and context switching is increasingly
important for several reasons. First, high-performance solid state
storage provides access times measured in tens of microseconds,
leaving the accompanying scheduling decisions as a significant
fraction of the total delay. Second, exponentially growing core
counts make scheduler overload an increasing concern as the OS
must dispatch threads for every transaction completion. The sched-
uler must coordinate these scheduling decisions (at least loosely)
across all cores. The excessive context switching triggers a sched-
uling bottleneck which manifests as a combination of high load
(e.g. many runnable threads) but low CPU utilization and signifi-
cant system time.

Figure 4 (left) shows an example of the scheduler overload
induced when the Shore-MT storage manager [11] runs the TPC-B
benchmark [24] on a 64-context Sun Niagara II machine. As the
number of client threads increases along the x-axis, we plot the
rate of context switches (in thousands/s), as well as the CPU utili-
zation achieved and the number of CPUs running inside the OS
kernel (system time). The number of context switches increases

steadily with the number of client threads.2 The CPU utilization
curve illustrates that the OS is unable to handle this load, as 12 of
the 64 hardware contexts are idle. Further, as load increases an
increasing fraction of total load is due to system time rather than
the application, further reducing the effective utilization.

Excessive context switching explains why group commit
alone is not fully scalable and why asynchronous commit is popu-
lar despite being unsafe. The latter eliminates context switching
associated with transaction commit while the former does not.

4.1 Flush Pipelining
To eliminate the scheduling bottleneck (and thereby increase CPU
utilization and throughput), the database engine must decouple the
transaction commit from thread scheduling. We propose Flush
Pipelining, a technique which allows agent threads to detach from
transactions during log flush in order to execute other work,
resuming the transaction once the flush is completed.

Flush pipelining operates as follows. First, agent threads com-
mit transactions asynchronously (without waiting for the log flush
to complete). However, unlike asynchronous commit they do not
return immediately to the client but instead detach from the trans-
action, enqueue its state at the log and continue executing other
transactions. A daemon thread triggers log flushes using policies
similar to those used in group commit (e.g. “flush every X transac-
tions, L bytes logged, or T time elapsed, whichever comes first”).
After each I/O completion, the daemon notifies the agent threads
of newly-hardened transactions, which eventually reattach to each
transaction, finish the commit process and return results to the cli-
ent. Transactions which abort after generating log records must
also be hardened before rolling back. The agent threads handle this
case as relatively rare under traditional (non-optimistic) concur-
rency control and do not pass the transaction to the daemon. 

When combined with ELR (see previous section), flush pipe-
lining provides the same throughput3 as asynchronous commit
without sacrificing any safety. Only the log’s daemon thread suf-
fers wait time and scheduling due to log flush requests, with agent
threads pipelining multiple requests to hide even long delays. 

Figure 4.  Total and system CPU utilization and number of context switches without (left) 
and with (right) flush pipelining.

Figure 5.  Performance of flush pipelining and 
asynchronous commit vs. baseline.
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the delays overlap perfectly and overall throughput is not impacted.



4.2 Evaluation of Flush Pipelining
To evaluate flush pipelining we run the same experiment as in
Figure 4 (left), but this time with flush pipelining active.
Figure 4 (right) shows the result. As before we vary the number of
client threads and measure the number of context switches (in mil-
lions), utilization achieved, and the OS system time contribution.
In contrast to the baseline case, the number of context switches
after an initial increase, remains almost steady for the entire load
spectrum. The utilization reaches the maximum possible (64) indi-
cating that the scheduling bottleneck has been resolved. Further
confirmation comes from the system time contribution, which
remains nearly constant regardless of how many threads enter the
system. This behavior is expected because only one thread issues I/
O requests regardless of thread counts, and the group commit pol-
icy ensures that requests become larger rather than more frequent.

Figure 5 compares the performance of baseline Shore-MT to
asynchronous commit and flush pipelining when running the TPC-
B. The x-axis varies the number of clients as we plot throughput on
the y-axis. Even with a fast log disk, the baseline system begins to
lag almost immediately as scheduling overheads increase reducing
its scalability. In contrast, the other two scale better achieving up to
22% higher performance. As Section 6.4 will show, for even more
log-intensive workloads the benefits of flush pipelining are larger.

In summary, flush pipelining successfully and safely removes
the log from the system's critical path of execution by breaking the
correlation between transaction commits and scheduling.

5. SCALABLE LOG BUFFER DESIGN
Most database engines use some variant of ARIES, which assigns
each log record a unique log sequence number (LSN). The LSN
encodes a record’s disk address, acts as a timestamp for data pages
written to disk, and serves as a pointer to log records both in mem-
ory and on disk. It is also convenient for LSN to serve as addresses
in the log buffer, so that generating an LSN also reserves buffer
space. In order to keep the database consistent in spite of repeated
failures, ARIES imposes strict ordering constraints on LSN gener-
ation. While a total ordering is not technically required for correct-
ness, valid partial orders tend to be too complex and
interdependent to be worth pursuing as a performance optimization
(see Section A.5 of the Appendix for further discussion). Inserting
a record into the log buffer consists of three distinct phases:

1. LSN generation and log buffer acquire. The thread must first
claim the space it will eventually fill with the intended log
record. Though serial, LSN generation is short and predictable
barring exceptional situations such as buffer wraparound or full
log buffer 

2. Log record insertion. The thread copies the log record in the
buffer space it has claimed.

3. Log buffer release. The transaction releases the buffer space,
which allows the log manager to write the record to disk.

