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ABSTRACT
This paper studies non-cryptographic authenticated broad-
cast in radio networks subject to malicious failures. We in-
troduce two protocols that address this problem. The first,
NeighborWatchRB, makes use of a novel strategy in which
honest devices monitor their neighbors for malicious behav-
ior. Second, we present a more robust variant, MultiPathRB,
that tolerates the maximum possible density of malicious de-
vices per region, using an elaborate voting strategy. We also
introduce a new proof technique to show that both protocols
ensure asymptotically optimal running time.

We demonstrate the fault tolerance of our protocols through
extensive simulation. Simulations show the practical supe-
riority of the NeighborWatchRB protocol (an advantage hid-
den in the constants of the asymptotic complexity). The
NeighborWatchRB protocol even performs relatively well when
compared to the simple, fast epidemic protocols commonly
used in the radio setting, protocols that tolerate no malicious
faults. We therefore believe that the overhead for ensuring
authenticated broadcast is reasonable, especially in applica-
tions that use authenticated broadcast only when necessary,
such as distributing an authenticated digest.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems; C.4 [Performance of Systems]: Fault Tolerance

General Terms
Algorithms, Security, Reliability
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1. INTRODUCTION
We study the problem of non-cryptographic authenticated

broadcast in a multi-hop radio network. Consider a single
source attempting to disseminate an important message to
every device in an ad hoc wireless network. This broadcast
should be reliable—every device receives the message—and
authenticated—a device should only accept the message ac-
tually sent by the source. These properties should still hold
even if some of the network devices are corrupted and be-
having in an unpredictable, perhaps adversarial manner.

When public-key cryptography is available, this problem
is solved with relative ease: the message is signed by the
base station, and flooded through the network. Each re-
ceiver can verify the signature. Public-key cryptography,
however, can be quite expensive, and is often impractical in
resource-constrained settings such as sensor networks. Even
lightweight cryptographic techniques, such as message au-
thentication codes, may prove too costly in terms of compu-
tation or deployment costs. With this in mind, in this paper
we study non-cryptographic authenticated broadcast.
Contribution. We present and analyze two protocols
for authenticated reliable broadcast in multi-hop wireless
networks subject to malicious failures. The MultiPathRB
protocol is the first protocol that is provably optimally re-
silient and achieves asymptotically optimal running time.
The NeighborWatchRB protocol, by contrast, is less robust
in theory, but performs much better in practice, as seen in
our simulations.
System Overview. The key challenge we face is that
some of the devices in the network may be corrupted. For-
mally, we capture this corruption with Byzantine failures.
Devices suffering from Byzantine faults can disrupt a proto-
col in several ways: they may remain silent when required
to broadcast; they may lie about their view of the system;
they may spoof messages from other devices; they may over-
power honest messages, replacing them with dishonest mes-
sages; or they may jam the airwaves with noise, preventing
any communication. In placing no limitations on the behav-
ior of Byzantine devices, we capture scenarios where devices
are simply malfunctioning, as well as scenarios where de-
vices have been compromised by a malicious hacker. An
advantage of this approach is that the resulting protocols
are resilient to all possible attacks, rather than focusing on
a particular known attack. A protocol proved correct is this
setting provides a strong measure of comfort to the practi-
tioner deploying it in an unpredictable real world setting.
As established by Koo [22], reliable broadcast is impossible



if more than 1/4 of a device’s neighbors are Byzantine. We
thus assume that the density of malicious devices does not
exceed this bound.

Wireless devices in the network have a few capabilities
that help to overcome this challenging environment. First,
they can perform carrier sensing in order to determine whether
or not the channel is currently in use (this is also referred
to as collision detection in the literature). That is, if there
is some activity on the channel—be it a single message be-
ing sent, a collision of multiple messages, or a malicious de-
vice jamming the airwaves—the protocol can distinguish this
case from the case of no activity. (Implementation details
for such a carrier-sensing MAC layer are discussed in [12].)
Second, we also assume that each device has access to a lo-
calization service that provides an (approximate) location.
(Such a service might calculate location directly, as in GPS
or Cricket [30], or indirectly via trilateration, as in [29, 13]).
Metrics. We focus on two metrics: fault tolerance and
running time. Our protocols aim to tolerate the maximum
possible density of Byzantine faults in the network, and
achieve an optimal running time as expressed in terms of
the adversary’s power. In more detail, if corrupt devices
jam the channel in every round, then no protocol will ever
complete. Continual disruption, however, is not sustainable
in practice: it drains the batteries of the malicious devices,
and it makes them easier to detect and eliminate. Thus, we
analyze executions in which there is some bound β on the
total number of messages broadcast by Byzantine devices in
each neighborhood. It is easy to see that no protocol can
terminate in less than Ω(βD) time, where D is the diameter
of the network, since the adversary may jam transmission at
every hop. And in [19], it was shown that no protocol can
terminate in less than Ω(log |Σ|) time, where Σ is the set of
all possible messages. Our protocols match this combined
lower bound of Ω(βD + log |Σ|) rounds.

For this analysis, we consider a specific topology where
devices are deployed at unit intervals in the plane, forming
a grid (or mesh). We assume that each device can commu-
nicate with every other device that is within R units on the
vertical axis and R units on the horizontal axis. We call this
set of nodes within broadcast range the device’s neighbor-
hood. Let t be the maximum number of Byzantine nodes
in a neighborhood. (This model has been previously used
in, e.g., [22, 4, 23].) Extension of the analytic bounds to
arbitrary topologies is left as important future work.
The NeighborWatchRB Protocol. Our first main result

in this paper is a protocol, NeighborWatchRB, which toler-
ates malicious interference while guaranteeing an asymptot-
ically optimal running time of O(βD + log |Σ|). There are
two key challenges in devising such a protocol. First, devices
cannot necessarily determine which device sent a given mes-
sage; that is, Byzantine devices may effectively spoof mes-
sages. Second, in order to reach the edge of the network, the
message from the source is passed along a multi-hop path;
the receiver must ensure that it has not been modified along
the way by a malicious user. Our protocol is divided into
two levels to cope with these different problems.

