
A CO-DESIGN PLATFORM FOR ALGORITHM/ARCHITECTURE DESIGN EXPLORATION

Christophe Lucarz, Marco Mattavelli

Ecole Polytechnique Fédérale de Lausanne
Research Group in Multimedia Architecture (LSM Lab)

{christophe.lucarz, marco.mattavelli}@epfl.ch

Julien Dubois

Université de Bourgogne
LE2I Lab

jdubois@u-bourgogne.fr

ABSTRACT

The efficient implementation of multimedia algorithms, for

the ever increasing complexity of the specifications and the

emergence of the new generation of processing platforms

characterized by multicore and multicomponent parallel ar-

chitectures, requires appropriate design space exploration

procedures as preliminary step for any implementation. This

paper describes a new platform aiming at supporting the al-

gorithm and architecture co-exploration starting by a pure

software specification that is gradually transformed into a

possibly mixed SW and HW implementation. The process is

based on profiling capabilities supported by the new platform

specifically conceived to study and optimize data flows and

data transfers between SW and HW modules. Different ex-

plicit or implicit (i.e. virtual memory extensions) data transfer

modes can be profiled in the co-exploration process, by using

minimal SW reconfiguration, thus minimizing any SW/HW

re-writing effort in the co-exploration stage. Such optimiza-

tion capabilities can be used to achieve different optimization

objectives such as the optimization of memory architectures

or low power designs by appropriate minimization of data

transfers. Experimental results and an example of the usage

of the platform are provided for the design case of a motion

estimation module for video encoding.

Index Terms— SW/HW co-design, design space explo-
ration, virtual socket platform

1. INTRODUCTION

The increasing complexity of signal processing systems in

all fields, but particularly for video and multimedia process-

ing has already led to the development of algorithm specifi-

cations using software implementations that are the starting

point of the implementation process. Thus, they are the input

of any algorithm/architecture co-exploration step. In the case

of MPEG such specifications are still in the form of mono-

lithic C/C++ reference SW model for all recent existing stan-

dards (AVC and SVC) and will be in the form of a higher

level data flow model in the new MPEG Reconfigurable Video

Coding Standard [1]. In both cases of monolithic sequential

models or data flow models written in CAL [2] the execu-

tion time analysis of a function (for the C/C++ case) or the

action execution of a CAL actor (for the data flow case) im-

plemented in HW and the timing analysis of data or tokens

exchanges with the other SW or HW component are essen-

tial information for an appropriate design space exploration

stage aiming at optimizing concurrency and parallelism that

will be massively available in the next generation process-

ing platform. This paper, presents a design space exploration

methodology and an associated tool supporting the processes

of designing embedded systems starting from C/C++ or CAL

specification algorithms.

This paper is structured as follows: section 2 presents the

need of design exploration for sequential and data flow based

specifications, section 3 presents the virtual socket platform

including the supported profiling features, section 4 provides

an example of profile result and section 5 concludes the paper.