A straightforward log insert implementation acquires a central
mutex before performing all three phases and the mutex is released
at the same time as the buffer (pseudocode in Algorithm 1, Appen-
dix). This approach is attractive for its simplicity: log inserts are
relatively inexpensive, and in the monolithic case buffer release is
simplified to a mutex release. 

The weakness of a monolithic log insert is that it serializes
buffer fill operations –even though buffer regions never overlap–
which adds their cost directly to the critical path. In addition, log
record sizes vary significantly, making copying costs unpredict-
able. Figure 6(B) illustrates how a single large log record can
impose long delays on later threads; this situation arises frequently
in our system because the distribution of log records has two

strong peaks at 40B and 264B (a 6x difference) and the largest log
records can occupy several kB each.

To permanently eliminate contention for the log buffer, we
seek to make the cost of accessing the log independent of both the
sizes of the log records being inserted and the number of threads
inserting them. The following subsections explore both approaches
and propose a hybrid solution which combines them.

5.1 Consolidating Buffer Allocation
A log record consists of a standard header followed by an arbitrary
payload. Log buffer allocation is composable in the sense that two
successive requests also begin with a log header and end with an
arbitrary payload. We exploit this composability by allowing
threads to combine their requests into groups, carve up and fill the
group’s buffer space off the critical path, and finally release it back
to the log as a unit. To this end we extend the idea of elimination-
based backoff [9][15], a hybrid approach combining elimination
trees [19] with backoff. Threads which encounter contention back
off, but instead of sleeping or counting cycles they congregate at
an elimination array, a set of auxiliary locations where they
attempt to combine their requests with those of others. 

When elimination is successful threads satisfy their requests
without returning to the shared resource at all, making the backoff
very effective. For example, stacks are amenable to elimination
because push and pop requests which encounter each other while
backing off can cancel each other directly via the elimination array
and leave. Similarly, threads which encounter contention for log
inserts back off to a consolidation array and combine their
requests before reattempting the log buffer. We use the term “con-
solidation” instead of “elimination” because, unlike with a stack or
counter, threads must still cooperate after combining their requests
so that the last to finish can release the group’s buffer space. Like
an elimination array, any number of threads can consolidate into a
single request, effectively bounding contention at the log buffer to
the number of array entries protecting the log buffer, rather than
the number of threads in the system. Algorithm 2 (Appendix) pro-
vides a sketch of the consolidation array-based buffer allocation.

The net effect of consolidation is that only the first thread
from each group competes to acquire buffer space from the log,
and only the last thread to leave must wait to release it. Figure 6(C)
depicts the effect of consolidation; the first thread to arrive is
joined by two others while it waits on the log mutex and all three
proceed in parallel once the mutex acquire succeeds. However, as
the figure also shows, consolidation leaves significant wait times
because only buffer fill operations within a group proceed in paral-

Figure 6.  Illustrations of several log buffer designs. The baseline 
system can be optimized for shorter critical path (D), fewer threads 
attempting log inserts (C), or both (CD)
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lel; operations between groups are still serialized. Given enough
threads in the system, at least one thread of each group is likely to
insert a large log record, delaying later groups. 

5.2 Decoupling Buffer Fill
Because buffer fill operations are not inherently serial (records
never overlap) and have variable costs, they are highly attractive
targets to move off the critical path. All threads which have
acquired buffer regions can safely fill those regions in any order as
long as they release their regions in LSN order. We therefore mod-
ify the original algorithm so that threads release the mutex imme-
diately after acquiring buffer space. Buffer fill operations thus
become pipelined, with a new buffer fill starting as soon as the
next thread can acquire its own buffer region. 

Decoupling log inserts from holding locks results in a non-
trivial buffer release operation which becomes a second critical
section. Like LSN generation, buffer release must be serialized to
avoid creating gaps in the log. Log records must be written to disk
in LSN order because recovery must stop at the first gap it encoun-
ters; in the event of a crash any committed transactions beyond a
gap would be lost. No mutex is required, but before releasing its
own buffer region, each thread must wait until the previous buffer
has been released (Algorithm 3 of the appendix gives pseudocode).

With pipelining in place, arriving threads can overlap their
buffer fills with that of a large log record, without waiting for it to
finish first. Figure 6(D) illustrates the improved concurrency that
results, with significantly reduced wait times at the buffer acquire
phase. Though skew in the record size distribution could limit scal-
ability because of the requirement to release buffers in order, we
find that this is not a problem in practice because realistic log
record sizes do not vary enough to justify the additional complex-
ity. We consider this matter further in Section A.3 of the appendix
and propose a solution which provides robustness in the face of
skewed log record sizes with a 10% performance penalty.