Single hop level: At the lower level, we develop a sub-
protocol that can send a block of bits, i.e. a multi-bit mes-
sage, over a single hop of a multi-hop network. The key idea
is to use silent rounds of communication to confirm that the
transmission has been successful. An additional challenge
in the multi-hop setting is to synchronize the sender and

the receiver, ensuring that they agree on the order of the
transmitted bits. Some ideas are common to the one-hop
protocol of [19, 20]; however, new insights are required for
tolerating adversaries in the multi-hop setting.

Multi-hop level: Next, we implement a complete multi-
hop broadcast protocol on top of the previous layer. The
idea is that honest devices are clustered into regions, and
they implement a “neighborhood watch” system by actively
preventing devices in their region from disseminating cor-
rupted information.

The protocol is successful as long as there is no region oc-
cupied solely by Byzantine devices; this requirement trans-
lates into the bound t < 1

4R2. We also introduce a“2-voting”
variant that tolerates t < 1

2R2. The protocol is adaptive, in
that the message is delivered as soon as Byzantine interfer-
ence stops. Unlike the protocols of [23, 5], nodes do not need
to know the bound β on the Byzantine budget; moreover,
they do not even need to know the bound t on the number
of Byzantine nodes in their area.
The MultiPathRB Variant. Second, we introduce a vari-
ant of the protocol that achieves optimal fault tolerance, i.e.,
it tolerates t < 1

2R(2R + 1), while maintaining asymptoti-
cally optimal running time. The protocol re-uses level one of
NeighborWatchRB, and employs a voting strategy to ensure
multi-hop authentication. A similar strategy is used by the
protocol of [5]. However, note that this previous protocol
assumed authenticated communication, and did not allow
Byzantine nodes to jam the network or otherwise disrupt
communication. Further, our variant improves on the pro-
tocol of [5] by adapting to the actual number of malicious
broadcasts, by delivering the message as soon as interference
stops.
Analysis. An important technical contribution of this
paper is the upper bound on the running time of the two
protocols. (Prior work or reliable broadcast, e.g. [22], fo-
cused on feasibility, omitting any analysis of performance.)
First, note that combining the single-hop transmission layer
and the multi-hop layer in the natural way results in pro-
tocols with sub-optimal running time of Ω(β · D · log |Σ|),
since the adversary may jam the message for Ω(β) rounds
at each network hop. The protocols we introduce carefully
integrate the sub-protocols to achieve a pipelined data flow,
and hence the optimal running time of O(β · D + log |Σ|).
The main technical difficulty in the analysis is showing that
the pipeline continues to flow, and cannot be (too) disrupted
by interference (see Theorem 5).
Evaluation. We evaluate both protocols using the WS-
Net wireless network simulator (Section 6). Devices are de-
ployed at random in a two-dimensional plane, using both
uniform and clustered distributions. We focus on three dif-
ferent models of faulty behavior: crash failures, jamming
devices that aim to delay the protocol, and malicious at-
tacks (i.e., Byzantine devices that attempt to spread a fake
message).

In all three cases, both protocols show good levels of fault
tolerance. In general, we observe a close link between the
density of deployment and the number of Byzantine de-
vices that the protocol can tolerate. We also notice that,
in practice, if the bad devices are distributed at random,
then the supposedly less robust NeighborWatchRB protocol
easily outperforms MultiPathRB, even for greater numbers
of bad devices.

We also compare the performance of the NeighborWatchRB



protocol to a simple epidemic flooding protocol. The lat-
ter protocol has no built-in fault tolerance, and can be dis-
rupted by any Byzantine interference. We found that the
NeighborWatchRB protocol takes about seven times longer
to complete. In many ways, this shows the success of our
pipelining strategy, as much of the additional single-hop cost
is defrayed by the inherent cost of propagating a message
across multiple hops.
Interpretation. One conclusion from these experiments
is that, while there is some inherent overhead in tolerating
Byzantine failures, it may be possible to engineer protocols
that are quite efficient. For example, consider the dual-mode
protocol that operates as follows: (a) every message is broad-
cast via simple epidemic flooding, using no security; and (b)
a small digest of each message is broadcast using a protocol
such as NeighborWatchRB. Good security is ensured as long
as the digest is chosen appropriately. And as long as the di-
gest is no more than 1/7 the size of the original message, the
induced overhead may be tolerable. We conjecture, in fact,
that the overhead in such an implementation may compare
well to systems the rely on cryptography, while at the same
time avoiding the costs of a cryptographic solution.

Because of space limitations, some proofs and figures are
deferred to the full version of the paper, available at [18],
together with the source code for the simulations.

2. RELATED WORK
Jamming in wireless networks is a problem that has been

extensively studied by the applied networking community.
The literature analyzes efficient jamming attacks (e.g., [26]),
as well as mechanisms to detect and circumvent such attacks
(e.g., [15, 14]). Recent work [3] shows both in theory and
experimentally that adaptive jammers can efficiently reduce
the throughput of a wireless network. Most defense mech-
anisms focus on preventing a specific attack, and are based
on physical layer methods (e.g., [24, 25]) and on MAC layer
strategies [2, 31].

