Why STM can be more than a Research Toy

Aleksandar Dragojevié! Pascal Felber?

Vincent Gramoli! 2 Rachid Guerraoui!

'EPFL, Switzerland
ZUniversity of Neuchatel, Switzerland

Abstract

Software Transactional Memory (STM) promises to sim-
plify concurrent programming without requiring specific
hardware support. Yet, STM’s credibility lies on the extent
to which it enables to leverage multicores and outperform
sequential code. A recent CACM paper [3] questioned this
ability and suggested the confinement of STM to a research
toy.

We revisit these conclusions through the most to date
extensive comparison of STM performance to sequential
code. We evaluate a state-of-the-art STM system, SwissTM,
on a wide range of benchmarks and two different multicore
systems. We dissect the inherent costs of synchronization
as well as the overheads of compiler instrumentation and
transparent privatization.

Our results show that an STM with manually instru-
mented benchmarks and explicit privatization outperforms
sequential code by up to 29 times on SPARC with 64 concur-
rent threads and by up to 9 times on x86 with 16 concurrent
threads. Indeed the overheads of compiler instrumentation
and transparent privatization are substantial, yet they do not
prevent STM from generally outperforming sequential code.

Keywords Software Transactional Memory, Performance

1. Introduction

While multicore architectures are becoming the norm in re-
cent and upcoming CPUs, concurrent programming remains
a difficult task. The transactional memory (TM) paradigm
simplifies concurrent programming by enabling the pro-
grammers to focus on high-level synchronization concepts
(i.e., atomic blocks of code) while ignoring the low-level im-
plementation details.

Hardware transactional memory (HTM) has already
shown promising results for leveraging parallelism [4].
However, HTMs are so far restrictive as they can only han-
dle transactions of limited size, or require some system
events or CPU instructions to be executed outside transac-
tions [4]. While there have been attempts to address these
issues (e.g., [19]), TM systems that are fully implemented in
hardware are unlikely to become commercially available in
the near future. It is more likely that future deployed TMs

will be hybrid TMs that will contain a software and a hard-
ware component.

Software Transactional Memory (STM) [15, 23] circum-
vents the limitations of HTM by implementing TM function-
ality fully in software. Furthermore, several STM implemen-
tations are already freely available and appealing for con-
current programming (e.g., [1,5,7, 11, 14, 20]). Yet, STMs
introduce noticeable runtime overheads:

1. Synchronization costs. Each read (or write) of a mem-
ory location from inside a transaction is performed by a
call to an STM routine for reading (or writing) data. With
sequential code, these accesses are performed by a single
CPU instruction. STM read and write routines are signif-
icantly more expensive than corresponding CPU instruc-
tions as they, typically, have to book-keep data about ev-
ery access. STMs check for conflicts, log the access, and
in case of a write, log the current (or old) value of the
data. Some of these operations use expensive synchro-
nization instructions and access shared meta-data, which
further increases their costs.

2. Compiler over-instrumentation. To use an STM, pro-
grammers need to insert STM calls for starting and end-
ing transactions in their code and replace all memory ac-
cesses from inside transactions by STM calls for read-
ing and writing memory locations. This process, called
instrumentation, can be manual, when the programmers
manually replace all memory references with STM calls,
or can be performed by an STM compiler. With a com-
piler, programmers only need to specify which sequences
of statements have to be atomic, by enclosing them in
transactional blocks. The compiler generates code that in-
vokes appropriate STM read/write calls. While an STM
compiler significantly reduces programming complex-
ity, it can degrade performance of resulting programs
(when compared to manual instrumentation) due to over-
instrumentation [3, 8, 25]: basically, the compiler instru-
ments the code conservatively with unnecessary calls to
STM functions, as it cannot precisely determine which
instructions indeed access shared data.

