Swift Algorithms for Repeated Consensus

Fatemeh Borran Martin Hutle Nuno Santos André Schiper
Ecole Polytechnique &terale de Lausanne (EPFL)
1015 Lausanne, Switzerland
{firstnamé .{lastnamé@epfl.ch

Abstract—We introduce the notion of a swift algorithm. at the speed of the system, and therefore, are more “efficient
Informally, an algorithm that solves the repeated consenssi than non-swift algorithms. A swift algorithm for a repeated

is swift if, in a partial synchronous run of this algorithm, — ,ohlem s thus one in which eventually all instances of the
eventually no timeout expires,i.e., the algorithm execution e
problem are “efficient”.

proceeds with the actual speed of the system. This definition h o .
differs from other efficiency criteria for partial synchron ous In more detail, for the definition of swift we look at
systems. partial synchronous runge., runs where a bound on the

Furthermore, we show that the notion of swiftness explains transmission delay eventually holds foreVvdfor the good
why failure detector based algorithms are typically more pariod of such a run, that is the partial rud in which
efficient than round-based algorithms, since the former are boundA holds, we can define the actual transmission delay
naturally swift while the latter are naturally non-swift. W e v St
show that this is not an inherent difference between the 0([2) as the maximum of all transmission delaysfin Such
models, and provide a round implementation that is swift, —an actual transmission delay can be much smaller than the
therefore performing similarly to failure detector algorithms poundA. If in this case the execution time for each instance
while maintaining the advantages of the round model. of the repeated consensus eventually depends onfy Bin
(in contrast toA), the algorithm isswift

While intuitively swift algorithms progress at the speed of
messages in good periods, and non-swift algorithms pregres

Timeouts are often required to solve problems in dis-sometimes only by the expiration of timeouts, we refrained
tributed computing. Due to the FLP impossibility result,[1] from calling these two classes of algorithmessage-driven
there is a need of some minimal synchrony assumptions faandtimeout driven This is because the termessage-driven
solving the consensus problem, and timeouts are the donis used in [3], [4] with a different meaning, namely to refer
inant mechanism for algorithms to make use of synchronyo the way events are generated at a process. If processes are
assumptions. allowed to measure time2(g, with clocks or step counting),

Timeouts are often chosen conservatively, so that amhen it is possible to construct message-driven algorithms
algorithm is correct for a large number of real-life sceaari (according to this definition) that are not swift. On the
However, timeouts should be used only to cope with faultspther hand, if processes use an adaptive timeout, then the
and not slow down the execution time in good cases. Asilgorithm can be swift despite timeout expiration. Thuséhe
an example, when implementing communication-closed synterms are not suitable to precisely characterize this aéss
chronous rounds in a synchronous message passing systeatgorithms.
after a process sent its messages for a certain round it Other notions of efficiency for distributed algorithms have
usually waits for a timeout, before it terminates the roundbeen considered. The terfiast has been used to refer
and sends its messages for the next round. However, in martg (consensus) algorithms that solve consensus with less
runs of the algorithm, a process might have received alcommunication steps in favorable cases [5]. A favorable
messages from other alive processes already long befdre thaase corresponds usually to an execution without faults tha
It would be favorable to start the next round immediatelyis synchronous from the beginning. On the contrary, the
after all messages from correct processes are receivesl. Thiefinition of swift is related to the executiciime of an
is, for example, the case for an algorithm that usedfa algorithm in the context aepeatedconsensus. Furthermore,
failure detector (FD). Here, a process waits for a messagthe definition of swift considers also runs with faults. The
from some procesp until p is in the FD output. Ifp has notion of fast is orthogonal to the notion of swift: it is
crashed, this involves waiting for a timeout, but only once:possible to design both, fast algorithms that are swift and
later rounds profit from the fact that the failure detectorfast algorithms that are not swift. The same argument holds
“remembers” information about faults. We formally capture for early terminatingalgorithms [6].
such a behavior by the definition efvift, which we define N _ ,

. . . Note that such a run exists alse.g, in an asynchronous system, and
in the context of repeated consensus [2] The main IntUItIOQl” runs of a synchronous systems are of course also paytiehsonous.
behind our definition is that swift algorithms make progressThe definition is thus not limited to partial synchronousteyss.

I. INTRODUCTION

The paper makes the following two contributions. The first Reliability: If messagem is sent fromp to ¢ and
contribution is the definition of swift algorithms that wesju g performs an infinite number of receive steps, then
discussed. The second contribution is a new implementation eventuallym is received byg.
of a communication-closed rounds in a partial synchronous We consider partial synchronous runs, defined by a bound
system with crash faults. This new implementation leadsp on the process relative speeds and a botndn the
to swift round-based consensus algorithms, while previougansmission delay of messages [7]. For a ®anwe say
round implementations, including those described in [8], [that the process speed bouficholds in R if, in any partial
are not swift. This result is especially relevant in the con-run of R that contains® steps, every non-crashed process
text of comparing advantages and drawbacks of the failurgnakes at least one step. Further, we say that the transmissio
detector approach [9] with the round-based approach [7]delay A holds in R after some time if (i) any message
[10] for solving agreement problems. Indeed, failure ditec sent byp to ¢ at timet > ¢, is received the latest in the first
based algorithms, despite the usage of timeouts in the inveceive step after+ A; and (ii) every message sent before
plementation of the failure detector algorithm, are ndlyra ¢ is received the latest in the first receive step afer A.
swift. On the other hand, round implementations in a partial

synchronous model have some advantages over FD bas&gfinition 1 (Partial §ynchrony)A run B is (A7<I>).-part.ial
implementations [11]. Our new solution thus combines thesynchronousf there is a timeGST (G!ob_al Stabilization
advantages of both approaches. Time) such that aftelGST the transmission delay bound