2. DESIGN SPACE EXPLORATION OF COMPLEX
MULTIMEDIA SYSTEMS

Initially, multimedia systems are specified by sequential

C/C++ programs called reference models. However, generic

sequential languages such as C/C++ are not good implemen-

tation independent descriptions of algorithms particularly for

parallel and concurrent platforms. Moreover, when optimized

they usually remain strongly related to specific processors and

DSPs for which the optimization is targeted.A better way to

specify and describe a multimedia algorithm is to use a high

level dataflow language. It exposes better the intrinsic con-

currency and parallelism as well as the data exchanges. CAL

[2] is a good formalism to describe in a compact form multi-

media algorithms [1]. For this it has been recently adopted by

ISO/IEC MPEG committee for unifying and specifying video

coding technology in a modular reconfigurable form. How-

ever, in both cases of specifications (expressed as sequential

models or CAL data flow models) the execution time and data

exchanges measurements for functions or actor’s actions is

a very important information for exploring the design space

of multicomponent heterogeneous platforms. In fact, if all

actors of a CAL model are independent concurrent entities,

1069978-1-4244-2571-6/08/$25.00 ©2008 IEEE ICME 2008

the sequence of actions executed is considered atomic within

data flow model simulations and requires the evaluation of the

execution time and the timing of all data exchanges as they

occur to correctly profile the system. For sequential models

the need of accurate evaluations of the speed-up achievable

and of the data bandwidth necessary by HW co-processing

units is obvious. Such evaluations, when available in the early

design exploration stage, can then be used with two different

purposes for the two forms of specifications. In the case of

a sequential model it is straightforward to understand how to

use the timing information since it provides a direct measure

of the achievable speed-up of one or more HW modules. In

the case of a CAL model if execution time and timing of data

transfers are available, it is possible to feed-back such infor-

mation to the CAL model execution scheduling thus enabling

the actual profiling of a CAL model. The interest of such

approach is that CAL models are intended to be the input of

SW and HW synthesis tools. Therefore, any tool that eval-

uates execution times of HDL synthesized CAL actors and

associated data transfers constitutes a powerful design explo-

ration tool because HDL descriptions of CAL actors can be

directly synthesized by the CAL specification itself. Since

it is very difficult to forecast how a synthesized (complex)

module behaves in terms of execution time and data access,

a platform that can profile such behavior abstracting from

what is ”outside” the actor itself constitute a very interesting

design exploration tool.

3. THE VIRTUAL SOCKET PLATFORM WITH
VIRTUAL MEMORY EXTENSION

The Virtual Socket concept implemented in a support plat-

form has been presented in detail in [3, 4, 5, 6] and has been

developed to support the mixed specification of MPEG-4

Part2 and Part 10 (AVC/H.264) specifications in terms of

reference SW including the plug-in of HDL modules. The

platform is constituted by a standard PC where the SW is

executed and by a PCMCIA card that contains a FPGA and a

local memory. Specifying explicitly the data transfers would

not constitute a serious burden when dealing with simple

deterministic algorithms for which the data required by the

HDL module are known exactly. Unfortunately for complex

design cases, when data transfers cannot be explicitly spec-

ified in advance by the designer or because the module has

been synthesized by a HDL synthesis tool a system that can

abstract from explicit data transfer can be extremely useful

for design exploration purposes because it avoids some of

the resource and time consuming design operations. The

Virtual Socket platform supporting virtual memory capability

allow automatic data transfers from the host, running the SW

part, to the local HW memory. The goal of such platform

implementation is to provide a ”direct map” of any SW por-

tion to a corresponding HDL specification without the need

of specifying any data transfer explicitly. In other words,

to extend the concept of Virtual Socket for plugging HDL

modules to SW partition with the concept of virtual mem-

ory. HDL modules and software algorithm share a unified

virtual memory space. Having a shared memory - enforced

by a cache-coherence protocol - between the CPU running

the SW sections and the platform supporting HW avoids the

need of specifying explicitly all the data transfers. The clear

advantage of such solution is that data transfers needed to

feed the HDL module can be directly profiled so as to explore

different memory architecture solutions. Another advantage

of such direct map is that conformance with the original SW

specification is guaranteed at any stage and the generation of

test vectors is naturally provided by the way the HDL module

is plugged to the SW section.

The Virtual Socket platform is composed of a PC and a

PCMCIA card that includes a FPGA and a local memory. The

Virtual Socket handles the communications between the host

(the PC environment) and the HDL modules (in the FPGA

inside the PCMCIA).

HOST - PC

HDL
module

0

HDL
module

1

HDL
module

31

Local Memory

Virtual Socket

Platform

HDL description of the functions

MPEG C# functions
Host

PCMCIA
FPGA
Card

Local
Memory

Virtual Socket
Platform

Window
Memory

Unit

HDL module

Virtual
Memory

Controller

virtual addresses

physical addresses

Fig. 1. The Virtual Socket Platform

Given that the HDL modules are implemented on the

FPGA, they each have a physical access to the local memory

(see figure 1). This was the case of the first implementation

of the Virtual Socket platform, with the consequence that all

the data transfers from the host to the local memory had to

be specifically specified in advance by the designer himself.

Such operation beside being error prone or be implemented

transferring more data than necessary it is not straightforward

and may become difficult to be handled when the volume of

data is comparable with the size of the (small) local memory.

Therefore, an extension has been conceived and implemented

so as to handle these data transfers automatically. The Virtual

Memory Extension (VME) is implemented by two compo-

nents: the hardware extension to the Virtual Socket platform

(Window Manager Unit) and a Virtual Manager Window

(VMW) library on the host PC. The cache-coherence pro-

tocol is implemented in the Window Manager unit (WMU)

using a TLB (Translation Lookaside Buffer) and is handled

by the software support (VMW). The HDL module is de-

1070

signed simply generating virtual addresses relative to the user

virtual memory space (on the host) to request data and ex-

ecute the processing tasks. The processing of the data on

the platform using the virtual memory feature proceed as

follows. The algorithm starts the execution on the PC and

associated host memory. The Virtual Socket environment

allows the HDL module to have a seamless direct access to

the host memory thanks to the Virtual Memory Extension and

allows the HDL module to be started easily from the software

algorithm thanks to the VMW Library. Figure 2 shows what

are the interactions between the unified virtual memory, the

reference software algorithm, and the HDL module.