5.3 Putting it all Together: Hybrid Log Buffer
In the previous two sections we outlined (a) a consolidation array
based approach to reduce the number of threads entering the criti-
cal section, and (b) a decoupled buffer fill which allows threads to
pipeline buffer fills outside the critical section. Neither approach
eliminates all contention by itself. The two are orthogonal, how-
ever, and can be combined easily. Consolidating groups of threads
limits log contention to a constant that does not depend on the
number threads in the system, while providing a degree of buffer
insert pipelining (within groups but not between them). Decou-

pling buffer fill operations allows pipelining between groups and
reduces the log critical section length by moving buffer outside,
thus making performance relatively insensitive to log record sizes.
The resulting design, shown in Figure 6(CD), achieves bounded
contention for threads in the buffer acquire stage and maximum
pipelining of all operations.

6. PERFORMANCE EVALUATION 
We implement the techniques described in sections 3, 4, and 5 into
a logging subsystem called Aether. To enhance readability, most of
the performance evaluation of ELR and flush pipelining is shown
in sections 3 and 4, respectively. Unless otherwise stated in this
section we assume those optimizations are already in place. This
section details the sensitivity of the consolidation array based tech-
niques to various parameters, and finally evaluates performance of
Aether in a prototype database system. 

6.1 Experimental Setup
All experiments were performed on a Sun T5220 (Niagara II)
server with 64GB of main memory running Solaris 10. The Niag-
ara II chip contains sixteen processing pipelines, each capable of
supporting four hardware contexts, for a total of 64 OS-visible
“CPUs.” The high degree of hardware parallelism makes it a good
indicator of the challenges all platforms will face as on-chip core
counts continue to double. We use Shore-MT [11], an open-source
multi-threaded storage manager. We developed Shore-MT using as
basis the SHORE storage manager [2], to achieve scalability on
multicore platforms. To eliminate contention in the lock manager
and focus on logging, we use a version of Shore-MT with Specula-
tive Lock Inheritance [10]. We run the following benchmarks:

TATP. TATP (aka TM1) [23] models a cell phone provider data-
base. It consists of seven very small transactions, both update and
read-only. The application exhibits little logical contention, but the
small transaction sizes stress database services, especially logging
and locking. We use a database of 100K Subscribers.

TPC-B.  This benchmark [24] models a banking workload and it is
intended as a database stress test. It consists of a single small
update transaction and exhibits moderate lock contention. Our
experiments utilize a 100-teller dataset.

Log insert microbenchmark.  We extract a subset of Shore-MT’s
log manager as an executable which supports only log insertions
without flushes to disk or performing other work, thereby isolating
the log buffer performance. We then vary the number of threads,
the log record size and distribution, and the timing of inserts.

For each component of Aether, we first quantify existing bottle-
necks, then implement our solution in Shore-MT and evaluate the
resulting impact on performance. Because our focus is on the log-
ging subsystem, and because modern transaction processing work-
loads are largely memory resident [22], we use memory-resident
datasets, while disk still provides durability.

All results report the average of 10 30-second runs unless
stated otherwise; we do not report variance because all measure-
ments were within 2% of the mean. Measurements come from tim-
ers in the benchmark driver as well as Sun’s profiling tools.
Profiling is highly effective at identifying software bottlenecks
even in the early stages before they begin to impact performance.
The hardware limits scalability artificially by multiplexing many
hardware contexts over each processor pipeline; we verify that this
is the case by running independent copies of Shore-MT in parallel
(where the effect remains in spite of a total lack of software con-
tention), and on multi-socket machines (where the effect is shifted
to the right by a factor proportional to the number of sockets). 

Figure 7.  Breakdown of the execution time of Shore-MT with 
ELR and flush pipelining, running TATP-UpdateLocation transac-
tions, as load increases. The log buffer becomes the bottleneck.
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6.2 Log Buffer Contention
First, to set the stage, we measure the contention on the log buffer
once the Early Lock Release and the flush pipelining have been
applied. Figure 7 shows the time breakdown for Shore-MT with
ELR and flush pipelining active using its baseline log buffer
implementation as an increasing number of clients submit the
UpdateLocation transaction from TATP. As the load in the system
increases, the time each transaction spends contenting for the log
buffer increases, at a point which the log buffer contention
becomes the bottleneck taking more than 35% of the execution
time. This problem will only grow as processor vendors release
more parallel multi-core hardware.

6.3 Impact of log buffer optimizations (micro-
benchmarks)
A database log manager should be able to sustain any number of
threads regardless of the size of the log records they insert, limited
only by memory and compute bandwidth. Next, through a series of
microbenchmarks we determine how well the log buffer designs
proposed in Section 5 meet these goals. In each experiment we
compare the baseline implementation with the consolidation array
(C), decoupled buffer insert (D), and the hybrid solution combin-
ing the two optimizations (CD). We examine scalability with
respect to both thread counts and log record sizes and we analyze
how the consolidation array’s size impacts its performance. Further
experiments in Sections A.3 and A.4 (appendix) explore the
impact of skew in the record size distribution and of changing the
number of slots in the slot array.