The rest of the paper is structured as follows. In the nexé holds, the process speed boulidholds, and no process

section, we specify our model and give a formal definitionCraSheS afterGST.

of swift Then, in Section Il we show a simple round-based We call the time interval(GST,) the good period
consensus algorithm that is not swift, and in Section IV weof R. We say asystemis (A, ®)-partial synchronousif
show that the same consensus algorithm expressed usiegery runR of the system fulfills Definition 1. To simplify
a failure detector is swift. In Section V we present ourthe presentation, we assunde = 1, and write A-partial
main contribution: we show a new implementation of roundssynchronous fokA, 1)-partial synchronous.

that is swift. Section VI validates the theoretical analysi
with experimental results comparing the swift and non-swif
implementations. Section VIl concludes the paper.

Definition 2 (Actual parameters)Let R’ be a partial run.
Then 6(R') denotes the maximum transmission delay of
the partial run R/, i.e., the smallest valué such that the

o : =) ,
Il. DEFINITIONS AND MODEL transmission delay is bounded byin the partial run R’

If R’ is the good period of aA-partial synchronous

We consider a system aof processes connected by a .
4 P y system, thed(R’) < A. WhenR' is clear from the context,

message-passing network. Among theggocesses, at most X .
f may crash. We attach an in-queue and an out-queue t'\ge S{'r';nm)l/ Wr.':ﬁé' T_heﬂt:_oundﬁ may be knownt&i;ugknown.
each process, where for repeated consensus, the in-que r the aijgonthms in this paper, we assume nown.

contains the consensus proposals, and the out-queuemntaHO;Vszrii:irl:)nknown (it represents the performance metric
the consensus decisions. Processes execute an algoritﬁ)rfn 9 :

by taking steps, where a step can be either a send step. Repeated consensus

(p, SEND, m), in which a process sends a message to another \y,e focus on the repeated consensus problem. The in-
process, a receive stgp, RECEIVE, S),in which a (possibly qyeue and out-queue are queues of péirs), wherei is
empty) setS of messages is received, an input stedN. 1), g consensus instance number and value. In the repeated

in which a value is read from's in-queue, or an output step onsensus problem, for each instangcthe following holds:

(p, OuUT, O), in which a value is output tp’s out-queue. We « Validity: For every procesg, if (i,v) € Out, then
denote with/n,, (resp.Out,) the in-queue (resp. out-queue) there exists some procegssuch that(i, v) € In,.

of processp. In each step a process also performs a state , yniform agreementFor all processes, g, if (i,v) €
transition. Out, and (i,v’) € Out, thenv =v'.

We assume an abstract global discrete time. Without 10Ss , Termination:For every correct procegsthere exists
of generality, at each time at least one process makes a such that(i, v) € Out,,.
step. A single process can make at most one step at an))
time. Processes measure time by counting their own stepS- Swift algorithms
Channels satisfy validity and integrity.Channels are Before giving a formal definition of swift, we need to
reliable if additionally the following property holds: formalize the notion of execution time of an instance of
consensus.

2validity: A messagem that is received by; was previously sent by o . . .
some procesp to g; Integrity: A messagen that is sent fronp to g is Definition 3 (Executlon t'me-) Consider a runR of a

received byg at most once. repeated consensus algorithm. The execution tim&) of

Algorithm 1 OneThirdRule (OTR) (code of proceg} Algorithm 2 A non-swift round implementation (code @}

1. State: 1. rp+1 * round number */
2: zp eV 20 next_rp <1
3: decisionp € V 3: Reup <0 /* set of received messages */
4: Vie N: statepli] + L * state of instance */
4: Round r:
5: Sy 5: while true do
6: send(zp) to all processes 6: I + input()
EE 7: | for all {i,v) € I do °
8: if number of values receivedt 2n /3 then 8: statep(t] < (v, L) o
9: xp < = smallest most often received value 9: for all 7 : statep[i] # L do o
10: if more than2n /3 values received are equal tothen 10: msgs|i] < Sp” (statep|i]) 5
11: decisionp + v 11: | forall ¢ € II do =3
12: My + {(i, msgs[i][q]) : statep[i] # L} -
13: send Mgy, p,p) 10 ¢
instance: of consensus is defined as follows. kgt = 14 | <0
. . . 15: | while next_rp, = rp do
max{t : (i,v) is taken fr_omlnl- at some procesg at time ;. iy ip + 1
t}, towr = max{t : (i,v) is output toOut, at some process 17: if ip > TO then 2
i . _ 4. 18: next_rp < rp + 1]
p at timet}. Thent;(R) = tout — tin. 1o, reconeld) 9
Let A(A) denote algorithmA parametrized withA.3 20: Revp <= Revp UM
21: next_rp < max({r : (—,r,—) € Revp} U {next_rp})
Definition 4 (Swift algorithm)_ An_algorithm A(A) that 5., ro—7p »
solves repeated consensusswift if there are constants 23: | for all i: statey[i] # L do 2
k such that for every runR of A(A) that is A- 24 for all v € [rp, next_rp — 1] do 3
¢ €N r every runi of (A) 25 Vg € Tl: Mylq — mif IM (M,r,q) € Rev, S
partial synchronous with good periof#’, and includes an Ali,m) € M, else L =
infinite number of instances, there existsuch that for all 2e: statep[i] < Tp (statepli], M) £
instance: > /. we haveT(R) < k(S(R/) +c. 27: if the first timestatep [i}.decision # 1 then o
= ¢ - 28: O <+ O U (3, statep[i].decision)
Note that this definition does not refer to timeouts. Our29: | output(O)