Koo [22] studied the problem of broadcast in multi-hop
wireless networks, under the assumption that single-hop com-
munication is reliable and authenticated (i.e., no jamming
or spoofing). He proved that no algorithm can tolerate more
than 1

2R(2R+1) malicious devices per neighborhood. Bhan-
dari and Vaidya [4, 5] present a protocol that matches this
lower bound. The problem of broadcast in the context of ma-
licious interference and jamming was also considered in [23,
19, 20], under weaker adversarial models than the one of this
paper.

Another approach can be found in [11], where they develop
“Integrity Codes” that allow the transfer of information in
a single-hop network based on collision detection (i.e., car-
rier sensing). This premise, together with the coding tech-
nique, originates from Unidirectional Error-Detecting Codes
[7, 10], and is similar to the assumptions we make in this
paper. In [19, 20] the authors develop a broadcast protocol
for single-hop wireless networks in the presence of Byzantine
nodes. In this paper, we generalize their protocol in the case
of multi-hop networks. Although the algorithm in [19, 20]
is similar to our 1Hop-Protocol, new insights are required in
order to tolerate Byzantine nodes in the multi-hop case.

Other lines of research have considered the power of an ad-
versary that is restricted to behave in a probabilistic manner
(e.g., [27, 6]), or solutions to the problem when more than

one communication channel is available, via frequency hop-
ping (e.g., [8], [16]) .

A parallel approach studies broadcast authentication us-
ing cryptographic techniques (e.g., [28, 1]). Boneh et al. [9]
prove that authentication is impossible without relying on
digital signatures or on synchronization. Perhaps the best
known protocol in this line of research is µTESLA, by Perrig
et al. [28], which relies on weak time synchronization be-
tween sender and receivers and on message authentication
codes. A survey of recent work on lightweight cryptographic
techniques is presented in [17].

3. MODEL
We now describe the two models of wireless networks that

we rely on in this paper. The first is somewhat simplified,
and is used for analysis; the second is more realistic, and is
used for simulations.
Analytical model. For the purpose of analysis, we model
a system consisting of devices, which we refer to as nodes,
that communicate via wireless radio. Let R be the commu-
nication radius. We define a neighborhood of a node v to
be the area within distance R of v. Additionally, each node
knows its location.

Time is divided into slots, which we refer to as rounds,
and we assume that slots are small ; each round is large
enough to transmit at most a few bits of data. Only one
node in each neighborhood can send a message in each time
slot without causing a collision. When two neighbors of a
node v broadcast in the same round, v may receive either of
the two messages, or no message at all. In the latter case v
detects a collision.

Nodes are either honest, in which case they follow the
protocol, or Byzantine, in which case they may deviate arbi-
trarily. Let t be the maximum number of Byzantine nodes
in any neighborhood. Also, let β (the budget) be the maxi-
mum number of broadcasts for Byzantine nodes in a neigh-
borhood.

While our algorithms remain correct for any network topol-
ogy (as long as t is sufficiently low), we analyze performance
in the context of a specific topology: a two-dimensional grid
where nodes are placed at every grid point. We express
our results in the L∞ norm, meaning that, given two nodes
v = (x1, y1) and w = (x2, y2), we say that v is in the neigh-
borhood of w if |x2 − x1| ≤ R and |y2 − y1| ≤ R. A similar
model is used for analysis in [22, 23, 5].
Simulation model. Our simulations were performed us-
ing the WSNet Worldsens simulator [32]. The simulator uses
the Friis freespace propagation model for radio wave prop-
agation. Communication depends on the actual topology,
as opposed to the analytical model. We modified the MAC
layer to implement carrier sensing, i.e. to provide a notifica-
tion of when the channel seems to be in use, but no message
is delivered. The intent here was to emulate MAC layers
that can detect when there are significant changes in the
level of signal on the channel. The setup captures realistic
behavior missed by our theoretical analysis (real topology,
lost messages, capture effect). Simulated devices have access
to a synchronized clock, and we use this clock to implement
a fixed (TDMA-like) schedule. We discuss the implementa-
tion details in Section 6.
Relation between models. Although the theoretical
analysis is performed in the L∞ topology, the protocols re-
main provably correct in the actual geometry as well, as



long as the assumptions on the density of malicious nodes
still hold. However, our experiments do not specifically en-
force these assumptions (nodes are randomly distributed, an
arbitrary fraction becomes malicious, packets may be lost,
etc.), since the intention is to investigate the behavior of the
protocols in a more realistic setting.

4. AUTHENTICATED BROADCAST
In this section, we present our authenticated broadcast

protocols, sketching some of the key properties.
Notice that it is difficult for a node to trust the contents

of a message, as it cannot determine whether that message
originated at the ostensible sender s, or at a malicious device
spoofing messages that claim to be from s. However, if a
receiver does not receive a message in a round, it can be
certain that no message was sent; the malicious nodes cannot
“forge” silence. Thus, we make frequent use of silence to
authenticate data.

To minimize the damage caused by a malicious broad-
cast, the message is transmitted and authenticated one bit
at a time. In this way, we ensure that any interference by
a malicious device can cause only a small amount of dam-
age. Otherwise, a single malicious broadcast might force the
entire protocol to restart!
Schedule. To prevent contention among honest nodes,
we allocate a simple (TDMA-like) broadcast schedule such
that no two nodes within distance 3R of each other are
scheduled in the same round (recall that, in the analyti-
cal model, nodes are placed on a two-dimensional grid of
unit length 1). Since each node knows its location, we can
easily construct such a schedule locally, i.e. without any
communication between nodes, by assigning each grid point
a schedule slot, and re-using schedule slots as long as no two
(honest) neighbors of a node may collide. It is straight-
forward to build such a schedule of size O(R2). At the
beginning of the protocol, each node locally computes its
schedule slot, and the schedule slots of its neighbors. For
simplicity, each schedule slot is 6 consecutive rounds long,
which we also call the broadcast interval of the node. During
its interval, the node broadcasts messages, and may receive
acknowledgements from its neighbors.