6.3.1 Scalability With Respect to Thread Count
The most important metric of a log buffer is how many insertions it
can sustain per unit time, or the bandwidth which the log can sus-
tain at a given average log insert size. It is important because core
counts grow exponentially while log record sizes are application-
and DBMS-dependent and are fixed. The average record size in
our workloads is about 120 bytes and a high-performance applica-
tion generates between 100 and 200MBps of log, or between 800K
and 1.6M log insertions per second.

Figure 8(left) shows the performance of the log insertion
microbenchmark for records of an average size of 120B as the
number of threads varies along the x-axis. Each data series shows
one of the log variants. We can see that the baseline implementa-
tion quickly becomes saturated, peaking at roughly 140MB/s and
falling slowly as contention increases further. Due to its complex-
ity, the consolidation array starts out with lower throughput than

the baseline. But once contention increases, the threads combine
their requests and performance scales linearly. In contrast, decou-
pled insertions avoid the initial performance penalty and perform
better, but eventually the growing contention degrades perfor-
mance and perform worst than the consolidation array. 

Finally, the hybrid approach combines the best properties of
both optimizations, eliminating most of the startup cost from (C)
while limiting the contention which (D) suffers. The drop in scal-
ability near the end is a hardware limitation, as described in
Section 6.1. Overall, we see that while both consolidation and
decoupling are effective at reducing contention, both have limita-
tions which we overcome by combining the two, achieving near-
linear scalability.

6.3.2 Scalability With Respect to Log Record Size
In addition to thread counts, log record sizes also have a strong
influence on the performance of the log buffer. In the case of the
baseline and consolidated variants, larger record sizes increase the
critical section length; in all cases, however, larger record sizes
decrease the number of log inserts one thread can perform because
it must copy an increasing amount of data per insertion.

Figure 8(right) shows the impact of these two factors, plotting
sustained bandwidth achieved by 64 threads as they insert log
records ranging between 48B and 12kB (the largest record size in
Shore-MT). As log records grow the baseline performs better, but
there is always enough contention that makes all other approaches
more attractive. The consolidated variant (C) performs better at
small records sizes as it can handle contention much better than the
decoupled record insert (D). But once the records size is over 1kB
contention becomes low and the decoupled insert variant fares bet-
ter as more log inserts can be pipelined at the same time. The
hybrid variant again significantly outperforms its base components
across the whole range, but in the end all three become bandwidth-
limited as they saturate the machine’s memory system. 

Finally, we modify the microbenchmark so that threads insert
their log records repeatedly into the same thread-local storage,
which is L1 cache resident. With the memory bandwidth limitation
removed, the hybrid variant continues to scale linearly with record
sizes until it becomes CPU-limited at roughly 21GBps (nearly 20x
higher throughput than today’s systems can reach). 

6.4 Overall Impact of Aether
To complete the experimental analysis, we successively add each
of the components of Aether to the baseline log system and mea-
sure the impact. With all components active we avoid the bottle-

Figure 8.  Log buffer scalability with respect to thread counts (left, 120B log records) and 
log record size (right, 64 threads)

Figure 9.  Overall performance improve-
ment provided by each component of Aether
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necks summarized in Figure 1 and can identify optimizations
which are likely to have highest impact now and in the future. 

Figure 9 captures the scalability of Shore-MT running the
UpdateLocation transaction from TATP. We plot throughput as the
number of client threads varies along the x-axis. For systems
today, flush pipelining provides the largest single performance
boost, 68% higher than the baseline. The scalable log buffer adds a
modest 7% further speedup by eliminating log contention.

Based on these results we conclude that the most pressing
bottleneck is scheduler overload induced by high transaction
throughput and the associated context switching. However, flush
pipelining depends on ELR to prevent log-induced lock contention
which would otherwise limit scalability.

As core counts continue to increase, we also predict that in
the future log buffer contention will become a serious bottleneck
unless techniques such as the hybrid implementation presented in
Section 5 are used. Even today, contention at the log buffer
impacts scalability to a small degree. In addition, the profiling
results from Figure 7 indicate that this bottleneck is growing rap-
idly with core counts and will soon dominate. This indication is
further strengthened by the fact that Shore-MT running on today’s
hardware achieves almost exactly the peak log throughput we mea-
sure in the microbenchmark for the baseline log. In other words,
even a slight increase in throughput (with corresponding log inser-
tions) will likely push the log bottleneck to the forefront. Fortu-
nately, the hybrid log buffer displays no such lurking bottleneck
and our microbenchmarks suggest that it has significant headroom
to accept additional log traffic as systems scale in the future. 

7. CONCLUSIONS
Log manager performance becomes increasingly important as
database engines continue to increase performance by exploiting
hardware parallelism. However, the serial nature of the log, as well
as long I/O times, threatens to turn the log into a growing bottle-
neck. As available hardware parallelism grows exponentially, con-
tention for the central log buffer threatens to halt scalability. A new
algorithm, consolidation array-based backoff, incorporates con-
cepts from distributed systems to convert the previously serial log
insert operation into a parallel one which scales well even under
much higher contention than current systems can generate. We
address more immediate concerns of excessive log-induced con-
text switching using a combination of early lock release and log
flush pipelining which allow transactions to commit without trig-
gering scheduler activity, and without sacrificing safety or durabil-
ity. Taken together, these techniques allow the database log
manager to stay off the critical path of the system for maximum
performance even as available parallelism continues to increase.
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A APPENDIX
This appendix consists of four subsections. First, we present in
detail the log buffer designs, presented in Section 5, using code
sketches for the various algorithms (Section A.1). Second, we
describe in detail the consolidation array used by Algorithm 2
(Section A.2). Third, we discuss a further modification of the log
buffer design to address a potential source of delays coming from
the requirement that all threads need to release their buffer in-order
(Section A.3). Fourth, we discuss about distributing the log and
why it is very difficult to have an efficient and scalable distributed
log implementation (Section A.5). 