definition only depends on the relation between system prop.___"» — "¢

erties (.e, transmission delays) and algorithm properties

(i.e., execution time), and therefore avoids any reference to

timeout expiration. Each iteration of the outermost loop is composed of three
parts:input & sendpart, receivepart andcomp. & output

_ _ _ _ part. In theinput & sendpart, the process queries the input
We illustrate swiftness and non-swiftness on simple congueue for new proposals (line 6), initializes new slots in

sensus algorithms. The algorithms we consider belong alhe state vector for each new proposal (line 8), calls the
to the same class of consensus algorithines, algorithms send function of all active consensus instances (line 10),
that requiref < n/3. We consider a round-based algo- and sends the resulting messages (line 13). The process
rithm, namely the OneThirdRule (OTR) consensus algorithnthen starts thaeceive part, where it waits for messages
from [10], see Algorithm 1. The round-based model hasyntj| either the timeoutl’O expires (line 17) or it receives
been introduced in [7]. In each round a process sends 3 message from a higher round (line 21). Finally, in the
its estimatex, to all processes (line 6) and then, after ancomp. & outputpart, the process calls the state transition
implicit receive step where only messages of roumday be function of each active instance (line 26), and outputs any
received, performs the state transition functigh (lines 8 new decisions (line 29). Note that some rounds may be
to 11) Algonthm 1lis aIWayS safe. For IiVeness, we need tW(bar“a”y Sk|pped (no message Sent, no message received’

rounds in which the sdfly of alive processes (at least/3) only transition function executed): this happens whenaver
receives all messages from processeBinand only from message from higher round is received.

IIl. A NON-SWIFT ROUND-BASED ALGORITHM

these processes. This property is cakgéce uniformitylt In Appendix A we prove the correctness of the round
can be ensured by the round implementation layer duringyplementation forTO > 2A + 2n + 5. We also show
the good period of a partially synchronous system. that for each instance of consensus started afte¥ST,

The implementation of the round structure is given by\ye have an execution time < 270 + & + 3n + 6. This
Algorithm 2. It is an extension of the implementation given gefines the maximum execution time. We now show that
in [11] with support for repeated instances of consensus. ine implementation is not swift by computing the minimum

3For models with known bounds on transmission deldysepresent this execution time for each instance of consensus.

knowledge. For models with unknowf, or asynchronous algorithms, we . . .
assumeA(A) to be a constant function,e., A(A) represents one single Lemma 1. Consider Algorithm 2 withl'O > 2A + 2n 5,

algorithm. n > 3f. Let R be a A-partial synchronous run. Let, be

iy S A (24 Algorithm 3 OTR with the failure detecto¢P (code ofp)
k d 1: State:
P T R 2 rp 1 /* round number */
T LI y T
3 zp €V
r+1 s
5 4 decisionp € V
T, r+1
q H— - 5: while true do
i K 6: send(rp, zp) to all processes
45 TO+n+2 1€ 7: wait until received values for round, from all processeg ¢ 0P,
a a 8: if number of values receivett 2n/3 then
9: xp < x smallest most often received value
Figure 1. lllustration for Lemma 1 10: if more than2n/3 values received are equal tothen
11: decisionp < v
12: rp < 7Tp+1

the first new round that is started aft&¥ST. Then for all
instances started in a roundr > ry, we have an execution

. Since the execution time is proportional to the parameter
timer; > A.

A and independent of the effective transmission délaje
Proof: We prove the result by showing that, for every implementation is not swift:

roundr > ro, every proces®p stays in round- for more
than A time.

Let¢, andt; be the time whemp starts and finishes round
r, respectively. Procegs may finish roundr either (i) by
the expiration of its timeout (line 17), or (ii) by receivireg
higher round message (line 21).

In case (i) we have, —t, = TO + (n +2) > A, that

Theorem 1. The round implementation of Algorithm 2 is
not swift.

Proof: In case thatl’O < 2A + 2n + 5, the algorithm
is not live. Therefore we only consid&rO > 2A + 2n + 5.
Assume by contradiction that the collection of algorithms
A(A) given by Algorithm 2 is swift. Then, there existc €
is the timeout;» send steps, one input step, and one outpuw’ such t_hat |/n ever;A_—parqal synchronous ru@ with a
. . good periodR’, there is anig such that, for all instances
step. Thugp stays in round- more thanA time. S , - .
- o) i > iR, 7(R) < k6(R') + c. For a contradiction, consider
For case (ii), we calculate the minimum duration of roundA(k(;(R/) + ¢). By Lemma 1, for all instances started after

r by determining the latest timg and the earliest time;, GST, we haver; > A = k6(R') + c. A contradiction. m
whenp could have started and ended roundespectively '