3. Transparent privatization. Making certain shared data
private to a certain thread is known as privatization. Pri-

2010/2/2

Model Instrumentation | Privatization
STM-ME | manual explicit
STM-CE | compiler explicit
STM-MT | manual transparent
STM-CT | compiler transparent

Table 1. STM support

vatization is typically used to allow non-transactional ac-
cesses to some data, either to support legacy code or to
improve performance by avoiding costs of STM calls
when accessing private data. Unless certain precautions
are taken, privatization can result in race conditions [24].
Two approaches to prevent these have been considered:
(1) a programmer explicitly marks transactions that pri-
vatize data, or (2) the STM transparently ensures that all
transactions safely privatize data. Explicit privatization
places additional burden on the programmer, while trans-
parent privatization incurs runtime overheads [25], espe-
cially in cases when no data is actually being privatized.

Several research papers have discussed the scalability
of STM with the increasing number of threads e.g., [1-
3,5,7,13, 16, 18, 20]. Very few however compared STM
to sequential code and actually addressed the question of
whether STM can be a viable option for speeding up the
execution of applications.

Two notable exceptions are [2] and [3]. In [2], STM is
shown, on a hardware simulator, to outperform sequential
code in most STAMP benchmarks. Recently, [3] exhibited
a series of experiments on a real hardware where STM per-
formed worse than sequential code, and implied by their title
that STM is only a “research toy”. A closer look at the exper-
iments revealed however that they considered a subset of the
STAMP benchmark suite, configured in a specific manner
and using only up to 8 threads.

We went a step further and compared STM performance
to sequential code using (1) a larger and more diverse set
of benchmarks and (2) real hardware that supports higher
levels of concurrency. More specifically, we experimented
with a state-of-the-art STM implementation, SwissTM [7],
running three different STMBench7 [12] workloads, all ten
workloads of the STAMP (0.9.10) [2] benchmark suite, as
well as four micro-benchmarks, all encompassing both large
and small scale workloads. We considered two hardware
platforms—a Sun Microsystems UltraSPARC T2 CPU ma-
chine (referred to as SPARC in the remainder of the text)
supporting 64 hardware threads and a 4 quad-core AMD
Opteron x86 CPU machine (referred to as x86 in the re-
mainder of the text) supporting 16 hardware threads. Fi-
nally, we also considered all combinations of privatization
and compiler support for STM (summarized in Table 1). Al-
together, this constitutes the most to date exhaustive perfor-
mance comparison of STM to sequential code.

Our experiments (summarized in Table 2) show that STM
indeed outperforms sequential code in most configurations
and benchmarks, offering already now a viable paradigm
for concurrent programming. Maybe even more importantly,
STM performs well with a small number of threads on many
benchmarks. For example, STM-ME outperforms sequential
code already with 4 threads on 14 and 13 out of 17 workloads
on our SPARC and x86 machines respectively. Basically,
we support the initial hopes about the good performance
of STM, and we motivate further research in the field. We
contradict the results of [3], and we believe we do so for
three reasons: (1) STAMP workloads used in [3] present
higher contention than the default STAMP workloads, (2) we
use hardware that supports higher numbers of threads and,
in case of x86, that does not use hyper-threading, and (3) we
used a state-of-the-art STM implementation more efficient
than those used in [3].

Clearly, and despite rather good STM performance in
our experiments, there is still room for improvements. We
highlight promising directions throughout the paper. Also,
while there are several programming issues with the use
of STM [3], (e.g., ensuring weak or strong atomicity, se-
mantics of privatization, support for legacy binary code,
etc), alternative concurrency programming approaches, like
fine-grained locking or lock-free techniques, are not easier
to use than STM. Such comparisons have been discussed
in [11,13,15,23] and are outside of the scope of this paper.

In the following, we first detail our evaluation settings,
then present and discuss the experimental results for all four
STM variants, and finally conclude.

2. Evaluation settings

In this section, we overview the STM library used for our
experimental evaluation, SwissTM [7], as well as the bench-
marks and hardware settings. Note that our experiments with
other state-of-the-art STMs [5, 14, 18, 20] confirm our re-
sults [6]. SwissTM and the used benchmarks are available at
http://1lpd.epfl.ch/site/research/tmeval.