A.1 Details of the Log Buffer Algorithms
In this subsection we explain the implementation of the algo-
rithms, presented in Section 5, with pseudocode sketches.

Baseline.  In a straightforward implementation, a single mutex
protects the log’s buffer, LSN generator, and other structures.
Algorithm 1 presents such an approach, which the later designs
build on. In the baseline case a log insert always begins with
acquiring the global mutex (L2) and finishes with its release (L21).
Inside the critical section there are three operations: (i) A thread
first allocates log buffer space (L8-12); (ii) It then performs the
record insert (L14-17); (iii) Finally, it releases the buffer space
making the record insert visible to the flush daemon by increment-
ing a dedicated pointer (L20). As discussed, the baseline algorithm
suffers two weaknesses. First, contention is proportional to the
number of threads in the system; second, the critical section length
is proportional to the amount of work performed by each thread.

Consolidation array.  Consolidation-based backoff aims to
reduce contention and, more importantly, make it independent of
the number of threads accessing the log. A sketch of the code is
presented in Algorithm 2. The primary data structure consists of an
array with a fixed number of slots where threads can aggregate
their requests. Rather than acquiring the lock unconditionally,
threads begin with a non-blocking lock attempt. If the attempt suc-
ceeds, they perform the log insert directly, as before (L2-6).
Threads which encounter contention back off to the consolidation
array and attempt to join one of its slots at random (L8). The first
thread to claim a slot becomes the slot’s owner and is responsible
to acquire buffer space on behalf of the group which forms while it
waits for the mutex. Once inside the critical section, the group
leader reads the current group size and marks the group as closed
using an atomic swap instruction (L11); once a slot closes threads
can no longer join the group. The group leader then acquires buffer
space and notifies the other group members before beginning its
own buffer fill (L13-14). Meanwhile, threads which join the group
infer their relative position in the meta-request from the group size;
once the group leader reports the LSN and buffer location each
thread can compute the exact LSN and buffer location which
belongs to it (L16 and L18). As each thread leaves (leader
included), it decrements the slot’s reference count and the last
thread to leave releases the buffer (L19-20). 

Once a consolidation array slot closes, it remains inaccessible
while the threads in the group perform the consolidated log insert,
with time proportional to the log record insert size plus the over-
head of releasing the buffer space. To prevent newly-arrived
threads from finding all slots closed and being forced to wait, each
slot owner removes the consolidation structure from the consolida-
tion array when it closes, replacing it with a fresh slot that can
accommodate new threads (L12). The effect is that the array slot
reopens even though the threads that consolidated their request are
still working on the previous (now-private) version of that slot. We
avoid memory management overheads by allocating a large num-

ber of consolidation structures at startup, which we treat as a circu-
lar buffer when allocating new slots. At any given moment of time
arriving threads access only the combination structures present in
the slots of the consolidation array, and those slots are returned to
the free pool after the buffer release stage. In the common case the
next slot to be allocated was freed long ago and each “allocation”
requires only an index increment. Section A.3 describes the imple-
mentation details of the consolidation array. 

Decoupled buffer fill.  Decoupling the log insert from holding the
mutex reduces the critical section length and in addition contention
cannot increase with the size of the log record size. Algorithm 3
shows the changes over the baseline implementation (Algorithm 1)
needed to decouple buffer fills from the serial LSN generation
phase. First, a thread acquires the log mutex, generates the LSN,
and allocates buffer space. Then, it releases the central mutex

Algorithm 1 – Baseline log insertion algorithm

1 log_insert(size, data):
2 lock_acquire(L)
3 lsn = buffer_acquire(size)
4 buffer_fill(lsn, size, data)
5 buffer_release(lsn, size)
6 end
7
8 buffer_acquire(size):
9 /* ensure buffer space available */
10 lsn = /* update lsn and buffer state */
11 return lsn
12 end
13
14 buffer_fill(lsn, size, data):
15 /* set record’s LSN */
16 /* copy data to buffer (may wrap) */
17 end
18
19 buffer_release(lsn, size):
20 /* release buffer up to lsn+size */
21 lock_release(L)
22 end