(see Figure 1). Let be the first process to finish roumdat IV. A FAILURE DETECTORBASED ALGORITHM THAT IS
time t¢. Then the earliest that may receive a round + 1 SWIFT

message is; + 3 (one input step by, at the start of round We consider now the OTR algorithm expressed with the

r+1, one send step, and one output stephty finish round failure detector)P (Algorithm 3). Intuitively it is easy to

7). Hence,t; = ¢¢ + 3. see that repeated execution of this algorithm is swift. &utje
Lett? be the time when started round. Procesg sends some time afterGST, the failure detector list contains ex-

aroundr message tp the latest by +n+1 (if the message actly the faulty processes. At this point, by line 7, all ewtr

to p is sent in the last send step). By assumptiok 7o, processes wait only for messages from correct processes

so t3 is after GST. Therefore,p receives the message at and, sincef < n/3, the condition on line 8 is always

mostd + n + 2 later ¢ is the maximum transmission delay true. Note that the failure detector model requires rediabl

in this run and, in the worst case, is taking an output links, contrary to the solution in the previous sectfom

step when the message is received, so that in total it takehis section we assume that links are reliable.

one output step, one input step, andsend steps, before = Repeated execution of Algorithm 3 is expressed by Al-

the next receive step). After one final output stegnters gorithm 4. The box in Algorithm 4 corresponds to line 7

roundr. This happens the latest by+J+2n+4. Therefore of Algorithm 3. For simplicity, we have not shown in

ty =15 +0+2n+4. Algorithm 4 the (trivial) implementation ofP. We assume
The minimum duration of round atp is t5 —t35 = (t&+ that both Algorithm 4 and the impIemeptation oP run in

3)—(ti+0+2n+4) = (t; —t5) —d—2n—1. To calculate fthe same partial synchronous system in the fc_)llowmg way:

t¢ — 2, recall thatg finishes round- by timeout and not by in every even step Algorithm 4 is executed, in every odd

receiving a higher round message, because by assumptigfepP the implementation ¢fP is executed.

no other process started a round higher thahefore q. The correctness of Algorithm 4 follows from the follow-

Thereforey stays in round a total oftS —t; = TO+n+2. ing lemma:

SUbsmuunth N té’ we Obtamt; B t; - (TO tnt 2) N 4Consider two correct processgsandq and line 7 executed by. If the

6 — 2”_ —122A+n+6- 5 > A, which means thap message sent hy is lost, andp’s failure detector never suspeajsthenp
stays in round- more thanA time. B s blocked forever at line 7.

Algorithm 4 Multiple instances of Algorithm 3 (code of)

Initialization:

rp <1
VieN: zp[i] + L
Vi € N: decisionp[i] < L

while true do

I « input()
for all (z,v) € I do
xpli] v
send(rp, zp, p) to all processes

while not received(ry, x4, q) from all processeg ¢ (P, do
receive(M)
Recv +— RevU M

O+« 0
for all i : xpli] # L and decisionp[i] = L do
if number of values receive@,, z’, —) > 2n/3 then
zp[i] + smallest most often valug’[s]
if more than2n/3 valuesz'[i] are equal tov then
decisionp[i] v
O+ OU{(i,v)}
output(O)
rp—1rp+1

Lemma 2. For Algorithm 4, there is eventually a round
GSR so that for all rounds > GSR, every correct process
receives a message from every correct process in raund

and receives no message from faulty processes.

step of round-—1, and to enter round at timet.5> Therefore
p executed the receive step of round- 1 at latest by time
t — 4, and all correct processes started the send steps for
roundr — 1 at latest by timeg — 4; these send steps finished
at latest by timet — 4 + 2n = ¢t + 2n — 4, and messages
are received at latest by time+ 2n — 4 + 6. Adding the
output step, all correct processes started rourtde latest
att' =t+2n—2+94.

By t” = t'+2n+2+4 all roundr messages are thus ready
for reception, and received b +2. Again byt”+2+2n+-2
all roundr + 1 messages are sent, and thus roundl ends
the latest at” +2+2n+2+6+2=¢+30+6n+6. W

Remark: Failure detector based solutions require reli-
able links. This has the following implication. In contrast
to partial round implementation of Section Ill, no round is
skipped,i.e., processes send messages for all rounds, and
wait for the messages from all unsuspected processes. This
implies that, unlike the round implementation in the prexo
section, it is no more possible to bound the time fra§T
until the first decision. To see this, note that @67, a
processp might be in a round- that is arbitrarily smaller
than the highest round numbey,,.. at that time. Since other
correct processes might wait in any roufigr < v’ < 7,44,
for the roundr message of procegs p cannot skip the
sending step of all rounds betweerandr,,,,. This takes

Proof: By the properties ofyP, there is a time where @n unbounded amount of time, &g, —r can be arbitrarily

the FD is accurate and complete,, a process is suspected 1arge. Note that the problem cannot be solved by packing all

if and only if it is faulty. In every round that is started afte Messages into a single one since, between the sending steps,
this time, every correct process waits for a message frorRfoces$ has to perform receive steps (to receive messages

every correct process.

Theorem 2 proves that Algorithm 4 is swift, by showing
that eventually every instance of consensus decides in at

most 36 + 6n + 6.

Theorem 2. For a run of Algorithm 4 withn > 3f and

from the other correct processes).