In the following, we divide the protocol into two layers,
a lower layer responsible for single-hop propagation, and a
higher layer responsible for end-to-end delivery.

Level 1: Single Hop Transmission
We split the presentation of the lower communication layer
into two protocols: the 2Bit-Protocol, which transmits two
bits across a single communication hop, and the 1Hop-Protocol,
which ensures the transmission of a stream of bits over one
hop.

Assume that an honest sender s attempts to transmit two
bits 〈b1, b2〉 to a set of honest nodes P in the neighborhood
of s. In the 2Bit-Protocol, the sender transmits the two
bits via a pattern of broadcasts and silence: when it wants
to send a ‘1’, it broadcasts a message; when it wants to
send a ‘0’, it remains silent1. The receivers acknowledge

1Notice, of course, that a physical layer implementation will
most likely encode both a “broadcast” and“silence” via some
waveforms; the key property is that the Byzantine nodes
cannot overwrite a broadcast with silence. We continue us-
ing the terminology of “broadcasts” and “silence,” leaving
physical layer implementations for future work.

the information, and two veto rounds are used to determine
whether the protocol has succeeded. The protocol proceeds
in six rounds (i.e., during one schedule slot):

R1) Sender: If b1 = 1, then the sender s transmits a mes-
sage ‘bit1 ’; otherwise, it remains silent.

R2) Acknowledge: Every receiver in P (the neighborhood
of s) that receives a message or detects a collision
in round R1, broadcasts a (non-empty) bit1-response
message in round R2; otherwise, it remains silent. No-
tice that if b1 = 1, then this acknowledgment is likely
to cause a collision. If a node in P broadcasts a bit1-
response, then it assumes that b1 = 1; otherwise, it
assumes that b1 = 0.

R3) Sender: If b2 = 1, then the sender transmits a bit2
message; otherwise, it remains silent.

R4) Acknowledge: Every receiver in P that receives a mes-
sage or detects a collision in round R3 broadcasts a
bit2-response message in round R4; otherwise, it re-
mains silent. If a node in P broadcasts a bit2-response,
then it assumes that b2 = 1; otherwise, it assumes that
b2 = 0.

R5) Sender Veto: The sender s transmits a veto message
in any of the following cases:

• Bit b1 = 0 and it receives a message or detects a
collision in round R2.

• Bit b1 = 1 and it does not receive a message or
detect a collision in round R2.

• Bit b2 = 0 and it receives a message or detect a
collision in round R4.

• Bit b2 = 1 and it does not receive a message or
detects a collision in round R4.

R6) Receiver veto: Every node in P broadcasts a veto mes-
sage if it receives a message or detects a collision in
round R5.

If the sender s receives no messages and detects no collisions
in round R6, then it returns success; otherwise, it returns
failure. Similarly, if a receiver in P receives no messages
and detects no collision in round R5, then it returns success
along with its estimate of b1 and b2; otherwise, it returns
failure.The following theorem captures the key properties of
this sub-protocol:

Theorem 1. If honest sender v and honest receivers P
in the neighborhood of v begin the 2Bit-Protocol in the same
round. Then at the end of the sixth round:
• Authenticity: A receiver returns bits 〈b1, b2〉 only if the
sender s sent 〈b1, b2〉.
• Termination: Sender v returns success only if every honest
node in v’s neighborhood returns success.
• Energy: If sender or receiver returns failure, then a Byzan-
tine device in the neighborhood of s expended at least one
broadcast.

We continue with the 1Hop-Protocol, in which a sender s
reliably sends a constant-sized message to a set of honest
receivers P in its neighborhood. Unlike the 2Bit-Protocol,
which can fail, the 1Hop-Protocol always delivers the mes-
sage eventually. The 1Hop-Protocol divides the message into



individual bits, and each bit, along with some control in-
formation, is sent using the 2Bit-Protocol. Whenever the
2Bit-Protocol returns failure, the failed bit is re-transmitted.

The key difficulty involves synchronizing the sender and
the receivers. If the sender successfully completes the pro-
tocol, then we know that the receivers delivered the bits.
The converse, however does not hold: some (or all) of the
receivers may finish receiving a bit, while the sender con-
tinues to repeat the transmission. The receivers should not
confuse this repeated transmission with the next bit in the
sequence.

To remedy this problem, we use an alternating bit strat-
egy. That is, prior to sending each bit of the message,
we send an additional control bit; this control bit alter-
nates between ‘1’ and ‘0’. Thus, the two bits sent by the
2Bit-Protocol are this alternating “parity” bit, and the one
bit of data. The receiver can determine when the sender has
advanced to a new bit by examining the parity bit. Note
that the parity bit mechanism also ensures that silence on
the sender side is not misinterpreted as a 〈0, 0〉 transmission
(the first value of the parity bit is ‘1’). The receiver deliv-
ers the entire message once it has received all the bits. The
resulting protocol has the following properties:

Theorem 2. If honest sender v and honest receivers P in
the neighborhood of v begin the 1Hop-Protocol in the same
round:
• Authenticity: A receiver returns m only if v sent m.
• Termination: When the sender terminates, every node in
P has received the message.
• Energy: If m consists of k bits, and v does not complete
sending m for r rounds, then Byzantine nodes in the neigh-
borhood of v expend at least (r − 6k)/6 broadcasts.