2.1 SwissTM

Synchronization algorithm. SwissTM [7] is a word-based
STM that uses invisible (optimistic) reads. It relies on a
time-based scheme to speed up read-set validation, simi-
larly to [5,21]. SwissTM detects read/write conflicts lazily
and write/write conflicts eagerly. The two-phase contention
manager uses different algorithms for short and long trans-
actions. This design was carefully chosen to provide good
performance across a wide range of workloads [7].

Privatization. We implemented privatization support in
SwissTM using a simple validation barriers scheme de-
scribed in [24]. To ensure safe privatization, each thread, af-
ter committing transaction 7', waits for all other concurrent
transactions to commit, abort or validate before executing
application code after 7T'.

2010/2/2

Speedup STM-ME STM-CE STM-MT STM-CT
Hardware | Hw threads | Min | Max | Avg | Min | Max | Avg | Min | Max | Avg | Min | Max | Avg
SPARC 64 1.4 | 297 | 9.1 - - - 1.2 | 23.6 | 5.6 - - -
x86 16 054 94 | 34 | 08 | 93 | 31 | 034 | 52 | 1.8 | 05 | 53 | 1.7

Table 2. Summary of STM speedup over sequential code

Compiler instrumentation. We used Intel’s C/C++ STM
compiler [1, 18] for generating compiler instrumented
benchmarks.!

2.2 Benchmarks

STMBench7. STMBench7 [12] is a synthetic STM bench-
mark that models realistic large-scale CAD/CAM/CASE
workloads. STMBench7 defines three different workloads,
with different amount of contention: read-dominated (10%
write operations), read/write (60% write operations) and
write-dominated (90% write operations). The main char-
acteristics of STMBench7 are its large data structure and
long transactions in comparison to other typical STM bench-
marks. In this sense, STMBench7 is very challenging for
STM implementations.

STAMP. STAMP [2] offers a range of workloads and has
been widely used to evaluate TM systems. It consists of
8 different applications representative of real-world work-
loads. STAMP applications can be configured with differ-
ent parameters defining different workloads. In our experi-
ments, we use 10 workloads from the STAMP 0.9.10 distri-
bution. These include low and high contention workloads for
kmeans and vacation applications and one workload for all
other applications. The exact workload settings we used are
specified in the companion technical report [6].

Micro-benchmarks. To evaluate low-level overheads of
STMs, such as costs of synchronization and logging, with
smaller-scale workloads, we use four micro-benchmarks that
implement an integer set using different data structures. Ev-
ery transaction executes a single lookup, insert or remove
of a randomly chosen integer from value range. Initially, the
data structures are filled with 2! elements chosen among a
range of 2'7 values. During the experiments, 5% of the trans-
actions are insert operations, 5% are remove operations, and
90% are search operations.

It is important to note that the described benchmarks
are TM benchmarks, and, thus, most of them use transac-
tions extensively (with the exception of labyrinth and to
a lesser extent genome and yada). Applications that would
use transactions to simplify synchronization, but in which
only a small fraction of execution time would be spent in
transactions, would benefit from STM more than the bench-
marks used. In a sense, the benchmarks we use represent a
worst-case scenario for STM usage.

!'Intel’s C/C++ STM compiler only generates x86 code thus we were not
able to use it for our experiments on SPARC.

We report on our experiments in the following sections.
For each experiment, we compute averages from at least five
runs.

3. STM-ME Performance

Figure 1(a) depicts STM-ME (manual instrumentation
with explicit privatization) speedup over sequential, non-
instrumented code on SPARC. The figure shows that STM-
ME has good performance already with a small number
of threads, outperforming sequential code on 14 out of 17
workloads with 4 threads. The figure further shows that STM
outperforms sequential code on all used benchmarks, by up
to 29 times on vacation low benchmark. The experiment
shows that the less contention the workload exhibits, the
more benefit we can expect from STM, e.g., STM outper-
forms sequential code by more than 11 times on read dom-
inated workload of STMBench7, and less than 2 times for
write dominated workload of the same benchmark.