V. A NEW ROUND IMPLEMENTATION THAT IS SWIFT

We show now that the implementation of the round model
can be made swift. Like in the failure detector approach,
each process estimates a set of alive processes (the comple-

an infinite number of instances of consensus, there is af'€ntary of the set of suspected processes) and uses this set

instanceig such that for alli > i, we haver; < 30+6n+6.

input steps are in a round aftéfSR. Let iy be the largest
consensus instance started in a round befas& (instance
1 is started in the round in which the last process start%
instancei). Consider an instancé > i5. The maximum)
execution time ofi corresponds to the maximum duration

to terminate a round earlier aftétST, namely, as soon as it
receives all messages from the alive set. Contrary to the fai

Proof: Let GSR be the round defined by Lemma 2. ure detector approach, the algorithm tolerates message los
Since in every input step only a finite number of instanced?y using a timeout which expires only befot@ST'. Like
are read, there is an input step so that this step and all laté the round-based implementation, processes resynatroni

after message loss by skipping rounds. Skipping rounds also
allows the algorithm to decide in a bounded time aff&i 7.

Issue to address
Combining the termination of a round upon reception of

of two rounds. This follows from Lemma 2, which ensuresall messages from alive processes, and the round-skipping
that instance decides in at most two rounds. It remains to mechanism, requires some attention. The problem is illus-
calculate the maximum time for two rounds aftefR.

Let ¢ be the first time a process, sy starts round- >
GSR. Sincer —1 > GSR, p received round — 1 messages

trated in Figure 2. In this scenaripg’s round » message
is the last message needed py to have all roundr
messages. Let us assume that upon receiving this message,

from all C_O”eCt p_rocesses. This must have happened thesyote that we have to double the time for a step, since onlyyesecond
latest by timet — 2 in order to allowp to execute the output step is of the asynchronous algorithm.

missed message! Algorithm 5 A swift round implementation (code of)

. r+1 | 11y 1 /* round number */
P1 2: mext_rp <+ 1
\ 3: Rcup + 0 /* set of received messages */
N 4: Vie N: statepli] + L [* state for instance */
p2 5 while true do
6: [input & send /* lines 6-13 of Algorithm 2 ¥
p3 7. ip < 0;
8: timeoutp < TO
9: while next_rp, = rp do
Figure 2. New round implementation: issue to address 10: ip 4= ip + 1
11: receive(\)
12: Rcvp < Revp UM
13: Alivep, < {set of processes from whom
p2 immediately sends its rount+ 1 message to all. In this y v It:l?re is §|<ﬁ]\14essage>wﬂh]l%n lagIﬁA stepg o
: : It Vg € Alweyp : qTp>q) € Licvp then ‘©
case, process; may receive the roun_d+ 1 message op, 1s. newt_rp 1 + 1 g
before the rounad message ofs. If p; jumps to round-+1 16: if ip > timeout, then
upon receiving the first round + 1 message, it will miss 17 next_rp <= 1p 41
) : . - 18t r < maz{r : (—,r,—) € Rcvp}
p3's round r message, thereby breaking space unn‘ormltyig_ if > 1o+ 1 then
. P
on roundr. This situation may repeat in every round, thus 2o: newt_rp v
preventing the algorithm from deciding. We show now how?21: f'f ﬂ:ﬁfef_lstat_mefﬁage from roungd + 1
H or the first tmethen
we address this problem. 29 timeout, min{i, + TOp, TO}
B. The full algorithm 23; [comp. & output /* lines 22-29 of Algorithm 2 ¥

24:
The ideas described above are used in Algorithm 5;

Tp < next_rp

which is a round implementation that is swift. Algorithm 5
enhances Algorithm 2 as follows:

@0

Each procesg maintains an estimation of the set of discussed, Algorithm 1 is always safe (with > 3f).
alive processes inllive, (see line 13), and updates it Before proving that the round implementation given by

every TO 4 steps.TO 4 is thus the timeout used to Algorithm 5 provides liveness, we show some properties of
suspect faulty processes. the algorithm—related to correctness—that hold aiérT".

(i) A process goes directly to the next round if it receives When the good period starts at'ST, processes will

a message from all processes in its alive set (lines 14synchronize to the same round using the following two
15). This is the key point to make the algorithm swift. mechanisms: (i) when a process receives a higher round

(i) In any case, a process goes to the next round afi@r message, it advances rounds either immediately (line 20),

(iv)

v)

time (lines 16-17).1°0 is thus the timeout for a round or within TOp (lines 21-22), or when the original timeout
in bad periods. TO expires; (i) in any case, processes remain in a round
When receiving a round message from the next roundit most 70O time, starting a new round when this timeout
for the first time, the process waits for at mdgO p expires (lines 16-17 and line 22). Therefore, shortly after
steps before going into this round (lines 21-22). ForGST, there will be a procesg that starts a new round
this and the last point, each processmaintains a r that is higher than any round started by the other alive
variable timeout,, initially set to TO (line 8) which processes. When the other processes receive the round
is modified when a round + 1 message is received message fronp, they will advance to round and send
(line 22). This is used to address the problem describetheir own messages. These messages are then received by
in Section V-A. all alive processes, resulting in a space uniform round.
When receiving a message from a round higher than As discussed in Section V-A, a round+ 1 message
the next roundi(e. larger thanr, + 1), the process may be received before all round messages (Figure 2).
immediately goes to this round (lines 19-20). This To address this issue, if a processn round r receives
ensures a fast resynchronization of the processes after message from round + 1 for the first time and it has

a bad period. not received all the messages from its alive set, it does

We now show the correctness of this solution (Secnot advance immediately. Instead, it waits either for an
tion V-C), and that the algorithm is swift (Section V-D). additional TOp or until the end of the original timeout,