Notice that the protocol requires 6k rounds to transmit
the message in the absence of malicious interference. For
the rest of (r − 6k) rounds, the adversary needs to broad-
cast at least once every 6 rounds to prevent the delivery of
the message. The claim regarding the energy usage by the
Byzantine nodes follows because each bit is sent individu-
ally; otherwise, a single disruption by the adversary would
force the entire message to be repeated.

Level 2: NeighborWatchRB

NeighborWatchRB implements authenticated broadcast across
multiple hops on top of the 1Hop-Protocol. We partition the
plane into squares of maximum size such that any two nodes
located in neighboring squares are able to communicate. In
the analytic model, the squares are of size &R/2' × &R/2',
that is, each square contains &R/2'2 nodes.

All the nodes in the same square act identically: whenever
one broadcasts, they all broadcast; whenever one is silent,
they all are silent. The clustering into squares and the as-
signment of schedule slots are performed without any com-
munication, since each node knows its location. For exam-
ple, if the 1Hop-Protocol calls for a silent round (to confirm
the authenticity of a message), all the honest nodes in the
square are silent; if the 1Hop-Protocol calls for a broadcast
during a veto round, all the honest nodes broadcast (ensur-
ing that the message is vetoed, as long as there is at least
one honest node in the square). Effectively, all the nodes in
a square act like one “meta-node.”

In this case, each square is assigned to a schedule slot;
as before, the schedule is chosen to avoid collisions between

neighboring squares. Whenever a square is scheduled, all the
nodes in that square execute the next step of the 1Hop-Protocol.
The source node is the only exception: it behaves indepen-
dently of any square and it always is awarded the first broad-
cast interval in the schedule. The source begins the protocol
by using the 1Hop-Protocol to disseminate the bits of the
message to its neighbors.

Each node maintains a buffer of bits received through the
1Hop-Protocol for each of its neighboring squares (plus the
source, for nodes that are in range of the source). We say
that a node commits to bit number i if it has received bits
number 1, 2, . . . , i from one of its neighbors, through the
1Hop-Protocol.

Once a node has committed to a new bit, it executes
rounds of the 1Hop-Protocol for that bit whenever its square
is scheduled, until the 1Hop-Protocol returns success. Note
that a node will not proceed to broadcasting bit number i+1
as long as bit number i has not been successfully broadcast.

Assume node n has no new bits to send. However, it no-
tices that a node is trying to broadcast a new bit during n’s
broadcast interval. Then node n blocks the 1Hop-Protocol
initiated by the other node, by broadcasting during veto
rounds. Thus, we can be sure that data is propagated only
when every node in a square has committed to it. Note that,
in this way, the protocol will perform correctly if there is no
Byzantine interference.

A Byzantine node may disrupt the protocol either by try-
ing to disseminate corrupt information, or by broadcasting
during veto rounds. However, in order to delay the broad-
cast, the Byzantine node must continue to expend its broad-
cast budget. On the other hand, notice that a Byzantine
node cannot relay bad data, as it can only propagate a bit
when every node in the square agrees on that bit. Thus, as
long as there is at least one honest node in every square of
size &R/2' × &R/2', that is t < &R/2'2, the protocol suc-
ceeds.

An alternate way of viewing the protocol is as creating
a grid of honest meta-nodes located at the center of each
&R/2' × &R/2' square, where any two neighboring meta-
nodes can communicate. If a device tries to deviate from
the behavior of its corresponding “meta-node,” then it is ve-
toed by honest members of the cluster. The spreading of
the message implements a simple epidemic protocol on top
of this grid. To gain efficiency, one could use a more com-
plex routing protocol on this overlay. The following theorem
guarantees correctness of the protocol.

Theorem 3. If an honest source sends m and if t <
&R/2'2, then: (1) If a node commits to bit bi, then bi is
the ith bit of m. (2) Eventually every node commits to ev-
ery bit of the message.

We also consider a variant of NeighborWatchRB which we
refer to as “2-voting”NeighborWatchRB: in this case, a node
only commits to a bit if it receives it from two different
neighboring squares. Thus, the protocol is able to tolerate
roughly t < R2/2 adversaries per neighborhood.

Level 2: MultiPathRB

We conclude by describing a variant of the top layer which
implements the MultiPathRB protocol. MultiPathRB also
uses the 1Hop-Protocol for single hop authentication. In-
stead of grouping devices into meta-nodes, it employs an
elaborate voting strategy at the multi-hop level in order to
tolerate the maximal number of adversaries. More precisely,



in order to deliver a message, it must be transmitted along a
sufficient number of node-disjoint paths located in the same
neighborhood. This strategy was first introduced in [5].

Specifically, the protocol uses three types of messages:
SOURCE messages, COMMIT messages, and HEARD mes-
sages. Initially, for each bit bi of the message, the source
s sends a message 〈SOURCE, bi〉 using the 1Hop-Protocol.
Every neighbor of s can commit to any bit that it receives
directly from the source, as Theorem 2 guarantees the au-
thenticity of the message.

When a node commits to a bit bi, it sends a 〈COMMIT, bi〉
message using the 1Hop-Protocol. When a node receives
〈COMMIT, bi〉 from some node v, it sends a 〈HEARD, v, bi〉
message. We say that v is the cause of the HEARD message.

A node can commit to a bit when it has received at least
t + 1 COMMIT and HEARD messages, such that: there is
some neighborhood N where (a) the source of every COMMIT
message, (b) the source of every HEARD message, and (c)
the cause of every HEARD message all lie in that neigh-
borhood N . Recall that a node identifies the location of a
message’s sender based on the slot in the broadcast sched-
ule in which the message has been sent. Since at most t of
these nodes are dishonest, at least one version of the received
message must be correct. This implies that the broadcast
protocol never delivers a fake message (authentication). Fol-
lowing the analysis in [5], we can also show that the protocol
always terminates.