Open platform
Configure platform
Set Parameters
Start_module()
Close the platform

Host
Processor

HOST HARDWARE

SOFTWARE

PLATFORM HARDWARE

Virtual
Platform
+ VME

HDL
modules
described
in VHDL

User Software
Virtual Memory

 is replaced by

is described in HDL

is executed by

SIO StatXYSigmaY(constCStatXY *Stat) {
SInnerAvr;
if (Stat->N<=1) return (SIO)NAN;
Avr=Stat->Sy/Stat->N;
return (SIO)sqrt((Stat-> Syy -

2*Avr*Stat->Sy + Stat->N*Avr*Avr) / (Stat->N-1));
SIO StatXYAreg(constCStatXY *Stat) {

SInner Delta;

drives

Fig. 2. Relations between the unified virtual memory, the ref-

erence software algorithm, and the HDL module.

Given a reference software so as to test each HDL mod-

ules separately, the designer needs to execute some parts of

the reference algorithm using the host processor and to test

and profile the HW modules on the Virtual Socket platform

that implements the support for the hardware. So as to easily

handle such mixed HW/SW specifications, it is very conve-

nient that the HDL and C/C++ functions have access to the

same user memory space. This memory is part of the host

hardware and contains the data to be processed. Such host

memory space is trivially available by the processor which

executes the reference software, but it is much less evident

for the Virtual Socket platform which is on the FPGA and is

the support for the HDL modules. For instance, when the de-

signer wants to run a piece of the code using the reference

software and the other functions using one HDL module, the

section of the reference code the designer intends to execute

in hardware is replaced by the following piece of code which

is called ”the HDL module calling procedure”:

int main(int argc,char *argv[]) {

/* [. . .] Reference Software Algorithm stops here */

/* Beginning of the HDL module calling procedure */

/******* OPEN / CONFIGURING THE PLATFORM *******/
Platform_Init(); // Virtual Socket
VMW_Init() ; // Virtual Memory Extension

/******* PARAMETERS SETTINGS *******/
Module_Param.nb_param = 4 ; // number of parameters
Module_Param.Param[0] = A ; // parameter 1
Module_Param.Param[1] = B ; // parameter 2
Module_Param.Param[2] = C ; // parameter 3
Module_Param.Param[3] = D ; // parameter 4

/******* HDL MODULE START *******/
Start_module(1, &Module_Param) ;

/******* CLOSING THE PLATFORM *******/
VMW_Stop(); // Virtual Memory Extension
Platform_Stop(); // Virtual Socket

/* End of the HDL module calling procedure */

/* [. . .] the Reference Software Algorithm continues*/

}

The HDL module calling procedure is composed of the

following very simple steps:

1. The designer must configure the platform by using the

Platform_Init() and VMW_Init() functions

from the Virtual Socket API and VMW API.

2. The designer must set a given number of parame-

ters needed for the configuration of the HDL mod-

ule. This can be done thanks to the data structure

Module_Param. Sixteen parameters are available for

each HDL module.

3. The HDL call function is started. This function writes

the parameters in the register memory of the Virtual

Socket platform (see figure 1). Start_module()
drives the Virtual Socket platform and the VME to acti-

vate the HDL module. This function is from the VMW

API.

4. When the entire job is finished, the platform is closed.

The VMW library manages all the data transfers be-

tween the main memory (unified virtual memory) and

the local memory of the platform because as the HDL

module is in a FPGA, it has access only this local mem-

ory. Thanks to the VME, the HDL module has access to

the host memory without intervention of the designer.

Data are sent to the HDL module and results are up-

dated in the main memory automatically thanks to the

software library support. When the HDL module fin-

ishes its work, the hardware call function is terminated

by closing the platform and the reference software al-

gorithm can be continued on the host PC.