Algorithm 2 – Log insertion with consolidated buffer acquire

1 log_insert(size, data):
2 if (lock_attempt(L)== SUCCESS)
3 lsn = buffer_acquire(size)
4 buffer_fill(lsn, size, data)
5 buffer_release(lsn, size)
6 return /* no contention */
7 end
8 {s, offset} = slot_join(size)
9 if (0 == offset) /* slot owner */ 
10 lock_acquire(L)
11 group_size = slot_close(s)
12 replace_slot(s)
13 lsn = buffer_acquire(group_size)
14 slot_notify(s, lsn, group_size)
15 else /* wait for owner */
16 {lsn, group_size} = slot_wait(s)
17 end
18 buffer_fill(lsn+offset, size, data)
19 if (slot_release(s) == SLOT_DONE) 
20 buffer_release(lsn, group_size)
21 end
22 end

Algorithm 3 – Log insertion with decoupled buffer fill

1 buffer_acquire(size, data):
2 /* wait for buffer space */
3 lsn = /* update lsn and buffer state */
4 lock_release(L)
5 return lsn
6 end
7
8 buffer_release(lsn, size):
9 while (lsn != next_release_lsn) 
10  /* wait my turn */
11 end
12 /* release buffer up to lsn+size */
13 next_release_lsn = lsn+size
14 end



immediately (L4) and performs its buffer fill concurrently with
other threads. Once the buffer fill is completed, the thread waits for
all other threads before it to finish their inserts (L9) and the last to
finish releases the log buffer space (L13). The release stage uses
the implicit queuing of the release_lsn to avoid expensive atomic
operations or mutex acquisitions.

A.2 Consolidation-based Backoff
The consolidated log buffer acquire described in Algorithm 2 uses
a new algorithm, the consolidation array to divert contention away
from the log buffer. We base our design on the elimination-based
backoff algorithm [9], extending it to allow the extra cooperation
needed to free the buffer after threads consolidate their requests. 

Elimination backoff turns “opposing” operations (e.g. stack
push and pop) into a particularly effective form of backoff: threads
which encounter contention at the main data structure probe ran-
domly an array of N “slots” while they wait. Threads which arrive
at a slot together serve each others’ requests and thereby cancel
each other out. When such eliminations occur, the participating
threads return to their caller without ever entering the main data
structure, slashing contention. With an appropriately-sized elimi-
nation array, an unbounded number of threads can use the shared
data structure without causing undue contention.

Consolidation backoff operates on a similar principle to elim-
ination, but with the complication that log inserts do not cancel
each other out entirely: At least one thread from each group (the
“leader”) must still acquire space from the log buffer on behalf of
the group. In this sense consolidation is more similar to a shared
counter than a stack, but with the further requirement that the last
thread of each group to complete its buffer fill operation must
release the group’s buffer back to the log. These additional com-
munication points require two major differences between the con-
solidation array and an elimination array. First, the slot protocol
which threads use to combine requests is significantly more com-
plex. Second, slots spend a significant fraction of their lifecycle
unavailable for consolidation and it becomes important to replace
busy slots with fresh ones for consolidation to remain effective
under load. Algorithm 5 gives pseudocode for the consolidation
array implementation, which the following paragraphs describe in
further detail, while Figure 10 supplements the pseudocode with a
summary of a slot’s life cycle and state space. 

Slot join operation (lines 1-19). The consolidation array consists
of ARRAY_SIZE pointers to active slots. Threads which enter the
slot array start probing for slots in the OPEN state, starting at a
random location. Probing repeats as necessary, but should be rela-

tively rare because slots are swapped out of the array immediately
whenever they become PENDING. Threads attempt to claim
OPEN slots using atomic compare-and-swap to increment the state
by the insert size. In the common case the CAS fails only if
another thread also incremented the slot’s size. However, the slot
may also close, forcing the thread to start probing again. Eventu-
ally the thread succeeds in joining a slot and returns a (slot, offset)
pair. The offset serves two purposes: the thread at position zero
becomes the “group leader” and must acquire space in the log buf-
fer on behalf of the group, and follower threads use their offset to
partition the resulting allocation with no further communication. 

Slot close operation (lines 21-33). After the group leader acquires
the log buffer mutex, it closes the group in order to determine the
amount of log space to request (and to prevent new threads from
arriving after allocation has occurred). It does so using an atomic
swap, which returns the current state and assigns a state of PEND-
ING. The state change forces all further slot_join operations to fail
(line 7), but most threads will never see this because the calling
thread first swaps a fresh slot into the array. To do so, it probes
through the pool of available slots, searching for a FREE one. The
pool is sized large enough to ensure the first probe nearly always
succeeds. The pool allocation need not be atomic because the
caller already holds the log mutex. Once the slot is closed the func-
tion returns the group size to the caller so it can request the appro-
priate quantity of log buffer space. 

Slot notify and wait operations (lines 35-46).  After the slot
owner acquires buffer space, it stores the base LSN and buffer
address into the slot, then sets the slot’s state to DONE-group_size
as a signal to the rest of the group. Meanwhile, waiting threads
spin until the state changes, then retrieve the starting LSN and size
of the group (the latter is necessary because any thread could be
the one to release the group’s buffer space). 