C. Correctness

whichever comes first. During the good period, all the
remaining roundr messages will be received before this

Algorithm 1 together with Algorithm 5 solves repeated revised timeout expires. To see why, notice that for a pces
consensus in a partial synchronous system. As alreadyp send a round- + 1 message, it must have received

all round r messages from the alive processes, so thesdlive set becomes accurate the latest 67 + TO +
messages will also be received by procgsgithin at most 70 4 +n+4 (line 13). This follows from Lemma 4, with,
TOp = A+ (n— 1), namelyn — 1 send steps and\ being at latestGST +TO +n+ 2. Then, once thellive set
maximum transmission delay. In any case, all messages wilk accurate aftetzST, it no more changes and therefore no
be received before the original round timeout, so the pcedurther timeout expires. Finally, all processes finish msin
only has to wait for the minimum of'Op or what is left as soon as all messages from alive processes are received
of TO. and advance round by lines 14-15, rendering the algorithm
If a process in roundr receives a message from round swift.

r+ 2 or higher, it can conclude that the good period has nml'heorem 4. Consider Algorithm 5 withn > 3f and the
yet been started, gpadvances immediately to roundt 2. following tir.neoutS'TOD g A+(n—1), TO > TOp +

This holds for the following reason. Assume that the SySten&A—i—(Qn—l-S) and 704 > TO+A+(2n+1). Let R be aA
) A —_— . -

is in a good period, and let some processend a round . .
g P proces partial synchronous run. Then every consensus instande tha

r + 2 messages; then either @received all round =+ 1 oo atters T X with X = T04+3(TO+n-+2)+2,
messages, including's message, which is not possible; or ST
has an execution time of < 36 + 3n + 5.

(i) the timeout for round-+ 1 expires, which is not possible
as the timeout is chosen in a way that processes have enough Proof: Let ig be a new consensus instance started at
time to receive all round messages and messages are not ltishe t, > GST + X. Such an instance exists, because the
in the good period. This shows a contradiction: the systeninput queue contains an infinite number of elements and each
cannot be in a good period. input step reads a finite number of instances. hdte the

Thus we can show: process that started instange(last process doing an input
step forig) andr; the round where it was started.

We will first show that rounds > r; — 1 are space
uniform. By lines 8, 16 and 22 of Algorithm 5, processes
Sremain on a round for at mostO + n + 2 time. There-
fore, the first round started afte#ST starts the latest at

Theorem 3. Consider a run of Algorithm 5 witth > 3f
and the following timeoutsTOp > A+ (n — 1), TO >
TOp +2A+ (2n+5),andT04 > TO + A+ (2n+ 1).
Let R be aA-partial synchronous run. Then every consensu
inst that starts atdecides the latest atax(t T

instance that starts atdecides the latest aax(t, GST) + to = GST + TO + n + 2. By Lemma 4, the latest at

T04+2T0+ TOp + 34+ (6n +15). t;1 = to+T0O4+2 all processes have the saméve set, and

The proof is based on the following two lemmas (for theby Lemma 3, all rounds started aftgr are space uniform.
proof see Appendix B). The first establishes that eventuallyTrherefore the first space uniform round, starts the latest
rounds are space uniform (see Sect. Ill): at timety = t;1 + TO + n + 2, andr’ + 1 the latest by

Lemma 3 (TimeoutsTO and TO p). Consider Algorithm 5 t3b:_ 2 +72(T0 + 7 +2). Expanding this egpression, we
with n > 3 f and the following timeoutsTOp > A+ (n — ot taints = GST + T_OA+3(TO+”+2)+2 = GST+X.
1), TO > TOp + 2A + (2n + 5). Let R be a A-partial Sincer; startgd at time, > GST + X, roundsr > r; — 1
synchronous run, and,. the time the first process starts a are space uniform.

new roundr after GST, such that all processes have the q U,Sd'ng t‘)rheore? 3 we can concludedthat mstan]@esh
sameAlive set aftert,.. Then roundr is space-uniform. eciged by rouna; + 1 We. are now ready to compute the
maximum execution time afy. By definition, we have; =

The previous lemma requires all processes to have the —t,, wheret, is the time when the last process performs
same Alive set. Lemma 4 shows that this becomes truean output step for roung (andt, is previously defined). To
shortly afterGST. determine the upper bound on we’ll compute the smallest
Lemma 4 (Timeout TO). Consider Algorithm 5 with, > and the largest values for timesandt., respectively. Since
3/ and the following timeoutsTOp > A+ (n—1), TO > by assumptiort happens_ln round;, thent, is smallest if
TOp +2A+ (2n+5), and TO4 > TO + A+ (2n+1). PIS the f|r_st process starting the round. The largest _/a_lue_for
Let R be a A-partial synchronous run. Let, be the time fe IS the time of the output step of the last process finishing

the first process starts a new roundafter GST. Then by ~roundr; + 1. Next we computé..

timet, + 2+ TO 4 all processes have the samidive set. Since roundr; — 1 is space uniform, procegsreceived
all round r; — 1 messages before advancing to round