On x86 (Figure 1(b)), STM-ME outperforms sequential
code on 13 workloads already with 4 threads. Also, STM
clearly outperforms sequential code in all workloads, ex-
cept in the challenging, high contention STMBench7 write
workload. The performance gain, when compared to se-
quential code, is lower than on SPARC (up to 9 times on
x86 compared to 29 times on SPARC). The reasons for this
are two-fold: (1) all threads execute on the same chip with
SPARC, so the costs of inter-thread communication is lower
and (2) sequential performance of a single thread on SPARC
is much lower.

To summarize, STM-ME has good performance on both
SPARC and x86 architectures, clearly showing that STM-
ME algorithms can scale and perform well in different set-
tings. It is however important to point out that, while STM-
ME outperforms sequential code in all the benchmarks,
some of the achieved speedups are not very impressive (e.g.,
1.4 times with 64 threads on ssca2 benchmark). This just
confirms that STM, while showing great promise for some
types of concurrent workloads, is not the best solution for all
of them.

Contradicting earlier results. The results of [3] indicated
that STMs do not perform well on three of the STAMP appli-
cations that we also have used: (1) kmeans, (2) vacation,
and (3) genome. In our experiments, STM has good perfor-
mance on all three. The reasons for such considerable differ-
ence are, we believe, three-fold:

20107272

1724 2029 16
14
12 1
10 1 .
01
o 8
2 o2
@
2 . | H4
Lk
W16
4 -
032
Doe4
*] 1
0 - & @ e & & N U]) 2 X2 I'I'a,[2
,\Q‘elb \&‘\ &‘\ Q7$\ oo& ‘é\)b 6‘2\\% ‘,\9 &é\‘ (9‘7‘? o@% o "\'bb \'so zbv Qp‘éQ \L\Q\\
® P & A (Qo"o N &° &,-oo IR ?
é\Q’ %& + Alb" Q’b
(a) SPARC
10 1
9 -
8 -
7
6 -
e 01
® 5 -
g 02
wv
4 B4
LK
37 =16
2 -
1
J <@ e o e . & o g .& e &
0 & S& 4‘& & & FE S E r-,"@ & & & \,,’,0\ 2>\>‘» ‘o'éw ,\Q\\e
SR & & & o & £ & E
® A P © A N N & RS
Q¥ & E & & A
(.§\ L + » K2
(b) x86

Figure 1. STM-ME performance

1. Workload characteristics. A closer look at the experi-
mental settings of [3] reveal that their workloads had
higher contention than the default STAMP workloads.
STM usually has the lowest performance in highly con-

tended workloads, consistent with our previous experi-
ments (Figure 1).

To evaluate the impacts of workload characteristics, we
ran both default STAMP workloads and STAMP work-

2010/2/2

3.5

3

2.5
c) t1
3 @2
E

]
S 15 4
mg
-
= |
0.5 | Genome Kmeans Kmeans Vacation Vacation
High Low High Low
0
(a) workload impact

3

2.5

2
c
g 01
T
g 1.5 02
@ I I m4

1 —F= _

0.5 | Genome Kmeans Kmeans Vacation Vacation
High Low High Low

(b) hyper-threading impact

Figure 2. Impact of different experimental settings of [3] on
STM-ME performance

loads from [3] on a 2 quad-core CPU Xeon machine
(which is more similar to the machine used in [3] than
the x86 machine we used in other experiments). Slow-
down of workloads from [3] compared to default STAMP
workloads (we used both low and high contention work-
loads for kmeans and vacation) is depicted in Fig-
ure 2(a). Workload settings from [3] indeed degrade per-
formance of STM-ME. The performance impact is signif-
icant in kmeans (around 20% for high- and up to 200%
for low-contention workload) and in vacation (30% to
50%in both workloads). The performance is least im-
pacted in genome (around 10%).

2. Different hardware. We used hardware configurations
with support for more hardware threads—64 and 16 hard-
ware threads in our experiments compared to 8 in [3].
This lets STM perform better as there is more parallelism
at the hardware level to be exploited.