Slot release and free operations (lines 48-55). As each thread
completes its buffer insert, it decrements the slot’s count by its
contribution. The last thread to release will detect that the slot
became DONE must free the slot; all others may leave immedi-
ately. The slot does not immediately become free, however,
because the calling thread may still use it. This is particularly
important for the delegated buffer release optimization described
in Section A.3, because the to-be-freed slot becomes part of a
queue to be processed by some other thread. Once the slot is truly

Algorithm 4 – Log insertion with delegated buffer release

1 buffer_acquire(size, data):
2 /* wait for buffer space */
3 lsn = /* update lsn and buffer state */
4 qnode = queue_join(Q, lsn, size)
5 lock_release(L)
6 return qnode
7 end
8
9 buffer_release(qnode):
10 if (queue_delegate(Q, qnode) == DELEGATED)
11  return /* someone else will release*/
12 end
13
14   do_release:
15 /* release qnode’s buffer region */
16 next = queue_handoff(Q, qnode)
17 if (next && is_delegated(next))
18  qnode = next
19  goto do_release
20 end
21 end

Figure 10.  Life cycle and state space of a c-array slot, to accom-
pany Algorithm 5.The OPEN (COPYING) state covers all values 
at least as large (small) as READY (DONE).
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finished, the owning thread sets its state to FREE; the operation
need not be atomic because other threads ignore closed slots.

In conclusion, the consolidation array provides a way for
threads to communicate in a much more distributed fashion than
the original (serial) log buffer operation which it protects. The
overhead is small, in the common case two or three atomic opera-
tions per participating thread, and occurs entirely off the critical
path (other threads continue to access the log unimpeded).   

A.3 Delegated Log Buffer Release and Skew
The requirement that all threads release their buffers in order
remains a potential source of delays. Many smaller insertions
might execute entirely in the shadow of a large one but must still
wait for the large insert to complete before releasing their buffer
space. Buffer and log file wraparounds complicate matters further,
because they prevent threads from consolidating buffer releases.
Such wrapping buffer releases must be identified and processed
separately from normal ones because they impose extra work at
log flush time, such as closing and opening log files. 

We remove this extra dependency between transactions by
turning the implied LSN queue into a physical data structure, as
shown in Algorithm 4. Before releasing the mutex, during the buf-

fer acquire, each thread joins a release queue (L4), storing in the
queue node all information needed to release its buffer region. The
decoupled buffer fill proceeds as before. At buffer release time, the
thread first attempts to abandon its queue node, delegating the cor-
responding buffer release to a (presumably slow) predecessor
which has not yet completed its own buffer fill. The delegation
protocol is lock-free and non-blocking, and is based on the abort-
able MCS queue lock by Scott [20] and the critical section-com-
bining approach suggested by Oyama et al. [A5]

To summarize the protocol, a thread with at least one prede-
cessor attempts to change its queue node status atomically from
waiting to delegated (L10, corresponding to the aborted state in
Scott’s work). On success, a predecessor will be responsible for the
buffer release and the thread returns immediately (L11). Other-
wise, or if no predecessor exists, the thread releases its own buffer
region and attempts to leave before its successor can delegate more
work (L16). A successful CAS from waiting to released prevents
the successor from abandoning its node; on failure, the thread con-
tinues to release delegated nodes until it reaches the end of the
queue or successfully hands off (L17-20). Threads randomly
choose not to abandon their nodes with probability 1/32 to prevent
a “treadmill” effect where one thread becomes stuck performing
endless delegated buffer releases. This breaks long delegation
chains (which are relatively rare) without impeding pipelining in
the common case. As with Oyama’s proposal [A5], the grouping
actually improves performance because a single thread does all the
work without incurring coherence misses.

In Figure 11 we test the stability of the new algorithm (named
CDME) and compare it with the hybrid variant from Section 5.3
(CD). We use the same microbenchmark setup from Section 6 but
modify it to present the worst-case scenario for the CD algorithm:
a strongly bi-modal distribution of log record sizes. We fix one
peak at 48 bytes (the smallest log record in Shore-MT) and we
vary the second peak (called the outlier). For every 60 small
records a large record is inserted in the log. CD performs poorly
with such a workload because the rare, large, record can block
many smaller ones and disrupt the pipelining effect. We present
along the y-axis the throughput as we increase the outlier record
size along the x-axis. CD and CDME perform similarly until an
outlier size of around 8kiB, when CD stops scaling and its perfor-
mance levels off. CDME, which is immune to record size variabil-
ity, achieves up to double the performance of the CD for outlier
records larger than 65kiB.

The CDME algorithm is more robust than the CD variant but,
for the database workloads we examined, it is unnecessary in prac-
tice because nearly all records are small and the frequency of
larger outliers is orders magnitude smaller than examined here. For
example, in Shore-MT the largest log record is 12kiB with a fre-
quency of 0.01% of the total log inserts. In addition, CDME
achieves around 10% lower throughput than the CD variant under
normal circumstance, making it unattractive. Nevertheless, for
other configurations which encounter significant skew, the CDME
algorithm might be attractive given its stability guarantee.