D. Swiftness hence the latest by, — 2 all alive processes had sent their
In order to show that Algorithm 1 together with the round roundr; — 1 message t@. By ¢, +n — 2 all roundr; — 1
implementation provided by Algorithm 5 is swift, we show messages were sent, aAdtime later received. Thus, by
that the execution time of a consensus instance depends only+d+2n all processes entered roundand finished sending
on ¢ and not onA. all messages: time later all round-; messages are received

The main properties of the algorithm related to the swift-and by time¢s + 26 + 2n + 1 all processes started round
ness, which hold aftelGST, are the following. First, the r;+ 1. By a similar reasoning, by tim& + 36 + 3n + 3, all

processes finished roung + 1. Hence, instancé, ends at a random variable, reflecting the non-deterministic bedravi
timet, = t, + 30 + 3n + 3, and we have; = 36 + 3n + 3. of a physical network.

] In the following, NS-OTR, S-OTR, and FD-OTR de-

note respectively the non-swift OTR (Algorithm 1 + Algo-

VI. EXPERIMENTAL RESULTS rithm 2), the swift OTR (Algorithm 1 + Algorithm 5), and

])] OTR with FD (Algorithm 4 +{P).
In this section we present the results of an experimental

study, comparing the three algorithms presented prewious|A: Emulated network
The main questions we want to answer are (i) how much We used ModelNet [12] to emulate a network. ModelNet
improvement can be obtained in a round-based algorithnuses two types of nodes:c@re nodethat applies the traffic
using a swift round implementation, and (ii) are swift round policies, and one or moredge nodethat run the application
implementations competitive with implementations that us being tested. The edge nodes redirect all traffic sent by
failure detectors. the processes to the core node, which applies the traffic
Experimental setup:We performed our experiments policy (e.g, delay, loss and maximum bandwidth) and then
both on an emulated network and directly on a physicafransmits the packet to the intended receiver. We varied the
network (a cluster). The emulated network allowed us to tesemulated delay and loss rate, while leaving the emulated
the behavior of the algorithms with different transmissionbandwidth set to 1Gbps. We used two physical machines for
delays and message loss rates, while the physical netwoidl experiments run on ModelNet. All 4 replicas were run-
shows what to expect on a cluster environment. ning on a dual Pentium 4 at 3.6GHz with 1GB RAM, while

In all experiments, processes were started with 1 secondl€ core node was a Pentium Pro at 200MHz with 70MB
of delay between each other. This prevents initial syn-0f RAM. The machines were connected by a full duplex
chronization and exercises the ability of the algorithms tol00Mbits Ethernet, and had a ping time of approximately
resynchronize the processes. 0.3ms. Hence, b ~ 0.3 + demu-

The metric considered is the decision time for each 1) Varying the timeoutin the first set of experiments,
consensus instance. Processes run each instance selentid’e fixed the emulated transmission delay while varying the
starting the next one either when they decide, or when theffmeout 7O used by the algorithms. Figure 3 shows the
learn the decision by receiving a message from a highef€Sults fordc,., = Oms and Figure 4 fob.,., = 40ms. The
instance. Each data point shown on the plots below wag& Scale indicates the timeoufO used by the algorithms
obtained from a 10 minutes run. We then calculated thd© terminate a rounél.For the tests Withe,, = 40ms,
average decision time, ignoring the first 10% of the run.the failure detector was configured with = T0/2 and
For each data point, we show the 95% confidence intervalg, = T0- The rationale is that TO is the time an algorithm

Implementingd? and reliable channels for the failure should wait before de<_:lar|ng a failure and taklng correctiv
detector algorithm:We implementedy? by having each Measurese.g, advancing rounds or suspecting a process.
process send heartbeats to all everyime. A processy With demu = Oms, following the same policy would result
suspect if it does not receive any heartbeat for more than " the network being overloaded with heartbeats, so we opted
time. We also implemented reliable channels using messad@r n=TO and7 = QTO',) .)
acknowledgments and retransmission. We decided not to use_The results clearly validate the main motivation behind

TCP, because our initial experiments using TCP resulted iﬁh's work, in that S-OTR performs at the speed of the

ery poor performance under high message loss cond't'ong'.etwork’ being indepenqent from the timeout.
very poor p . 9 g " With 0¢my = Oms (Figure 3-left), FD-OTR performs

TCP is designed to interpret message loss as an indication : : s o
of congestion, and therefore it reacts by increasing thé)oorly with low timeouts. This is caused by the additional

retransmission time. On a typical TCP implementation, thdnessages sent by the failure detector and the reliable chan-

interval between retransmissions may reach several mrinuteneIS implementation, which slow down the processes and

which in practice forces the algorithms running on top of jrcongest the ”e.tW‘?F"- For higher timeouts, this overhegd
0 stop. becomes less significant and the algorithm starts perfgrmin

Notation: In the followina. 5. .. denotes the one-wa similarly to the other implementations. When looking only
S 9: Onet Y at NS-OTR vs S-OTR (Figure 3-right), it is clear that the
transmission delay of the physical netwodk,,, the delay

emulated by ModeINet, antl; the effective one-way trans- de(_:|S|on t|me_of NS-OTR increases linearly W|t_h the tlme_out
o . hile S-OTR is constant. Furthermore, even with the optimal
mission delay between two processes. On the experimenis

run directly on the physical networK.s = d,.:. However, Imeout of 2ms, NS-OTR performs worse than S-OTR,

when using ModeINets,; — 20,e: + Sum, Since each because no fixed timeout can approximate perfectly the time

packet is transmitted two times on the physical networl%?:r;'tr?:rfj Igrr?)l?;%;ess to receive all messages (it fltesua

(see Section VI-A). Finally, note that contrary dodefined
previously in the papef,.: is not a bound. Instead, it iSs ®Equivalent to2A on the NS-OTR andA for the S-OTR.