Also, our x86 machine does not use hyper-threading
while the one used in [3] does. Hardware thread mul-
tiplexing in hyper-threaded CPUs can hamper perfor-
mance. To evaluate this impact, we ran the default
STAMP workloads on a machine with 2 single-core
hyper-threaded Xeon CPUs. Figure 2(b) depicts the slow-
down on the hyper-threaded machine compared to the
similar machine without hyper-threading. The figure
shows that hyper-threading impacts performance signifi-
cantly, especially with higher thread counts. Slowdown
in genome with 4 threads is around 65% and in two
vacation workloads around 40%. The performance dif-
ference in kmeans workloads is significant even with a
single thread, which is due to differences in CPUs that are
not related to hyper-threading. Still, even with kmeans,
slowdown with 4 threads is much higher than with 1 and
2 threads.

3. More efficient STM. We also believe that part of the per-
formance difference comes from a more efficient STM
implementation. The results of [7] suggest that SwissTM
has better performance than TL2, which performs com-
parably to the IBM STM in [3].

We also experimented with TL2 [5], McRT-STM [1] and
TinySTM [20]. We were provided with the Bartok STM [14]
performance results on a subset of STAMP by Tim Harris
from Microsoft Research. All of these experiments confirm
our general conclusions about good STM performance on a
wide range of workloads [6].

Further optimizations. In some of the workloads we used,
performance degrades when too many concurrent threads
are used. One possible way out would be to modify the
thread scheduler so that it avoids running more concurrent
threads than is optimal for a given workload, based on the
information provided by the STM runtime.

4. STM-MT Performance

Validation barriers that we use for ensuring privatization
safety require frequent communication between all threads
in the system and can degrade performance due to the
time threads spend waiting for each other and the increased
number of cache misses. A similar technique is already
known to significantly impact performance of STM in cer-
tain cases [25], which our experiments confirm.

It is important to highlight here the very fact that none
of the benchmarks we use requires privatization. We thus
measured the worst case: supporting transparent privatiza-
tion only incurs overheads, without the performance bene-
fits of reading and writing privatized data outside of trans-
actions. Also, the measured performance costs are specific
to our choice of privatization technique and implementation,
and proposals for reducing privatization costs exist [16, 17].

We show performance of STM-MT (manual instrumen-
tation with transparent privatization) with SPARC in Fig-

2010/2/2

1823

16
14 -
12 I
01
10 o2
g ms
g 8 mg
wv
6 mi6
032
4 - D64
2 il
| | S
0~ % & .«@ > & L A > WP~ 2 ¢ & o L&
F FEF & \94‘ & P& \943 .\'bb S & Q\{o
T P & ¢ & & 9 SR S
AR NN & & & & o &S S E
AR S N & ° & &
¢) é& & 2 < R L)
‘3;\ + + ¥ ¥
(a) SPARC
6 -
5 -
4 -
% 01
T -
E.J_ 3 =2
m4
5 ms
mi6
1
S - O
0 & 4\;‘\& &3& & & FE S & & & & & S & &
6\) A (ozo \66 & 'bé’ o @ G ‘:}‘\& N S o
LS & & ¥ &L K NS
& € N
(b) x86

Figure 3. STM-MT performance

ure 3(a). The figure conveys that transparent privatization
impacts the performance of STM significantly, but that
STM-MT still performs well, managing to outperform se-
quential code on 11 out of 17 workloads with 4 threads and

on 13 workloads with 8 threads. Also, STM-MT still outper-
forms sequential code in all benchmarks. The performance
is, however, lower—STM-MT outperforms sequential code
by up to 23 times compared to 29 times with STM-ME, and

2010/2/2

SPARC x86

Threads | Min | Max | Avg | Min | Max | Avg
1 0 0.06 0 0 0.45 | 0.08
2 0.02 | 0.47 | 0.16 | 0.03 | 0.58 | 0.29
4 0.03 | 0.59 | 0.26 | 0.06 | 0.64 | 04
8 0.03 | 0.66 | 0.32 | 0.08 | 0.69 | 0.48

16 0 0.75 | 035 | 0.17 | 0.85 | 0.51
32 0 0.77 | 0.34 - - -
64 0 0.8 | 0.35 - - -

speedup gry.