Theorem 4. If an honest source sends m via MultiPathRB,
and if t < 1

2R(2R+1), then (1) a node commits to bi only if

bi is the ith bit of m and (2) eventually every node commits
to every bit of m.

5. RUNNING TIME ANALYSIS
In this section, we analyze the performance of MultiPathRB.

The upper bound on the running time of NeighborWatchRB
will follow as a special case.

There are two issues that arise. The first issue is related
to bounding adversarial interference as the data traverses
the network: at each hop, the Byzantine nodes can delay
different parts of the protocol. The second issue is related
to bounding queuing delays at the nodes themselves: a given
node may have a long queue of protocol messages to send
(e.g., COMMIT messages, HEARD messages, etc.). The ad-
versary may cause more delay than expected by creating
a backlog of messages, thus initiating a data “traffic jam.”
The argument is structured to show that such a jam does
not affect the asymptotic running time.
Proof Preliminaries. Each SOURCE, COMMIT and
HEARD message is of size O(1), consisting of an identifier
indicating its type, along with the value of the transmitted
bit; the HEARD message also includes the identifier of the
node that caused the HEARD message—the identifier can
be encoded in O(log R) bits by its relative location from the
sender. Treating R as constant (as we do throughout), each
message consists of only O(1) bits.

Recall that each node is scheduled at least once every
O(R2) slots. As a corollary of Theorem 2, we conclude that
if the adversary uses ≤ βi broadcasts to delay a particu-
lar SOURCE, COMMIT, or HEARD message, then the mes-
sage transmission completes in O(βi) scheduled slots, i.e., in
O(βi) time.

For each node q, our goal is to bound the time it takes for
q to receive the message from the source. We first isolate

Figure 1: Rectilinear path of width 2R + 1 from
source to node q.

a rectilinear path from the source s to q that is of width
2R +1 and extends distance R beyond q (see Figure 1). For
each bit i, we can trace the progression of messages along
this path. We say that a node is in layer k if a path to the
source takes no more than kv vertical hops, kh horizontal
hops, and either (k = kv and kh = 0) or (k = kh + kv + 2R
and kh )= 0). See Figure 1 for a layer numbering example.

For bit i, we introduce the following notation:

• Let Si be the time interval during which the source
transmits its SOURCE message for bit number i.

• Let C∗
i,[1,R] be the interval during which nodes in layers

[1, R] transmit COMMIT messages associated with bit
i.

• Let Ci,k be the interval during which nodes in layer k
transmit COMMIT messages for bit i.

• Let H∗
i be the interval during which the nodes in lay-

ers [k + 1, k + R] send HEARD messages caused by
COMMIT messages for bit i from nodes in layers [1, R].

• Let Hi,[k+1,k+R] be the interval during which the nodes
in layers [k + 1, k + R] send HEARD messages caused
by COMMIT messages for bit i from nodes in layer k.

A sender transmits a COMMIT message for bit i before
transmitting a COMMIT message for bit i+1. Also, a sender
transmits its HEARD messages for bit i before transmitting
HEARD messages for bit number i + 1.

Thus we can split the execution into segments, as depicted
in Figure 2. Each row in Figure 2 follows an individual bit
as it progresses through the path, while the columns capture
the events that may occur concurrently. Formally, a segment
Gi is the smallest interval that contains all the intervals in
column i.

Different segments may overlap. However, given two seg-
ments Gi and Gj , where i > j, the protocol ensures that
Gi finishes after Gj finishes. Moreover, Gi+1 begins, at the
latest, as soon as Gi completes. Thus, the running time can
be bounded by the sum of the segment lengths.

Also, notice that by construction, a given node is involved,
for each segment, in transmitting in at most R + 1 differ-
ent rows: one for a COMMIT message, and R for HEARD
messages.



Figure 2: Execution segmentation for analyzing performance. Each vertical segment 〈G1, G2, . . .〉 captures a
set of events that occur concurrently. Each horizontal row traces a single bit along the path from source to
target.

Figure 3: When D ≤ log |Σ|, we analyze the first
log |Σ| segments separately from the remaining O(D)
segments. In the first log |Σ| segments, there are at
most O(D) diagonal stripes, each of which captures
the behavior of a single layer, and hence can be de-
layed by at most O(β) adversarial broadcasts.

Finally, observe that there are Θ(D) + log |Σ| segments:
Θ(D) segments for the first bit to travel across the path,
and then log |Σ| segments while the remaining bits exit the
pipelined path. The goal of the remainder of the section is
to bound the number of rounds required to complete each
of the segments.
Case 1: Large Diameter. Assume that the diameter of
the network is large when compared to the message, specif-
ically D > log |Σ| (see Figure 4).

As already indicated, a node p can appear in at most R+1
rows in a segment. For a given segment, for a given row,
node p may have to broadcast O(R2) messages: if node p is
at distance > R from the source, it may have to broadcast
O(R2) HEARD messages in a single segment. Thus, node p
broadcasts at most O(R3) messages in a segment.

Notice that only Byzantine nodes situated at distance at
most 2R from p can cause p’s messages to be delayed. Thus,
the total number of adversarial broadcasts that delay p is
bounded by 4β. Since, as we observed above, βi broadcasts
can only delay a message for O(βi) time, we conclude that
node p can broadcast all of its messages for a given segment
in time O(R3β) = O(β). Finally, since D > log |Σ|, there are
O(D) segments, and hence the total length of the execution
is O(β · D).
Case 2: Small Diameter. Assume now that the di-
ameter of the network is small, i.e., D < log |Σ|, as is
depicted in Figure 3. In this case, we focus on the first
log |Σ| segments; there are at most O(D) segments in the
remainder, and, by the rationale above, their total length
is bounded by O(β · D). Again, we are interested in deter-
mining the maximum delay for each segment. For segment

Figure 4: When D > log |Σ|, there are O(D) segments.
Each node may have to broadcast at most O(R3) mes-
sages in a segment. It follows that a single node may
be delayed for at most O(R3β) rounds within a seg-
ment. Since there are O(D) segments in this case,
we obtain that the total length of the execution is
O(βD).