1071

Access Variable Count (dword) Timing (us)
read pattern 64 -

read search window 560 1.280

write results 1 381.2

finish - - 381.300

read pattern 64 -

read search window 800 1.280

write results 1 603.000

finish - - 603.100

read pattern 64 -

read search window 1280 1.280

write results 1 1044.000

finish - - 1044.100

Table 1. Profiling results for three configurations of the mo-

tion estimation module: search window of 56x40 (top sec-

tion), 80x40 (middle section), 128x40 (last section).

4. EXAMPLE OF PROFILING RESULTS USING THE
VIRTUAL SOCKET PLATFORM

The Virtual Socket Platform can support the designer in the

design exploration phase by providing, with reduced design

efforts valuable information on the hardware performance and

data exchanges of parts of algorithms specified as sequential

or CAL models. In the case of CAL models the HDL code

for the actor under profile can be generated automatically by

a CAL2VHDL tool. The hardware block is then executed on

the Virtual Socket Platform obtaining results on data transfers

(how much, which one, when) and the execution time of the

hardware module.

Table 1 reports the profiling results for a motion estima-

tion module working at 50 Mhz for different configurations

of the size of the search window. The motion estimation al-

gorithm chosen for the example is a full search. It is not de-

scribed in this paper for brevity, more information is available

in [7]. The platform provides the type of access to the mem-

ory (Access), the names of the variables (relative to the SW

algorithm) requested by the module during execution (Vari-

able), the time at which each request is done (timing, in mi-

croseconds), the amount of data transferred (count, in words

of 32 bits) and the execution time.

Timing results reported in the table correspond to the exe-

cution of the motion estimation algorithm on an unique mac-

roblock: it computes only one motion vector (a pair of x and y

coordinates) for the given macroblock. The time taken under

account for the results are focused only on the HDL mod-

ule. The time taken by the Virtual Socket Platform to feed the

HDL module with data coming from the main memory (on

the host) are not taken into consideration (but can be mea-

sured). The profiling apply only to the execution of the HDL

module on the platform.

5. CONCLUSION

So as to be useful, the exploration of design space for HW/SW

co-design requires to reduce as much as possible unnecessary

low-lever design efforts. This paper presents a platform that

profiles the execution time, the data exchange flow and time

of a HW module that shares a virtual memory space with

the host SW. No explicit implementation of data exchanges

is necessary for the execution/validation of the module. The

platform is useful for exploring the design space of specifica-

tions based on sequential C/C++ or CAL based models.

6. REFERENCES

[1] Christophe Lucarz, Marco Mattavelli, Joseph Thomas-

Kerr, and Jorn Janneck, “Reconfigurable media coding: a

new specification model for multimedia coders,” in IEEE
Workshop on Signal Processing Systems (SiPS), Shang-

hai, China, October 2007.

[2] Johan Eker and Jorn Janneck, “CAL language report,”

Tech. Rep. ERL Technical Memo UCB/ERL M03/48,

University of California at Berkley, 2003.

[3] Paul R. Schumacher, Marco Mattavelli, Adrian Chirila-

Rus, and Robert D. Turney, “A virtual socket frame-

work for rapid emulation of video and multimedia de-

signs,” in Proceedings of the IEEE International Con-
ference on Multimedia and Expo (ICME), July 6-9, 2005
Amsterdam, The Netherlands, pp. 872–875.

[4] Ihab Amer, Choudhury A. Rahman, Tamer Mohamed,

Mohammed Sayed, and Wael M. Badawy, “A hardware-

accelerated framework with IP-blocks for application in

MPEG-4,” in Proceedings of the 5th IEEE International
Workshop on System-on-Chip for Real-Time Applications
(IWSOC), 20-24 July, 2005 Banff, Alberta, Canada, pp.

211–214.

[5] Tamer S. Mohamed and Wael Badawy, “Integrated

hardware-software platform for image processing appli-

cations,” in Proceedings of the 4th IEEE International
Workshop on System-on-Chip for Real-Time Applications
(IWSOC), Washington, DC, USA, pp. 145–148.

[6] Christophe Lucarz, Marco Mattavelli, and Julien

Dubois, “A HW/SW codesign platform for Algorithm-

Architecture mapping,” in Workshop on Design and Ar-
chitectures for Signal and Image Processing (DASIP),
Grenoble, France, November 2007.

[7] Julien Dubois, Marco Mattavelli, Lionel Pierrefeu, and

Johel Miteran, “Configurable motion-estimation hard-

ware accelerator module for the MPEG-4 reference hard-

ware description platform,” in IEEE Proceedings of Inter-
national Conference On Image Processing (ICIP), Gen-

ova, September 2005.

1072