Table 3. Transparent privatization cost (1 — < —
Peeaup sry-ME

by 5.6 times on average compared to 9.1 times with STM-
ME.

Our experiments show that performance for some of the
workloads is not impacted at all (e.g., ssca2), while the
privatization costs can be as high as 80% (e.g., vacation
low, yada). Also, in general, costs increase with the number
of concurrent threads, thus impacting both performance and
scalability of STM. Table 3 summarizes the costs of trans-
parent privatization with SPARC.

We repeated the same experiments with the x86 machine
(Figure 3(b)). The data confirms that STM-MT has lower
performance than STM-ME. It outperforms sequential code
on 8 out of 17 workloads with 4 threads and on 14 work-
loads with 8 threads. Overall, transparent privatization over-
heads reduce STM performance below performance of se-
quential code in 3 benchmarks—STMBench7 read/write,
STMBench7 write and kmeans high. It is interesting to
note that the performance is impacted the most with micro-
benchmarks. We believe that this is due to cache contention
for shared privatization meta-data induced by small transac-
tions.

Our experiments show that privatization costs can be as
high as 80%. It also confirms that the transparent privati-
zation costs increase with the number of threads. Costs of
transparent privatization are higher on our four-CPU x86
machine than on SPARC, mainly due to higher costs of inter-
thread communication. The costs of transparent privatization
with x86 are shown in Table 3.

To summarize, while the impact of transparent privati-
zation can be significant, STM-MT can still scale and per-
form well on a wide range of applications. Our conclusion
is, furthermore, that reducing costs of cache coherence traf-
fic by having more cores on a single chip reduces the costs
of transparent privatization, resulting in better performance
and scalability.

Further optimizations. Two recent proposals [16, 17] aim
to improve scalability of transparent privatization by em-
ploying partially visible reads. By making readers only par-
tially visible, the cost of reads is reduced, compared to fully
visible reads, and the scalability of privatization support is
improved. To implement partially visible readers, [17] uses

Threads | Min | Max | Avg
1 0 | 042] 0.16
2 0 04 | 0.17
4 0 04 | 0.11
8 0 |047 011
16 0 | 044 | 017

Table 4. Compiler instrumentation cost with x86 (1 —
speedup sty cp
speedup g e

timestamps, while [16] uses a variant of SNZI counters [10].
In addition, [16] avoids using centralized privatization meta-
data to improve scalability.

5. STM-CE Performance

Compiler instrumentation often replaces more memory ref-
erences by STM load and store calls than strictly neces-
sary, resulting in the reduced performance of generated code
(this is known as over-instrumentation [3, 8,25]). Ideally, the
compiler would only replace memory accesses with STM
calls when they reference some shared data. However, the
compiler does not have (1) information about all uses of
variables in the whole program and (2) semantic informa-
tion about variable use, which is typically available only to
the programmer (e.g., which variables are private to some
threads or which are read-only). This is why the compiler,
conservatively, generates more STM calls than necessary.
Unnecessary STM calls reduce performance because they
are more expensive than the CPU instructions that they re-
place.

We present STM-CE (compiler instrumentation with ex-
plicit privatization) speedup over sequential code in Fig-
ure 4.2 The figure shows that STM-CE has good perfor-
mance, as it outperforms sequential code on 10 out of 14
workloads with 4 threads and on 13 workloads with 8
threads. Overall, it outperforms sequential code in all bench-
marks but kmeans high. However, it scales well on kmeans
high promising to outperform sequential code with addi-
tional hardware threads.

The costs of compiler instrumentation remain around
20% for all workloads but kmeans where they are about
40%. Also, on some workloads (labyrinth, ssca2 and
hashtable) compiler instrumentation does not introduce
significant costs and the performance of STM-ME and STM-
CE is almost the same. It is interesting to note that, in our
experiments, the costs of compiler instrumentation remain
approximately the same for all thread counts, conveying that
compiler instrumentation does not impact STM scalability.
Table 4 summarizes costs introduced by the compiler instru-
mentation.