Gi, let ri be the row with the longest interval. If we as-
sume that the adversary delays ri with βi broadcasts, we
can bound the total delay of the first log |Σ| segments by
Plog |Σ|

i=1 O(1 + βi) = O
“
log |Σ| +

Plog |Σ|
i=1 βi

”
.

The segment tableau (see Figure 3) can be considered in
terms of diagonal stripes from the top-left to the bottom-
right. Notice that each such stripe involves nodes that are
in the same layer along the path. Nodes in the same layer
can be delayed by at most 9β broadcasts. Since there are at
most O(D) stripes, we can bound

Plog |Σ|
i=1 βi by O(βD).

We can obtain an asymptotic bound on the worst-case
running time of NeighborWatchRB as a special case of the
previous argument. Specifically, we transform MultiPathRB
into NeighborWatchRB as follows: SOURCE and COMMIT
messages are shortened to contain only the message bit;and
HEARD messages are suppressed. Thus, we re-arrive at the
same asymptotic bound of O(β · D + log |Σ|) rounds. Thus
we conclude:

Theorem 5. If an honest source sends a message m via
MultiPathRB or via NeighborWatchRB, then every honest
node delivers a message within time O(β · D + log |Σ|).

6. SIMULATION RESULTS
In this section, we simulate the two protocols presented

in Section 4. Additional graphs and measurements can be
found in the full version [18], together with the code required
to run the simulations.
Methodology. Experiments were performed on maps of
size varying from 20 × 20 to 60 × 60 length units with up



to 4000 nodes distributed either uniformly at random (in
most simulations), or in a clustered fashion (where noted).
We define the density as the total number of nodes divided
by the area of the map. For most experiments, each node
had an average broadcast range R of approximate 4 length
units, and thus the network was between 7 and 21 hops from
corner to corner. For an overview of the simulation model,
see Section 3.

We implemented the two algorithms following the descrip-
tions in Section 4. For the NeighborWatchRB protocol, the
implementation assumes a (reduced) square size of R/3 ×
R/3, in order to ensure propagation of messages between any
two adjacent squares. We tested two variants of MultiPathRB
with t = 3 and t = 5. (Here, t refers to the number of faults
per region that the algorithm is tuned to tolerate.)

In each of our simulations, a single honest source node, lo-
cated at the center of the network, initiates a broadcast of a
short message. (Most experiments simulated the broadcast
of a 4-bit message; longer messages simply increase the sim-
ulation times while yielding little additional insight.) Each
experiment was repeated between 6 and 12 times, with out-
liers being discarded. We measured four parameters: how
long the broadcast took to terminate, the percentage of
nodes that completed the protocol, the number of broad-
casts needed for all nodes to complete the protocol, and
the percentage of completed nodes that received the correct
message.

6.1 Resilience
Resilience to Crash Failures. The first set of exper-
iments, depicted in Figure 5, assumes that nodes fail by
crashing, i.e., taking no steps. Effectively, this results in
varying numbers of devices that remain active.

For the NeighborWatchRB protocol, broadcasts complete
as long as the network remains connected. The 2-Vote ver-
sion of NeighborWatchRB requires slightly stronger connec-
tivity guarantees, as every bit has to be received from two
neighbors. The MultiPathRB protocol requires even stronger
connectivity guarantees, as message bits have to be received
across t + 1 node-disjoint paths.

For each protocol, we varied the number of active nodes,
i.e. the density of the network, and examined the percentage
of devices that completed the protocol. As the density in-
creases, we observe that almost every device completes the
protocol. For MultiPathRB with t = 5, however, the de-
vices in the corners of the network do not always receive the
broadcast, as they do not always have enough active neigh-
bors. As expected, NeighborWatchRB yields the best results
for low densities.
Resilience to Jamming. The second set of experiments
examines performance in the presence of jamming. These
experiments were run with 800 devices on a 24×24 map (i.e.,
a density of ∼ 1.5), where 10% were selected at random to
jam. Each malicious device broadcasts a jamming message
in each veto round with probability 1/5. (We found this
probability to be approximately optimal for the jammers,
as it prevented too much redundant jamming.) During the
experiment, we varied the budget of broadcasts allocated to
each malicious device, and observed how long it took for the
algorithm to complete. Despite the jamming, the protocols
complete much as expected. There is a linear relationship
between the amount of jamming and the delay, i.e., dam-
age caused by the Byzantine devices is proportional to the

Figure 5: Tolerating crashed devices. Percentage
of devices that complete the protocol versus the
density of the deployment, for different versions of
the protocols. Observe that with a density of 1.5,
there are sufficiently many correct nodes for all but
MultiPathRB with t = 5 to complete almost all the
time. In the latter case, the nodes near the edges of
the network do not have enough correct neighbors.
The experiments were conducted on a 24 × 24 map.

amount of jamming. The graph is omitted due to space
constraints.
Resilience to Lying. In the third set of experiments, we
study the resilience to lying, that is, to Byzantine devices
attempting to persuade honest devices to adopt an incorrect
value. The experiments were performed on a 20 × 20 map
with range R = 4 and 600 nodes (i.e., a density of ∼ 1.5).