A.4 Sensitivity to consolidation array size
Our last microbenchmark analyzes whether (and by how much) the
consolidation array’s performance is affected by the number of
available slots. Ideally the performance should depend only on the
hardware and be stable as thread counts vary. Figure 12 shows a
contour map of the space of slot sizes and thread counts, where the
height of each data point is its sustained bandwidth. Lighter colors
indicate higher bandwidth, with contour lines marking specific
throughput levels. We achieve peak performance with 3-4 slots,
with lower thread counts peaking with fewer and high thread

Algorithm 5 – Consolidation array implementation

1 slot_join(size):
2   probe_slot:
3 idx = randn(ARRAY_SIZE)
4 s = slot_array[idx];
5 old_state = s->state
6   join_slot:
7 if(old_state < SLOT_READY)
8 /* new threads not welcome */
9 goto probe_slot;
10 end
11 new_state = old_state + size
12 cur_state = cas_state(s, old_state, new_state)
13 if(cur_state != old_state) 
14 old_state = cur_state
15 goto join_slot
16 end
17 /* return my position within the group */
18 return {s, old_state-SLOT_READY}
19 end 
20  
21 slot_close(s):
22   retry:
23 s2 = slot_pool[pool_idx % POOL_SiZE];
24 pool_idx = pool_idx+1
25 if(s2->state != SLOT_FREE)
26 goto retry;
27 end
28 /* new arrivals will no longer see s */
29 s2->state = SLOT_OPEN
30 slot_array[s->idx] = s2
31 old_state = swap_state(s, SLOT_PENDING)
32 return old_state-SLOT_READY
33 end 
34
35 slot_notify(s, lsn, group_size):
36 s->lsn = lsn
37 s->group_size = group_size
38 set_state(s, SLOT_DONE-group_size)
39 end
40
41 slot_wait(s):
42 while(info->state > SLOT_DONE)
43 /* wait for notify */
44 end
45 return {s->lsn, s->group_size}
46 end
47
48 slot_release(s, size):
49 new_state = state_atomic_add(s, size)
50 return new_state
51 end 
52
53 slot_free(s):
54 set_state(s, SLOT_FREE)
55 end 



counts requiring a somewhat larger array. The optimal slot number
corresponds closely with the number of threads required to saturate
the baseline log which the consolidation array protects. Based on
these results we fix the consolidation array size at four slots to
favor high thread counts; at low thread counts the log is not on the
critical path of the system and its peak performance therefore mat-
ters much less than at high thread counts. 

A.5 A Case Against Distributed Logging
This subsection presents qualitative and quantitative analysis
showing that our improved log buffer design is likely to outper-
form distributed logging as a contention-reducing approach, both
from a performance and implementation perspective. 

A distributed log has the potential to ease bottlenecks by
spreading load over N logs instead of just one. ARIES-style recov-
ery only requires a partial order between the transactions accessing
the same data. Intuitively, it should be possible to parallelize the
log, given that most transactions execute in parallel without con-
flicts. However, a distributed log must track transaction dependen-
cies and make sure that logs become durable in a coherent order, as
discussed by DeWitt et al. [4]. 

Write-ahead logging allows transactions to release page
latches immediately after use, minimizing data contention and
allowing database pages to accumulate many changes in the buffer
pool before being written back to disk. Further, serial logging
allows transactions to not track physical dependencies, especially
those that arise with physiological logging,4 as a transaction’s
commit never reaches disk before its dependencies. A distributed
implementation must instead track or eliminate these physical
dependencies without requiring multiple log flushes per transac-
tion. Otherwise, the serial implementation will actually be faster.

Unfortunately, this challenge is difficult to address efficiently
because physical dependencies can be very tight, especially due to
hot database pages. For example, Figure 13 shows the dependen-
cies which would arise in an 8-way distributed log for a system
running the TPC-C benchmark [A6]. Each node in the graph repre-
sents a log record, with horizontal edges connecting records from
the same log. Diagonal edges mark physical dependencies which
arise when a page moves between logs. Dark edges mark tight
dependencies where the older record is one of the five most

recently inserted records for its log at the time. The entire graph
covers roughly 100kB of log records, which corresponds to less
than 1ms wall time and dozens of transaction commits.

Because dependencies are so widespread and frequent, it is
almost infeasible to track them, and even if tracked efficiently the
dependencies would still require most transactions to flush multi-
ple logs at commit time. In Figure 13 there is no obvious way of
assigning log records to different partitions so that the dependency
lines between partitions would be significantly reduced. The
authors are unaware of any DBMS which distributes the log within
a single node, and even distributed DBMS often opt for a shared
log (including Rdb/VMS [A4]). Distributed DBMS which utilize
distributed logging either force transactions to span multiple nodes
(with well-known consequences for performance and
scalability [A1]) or else migrate dirty pages between nodes
through a shared storage or network interconnect rather than
accepting the high overhead of having a distributed transaction that
needs to flush multiple logs in a specific sequence [A2].

Using physical-only logging and having an almost-perfectly
partitionable workload makes the implementation of a distributed
log feasible [A3]. However, if physiological logging is used and as
Figure 13 shows, distributed logs are both highly complex and
potentially very slow under many workloads. We conclude that
adding a distributed log manager within a database instance is nei-
ther attractive nor feasible for reducing log buffer contention. 
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4. For example, if transaction A inserts a record in slot 13 of a page, and
then B inserts a record in slot 14, A’s log record must become durable
first or recovery could encounter an inconsistent page and fail.
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