2 The data we present here does not include STMBench7 workloads, due to
the limitations of the STM compiler we used.

2010/2/2

10

i

Speedup
w D (92} ()]

N

o & X AN > v
Y F &
& & & ® o
N & & &
& & &

01
02
H4
L]
W16

1111111

Figure 4. STM-CE performance with 16 core x86

To summarize, the additional overheads introduced by
compiler instrumentation remain acceptable as STM-CE
outperforms sequential code on 10 out of 14 workloads with
only 4 threads and in all but one workload overall.

Further optimizations. In [18], optimizations that replace
full STM load and store calls with specialized, faster ver-
sions of the same calls are described. For example, some
STMs can perform fast reads of memory locations that were
previously accessed for writing inside the same transaction.
While the compiler we used supports these optimizations,
we did not implement the lower cost STM barriers in Swis-
sTM yet. Compiler data structure analysis (DSA) is used
in [22] to optimize the code generated by Tanger STM com-
piler.

Several optimizations have been proposed in the con-
text of Java [1] to eliminate transactional accesses to im-
mutable data and data allocated inside current transaction.
Bartok-STM [14] uses flow-sensitive inter-procedural com-
piler analysis, as well as runtime log filtering, to identify ob-
jects allocated in the current transaction and eliminate trans-
actional accesses to them. In [9] dataflow analysis is used to
eliminate some unnecessary transactional accesses.

5.1 STM-CT Performance

We also performed experiments with STM-CT (STM us-
ing both compiler instrumentation and transparent privati-
zation), but defer the result to the companion technical re-
port [6] for lack of space. Our experiments show that, despite
high costs of transparent privatization and compiler over-

instrumentation, STM-CT performs well, outperforming se-
quential code in all but 4 workloads (out of 14). However, it
requires higher thread counts to outperform sequential code
than previous STM variants for the same workloads, as it
outperforms sequential code in only 5 out of 14 workloads
with 4 threads. The costs of STM-CT are largely a simple
combination of STM-CE and STM-MT overheads and the
same techniques for reducing transparent privatization and
compilation overheads are applicable here.

5.2 Programming model

Our experiments imply that STM-CE (compiler instrumen-
tation with explicit privatization) could be the most appropri-
ate programming model for STM. STM-ME might be con-
sidered too tedious and error prone for use in most appli-
cations, and might be appropriate only for smaller applica-
tions or performance critical sections of the code. Clearly, an
STM compiler is crucial for usability. Yet, transparent priva-
tization support might not be absolutely needed from STM.
It seems that privatizing a piece of data is a conscious de-
cision made by a programmer rather than an accident. This
might imply that explicitly marking privatizing transactions
would not require too much additional effort from the pro-
grammer. Apart from semantic issues, our experiments show
that STM-CE offers good performance and scales well .?

3 The experiments in [3] were conducted with STM variants not support-
ing transparent privatization and, thus, this observation does not alter the
performance comparisons we made in previous sections.

2010/2/2

6. Conclusion

We reported on the most, to date, exhaustive evaluation of
the ability of an STM to outperform sequential code. We
showed that STM can do so across a wide range of work-
loads and different multicore architectures. Whereas we do
not argue that STM is a silver bullet for general purpose con-
current programming, our results contradict [3] and suggest
that STM is already now usable for various types of appli-
cations. These results support the initial hopes about STM
performance and motivate further research in the field.

Many improvements could boost the STM performance
further, making it even more appealing. For example, static
segregation of memory locations, depending on whether
they are shared or not, can minimize compiler instrumen-
tation overhead, partially visible reads can improve privati-
zation performance, whilst reduction of accesses to shared
data can enhance scalability.

Acknowledgments

We are grateful to Tim Harris for running the Bartok-STM
experiments, to Calin Cascaval for providing us with the
experimental settings of [3] and to Yang Ni for running
experiments with McRT-STM confirming our speculations
about the impact of hyper-threading. We also would like to
thank Hillel Avni, Derin Harmanci, Michat Kapatka, Patrick
Marlier, Maged Michael and Mark Moir for their comments.