We simulate the Byzantine nodes by initializing the “cor-
rupt” devices with a fake message to propagate, but have
them run the correct protocol. These devices appear correct,
hence their neighbors are likely to adopt the fake message.
For MultiPathRB, the corrupt devices broadcast COMMIT
messages for the fake value, and they never relay HEARD
messages from correct nodes. For NeighborWatchRB, the
malicious devices act as sources initialized with the fake
message. Throughout these experiments, we do not limit
the broadcast budget of the malicious devices.

Figure 6 presents the relation between the percentage of
Byzantine devices and the percentage of nodes that receive
the correct message. For MultiPathRB, observe that the abil-
ity to tolerate malicious devices increases with the tolerance
threshold t, as expected: for t = 3, the theoretic analysis
implies a tolerance of approximately 2.5%, and for t = 5,
a tolerance of approximately 5% (Each device has approxi-
mately 80 neighbors, in expectation, and these numbers rep-
resent 3/80 and 5/80, respectively.). We can readily prevent
devices from ever delivering a fake message by increasing
the threshold t; however, in that case, some devices never
deliver any message. For example, for t = 9 (not shown in
Figure 6), even for 15% corrupt devices, almost no honest
device delivers a fake message. However, only 15% of devices
deliver any message at all!

The NeighborWatchRB protocol tolerates larger densities
of Byzantine nodes in practice, despite the worst-case theo-
retical analysis. In fact, the probability of success depends
only on the probability that in any square containing a cor-



Figure 6: Tolerating lying devices. The percentage
of delivered messages that are correct, versus the
percentage of malicious devices for different variants
of the protocols. NeighborWatchRB performs better
than MultiPathRB, even though, in theory, it should
be less resilient. The experiments were performed
on a 20 × 20 map, with 600 nodes.

rupt device, there is also an honest device. The two-voting
variant is more robust, as a corrupt message is only propa-
gated if two nearby squares are populated only by corrupt
devices.

Notice that, for both protocols, there is a steep drop-off af-
ter the threshold of tolerated Byzantine devices is exceeded.
This is because of a snowball effect: once honest devices
start adopting the incorrect message, the process acceler-
ates as they join in to convince their neighbors to adopt
the incorrect message. This effect is accentuated for lower
deployment densities.

A secondary goal is that robustness should scale well with
density: as we deploy more devices, we should achieve a
higher level of robustness. In Figure 7, we examine this
relationship. (Our experiments involving MultiPathRB max
out at a density of 5, as the simulation becomes prohibitively
slow.) At high levels of density, NeighborWatchRB can toler-
ate up to 25% of the devices being corrupted. In this sense,
the robustness of NeighborWatchRB scales well with density.

6.2 Additional Experiments
Non-uniform Node Distributions. We have also run
a series of experiments for NeighborWatchRB where the de-
vices are not distributed uniformly at random, but are de-
ployed in clusters. More specifically, we choose at random
a fixed set of cluster centers; each device is randomly as-
signed to a cluster, and within a cluster, devices are spread
according to a normal distribution. (The algorithm used
for generating the normal distribution of points is that of
Marsaglia [21].) The experiments were performed for R = 4
and 1200 nodes on a 30 × 30 map.

We found that, as long as there is sufficient connectivity,
the NeighborWatchRB algorithm continues to work well. The
algorithm does not always attain 100% completion, since a
small fraction of the nodes are disconnected from the source.
In experiments where a fraction of the nodes are Byzantine,
NeighborWatchRB benefits from the inherent clustering of

Figure 7: Tolerating lying devices. For a given de-
ployment density, the graph shows the maximum
percentage of Byzantine nodes tolerated in order
for at least 90% of honest nodes to receive the cor-
rect message, for different versions of the protocols.
NeighborWatchRB benefits most from the increase in
density. Experiments are performed on a 20 × 20
map, with 300 to 3600 nodes.

the nodes, which increases its correctness ratio by up to
10%, when compared to the uniform distribution.
Varying Map Size. We have also verified the perfor-
mance of NeighborWatchRB on maps of varying sizes. We
have found that both the running time and message com-
plexity scale linearly with the diameter of the network, much
as expected.
Comparison with simple Epidemic algorithm. As
a point of comparison, we implemented a simple epidemic
protocol that provides no resilience to faults or jamming.
Unsurprisingly, such an algorithm is more efficient than any
of our fault-tolerant protocols. The epidemic algorithm is
orders of magnitude faster than MultiPathRB. This consid-
erable gap in terms of performance can be explained by the
complexity of the voting protocol that MultiPathRB employs,
combined with the fact that messages are sent bit by bit. By
contrast, NeighborWatchRB performs a lot better, taking on
average about 7.7 times longer to complete. The experi-
ments were performed on maps from 30×30 to 50×50, with
a node density of 1.25, a range of 3, and message length of 5
bits. Each experiment was repeated 20 times. Much of the
reason for the good performance comes from the fact that
data propagation is pipelined, so that the additional cost
incurred by NeighborWatchRB can be amortized against the
inherent cost of sending data across a multi-hop network.

These experiments support our conjecture that a dual-
mode protocol combining an epidemic broadcast of the en-
tire message, along with a secure broadcast of short digest,
may be sufficiently efficient. In particular, it seems plausi-
ble that a sufficient level of security can be achieved with a
digest that is 1/10 the size of the original message, which
would yield a slow down of less than a factor of 2 for pro-
viding Byzantine fault-tolerance.

7. CONCLUDING REMARKS
We have presented two authenticated broadcast protocols

for multi-hop wireless networks subject to Byzantine fail-
ures. Together, these two protocols take a first step toward



better understanding the problem of authenticated broad-
cast. In terms of future work, several improvements might
be considered, such as improving message efficiency, weak-
ening the synchronization requirements, and adapting the
protocol to mobile nodes.
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