This work is funded by the Velox FP7 European project
and the Swiss National Science Foundation grant 200021-
116745/1.

References

[1] A.-R. Adl-Tabatabai, B. T. Lewis, V. Menon, B. R. Murphy,
B. Saha, and T. Shpeisman. Compiler and runtime support
for efficient software transactional memory. In PLDI ’06.

[2] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun.
STAMP: Stanford transactional applications for multi-
processing. In IISWC ’08.

[3] C. Cascaval, C. Blundell, M. M. Michael, H. W. Cain, P. Wu,
S. Chiras, and S. Chatterjee. Software transactional memory:
why is it only a research toy? Commun. ACM, 51(11), 2008.

[4] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early expe-
rience with a commercial hardware transactional memory
implementation. In ASPLOS ’09.

[5] D. Dice, O. Shalev, and N. Shavit. Transactional locking II.
In DISC ’06.

[6] A. Dragojevié, P. Felber, V. Gramoli, and R. Guerraoui. Why
STM can be more than a research toy. Technical Report
LPD-REPORT-2009-003, 2009.

[7] A. Dragojevi¢, R. Guerraoui, and M. Kapalka. Stretching
transactional memory. In PLDI "09.

[8] A. Dragojevi¢, Y. Ni, and A.-R. Adl-Tabatabai. Optimizing
transactions for captured memory. In SPAA "09.

[9] G. Eddon and M. Herlihy. Language support and compiler

optimizations for STM and transactional boosting. In ICDCIT
07.

[10] E. Ellen, Y. Lev, V. Luchangco, and M. Moir. Snzi: scalable
nonzero indicators. In PODC ’07.

[11] P. Felber, V. Gramoli, and R. Guerraoui. Elastic transactions.
In DISC 09.

[12] R. Guerraoui, M. Kapalka, and J. Vitek. STMBench7: A
benchmark for software transactional memory. In EuroSys
'07.

[13] T. Harris and K. Fraser. Language support for lightweight
transactions. In OOPSLA ’03.

[14] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing
memory transactions. In PLDI ’06.

[15] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer I11.
Software transactional memory for dynamic-sized data
structures. In PODC "03.

[16] Y. Lev, V. Luchangco, V. Marathe, M. Moir, D. Nussbaum,
and M. Olszewski. Anatomy of a scalable software
transactional memory. In Transact *09.

[17] V.]J. Marathe, M. F. Spear, and M. L. Scott. Scalable tech-
niques for transparent privatization in software transactional
memory. In /CPP ’08.

[18] Y. Ni, A. Welc, A.-R. Adl-Tabatabai, M. Bach, S. Berkowits,
J. Cownie, R. Geva, S. Kozhukow, R. Narayanaswamy,

J. Olivier, S. Preis, B. Saha, A. Tal, and X. Tian. Design

and implementation of transactional constructs for c/c++. In
OOPSLA 08.

[19] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional
memory. In ISCA "05.
[20] T. Riegel, P. Felber, and C. Fetzer. Dynamic performance

tuning of word-based software transactional memory. In
PPoPP "08.

[21] T. Riegel, P. Felber, and C. Fetzer. A lazy snapshot algorithm
with eager validation. In DISC "06.

[22] T. Riegel, C. Fetzer, and P. Felber. Automatic data partition-
ing in software transactional memories. In SPAA ’08.

[23] N. Shavit and D. Touitou. Software transactional memory. In
PODC ’95.

[24] M. F. Spear, V. J. Marathe, L. Dalessandro, and M. L. Scott.
Privatization techniques for software transactional memory.
In PODC °07.

[25] R. M. Yoo, Y. Ni, A. Welc, B. Saha, A.-R. Adl-Tabatabai,
and H.-H. S. Lee. Kicking the tires of software transactional
memory: why the going gets tough. In SPAA "08.

2010/2/2