Time per consensus Time per consensus

25
350 3 ~NS-OTR ——NS-OTR
\ S-OTR i S-OTR
300F \ H \
\ -¢-FD-OTR 20¢ \]
250¢ \ 1
% \ @ 15f]
2 200} ! 1 £
) | Q \ i
IS L ! 4 g +
= 190 | = 107 _ |
\ \ A
X \ _
1001 R 1 \ 4/
\\\ 57 +]
50+ . 1
0 — e — *%:;;iﬁ; —s——% 0 I I I
0 2 4 6 8 0 2 4 6 8
Timeout (ms) Timeout (ms)

Figure 3. Performance on ModelNet withy ~ 0.3ms (demu = 0, 20net ~ 0.3). The figure on the right repeats NS-OTR and S-OTR from thi lef
with a different time scale.

Time per consensus Time per consensus

2000 : 150 “or
——NS-OTR -¢-FD-OTR
S-OTR
-+-FD-OTR
1500f]
2 g
o 1000f o 100¢]
E E
= \\\ . S680-6 — 6 ————— Gmm e o
\
500F \
\\}777%4
0006-6 - -6 - - - - - e - —7—7—;
% 40 50 60 70 80 90 % 40 50 60 70 80 90
Timeout (Ms) Timeout (ms)

Figure 4. Performance on ModelNet witliy =~ 40.3ms (§emu = 40, 2dnet = 0.3). The figure on the right repeats S-OTR and FD-OTR from thie lef
with a different time scale.

With d¢me = 40ms (Figure 4-left), NS-OTR performs the underlying failure detector. Recall that in the absence
poorly with timeouts lower thai®0ms. For timeouts lower of message loss, the values chosen for the failure detector
than60ms, the algorithm took hundreds of rounds for each(i.e, = = 2n) prevent false suspicions, so FD-OTR can
decision, so we did not show the results as they were ngbroceed at the speed of the network. The overhead of the
statistically significant. Notice the#0ms ~ 265, which implementation of failure detectors and reliable chanieels
matches the results from the analytical analysis, where &ss in this scenario, as shown in Figure 4-right, where FD-
round must lastl’'O = 2A in order to ensure decision. The OTR performs only slightly worse than S-OTR.
swift version S-OTR is more tolerant to a non-optimal time-
out, being able to synchronize even with timeouts slightly 2) Message lossFigure 5 shows the behavior of the
above40ms. This is because processes finish rounds earlyalgorithms in networks with message loss. The experiment
after receiving all messages, allowing the processes teat awas run on ModelNet withd.,,,, = 0. Both the swift and
behind to slowly catch-up with the ones in the lead. the non-swift versions were configured with a timeout of

10ms. The failure detector was configured with= 10ms

FD-OTR is also independent of the timeout, producingand r = 25ms, so that it tolerates 2 or 3 lost heartbeats
the optimal performance regardless of the values used fdvefore (wrongly) suspecting a process. The reliable cHanne

Time per consensus Time per consensus

150 w 25 w
——NS-0TR T ——NS-OTR
S-OTR S-OTR
-+-FD-OTR 20~ °-FD-OTR
1007
) @ 157
g gr
))
E E
[& i= 10r
50F Pt
- - =)
T - S - 5
4»—/ /w—/ — -
e
0 : ‘ ‘ ‘ 0 : ‘ : : ‘
0 0.1 0.2 03 0.4 0 2 4 6 8 10 12
Loss probability Timeout (ms)
Figure 5. Performance with message logg; ~ 0.3ms (20net ~ 0.3, Figure 6. Performance on clustef f ~ 0.1ms)
Semu = O)

, i) rounds to finish without receiving all required messages,

implementation retransmits a message eiy.s. leading to unstable performance. The timeout of S-OTR can
Both NS-OTR and S-OTR are very resilient to messagg,e get to a conservative value, making the algorithm immune

loss. Even with 40% messages loss, the average decisiq§ non-deterministic factors, while still providing opth

time is only a few milliseconds more than with no message)erformance.

loss. This is because the algorithms make progress as SOONEp_OTR suffers again from the overhead of the imple-

as a single process receives three messayesy, i-e., W0 mentation of failure detectors and reliable channels Jtiesu
messages from other processes since its own messagejdSa performance worst than S-OTR.

always delivered. FT-OTR performs worse because it waits
for messages from all processes that are not suspected, so VII. DiscussioN
that a single message loss in a round is enough to delay Table | summarizes the results of the paper. We have
progress (suspecting a process requires more than a singl@alyzed the efficiency of algorithms for solving repeated
message loss). consensus in two models: the round-based model (which

S-OTR outperforms both NS-OTR and FD-OTR in the can be implemented on top of a partially synchronous sys-
presence of message loss. In particular, the performance ¢dm), and the asynchronous system augmented with failure
FD-OTR degrades significantly with message loss, causedetectors. Efficiency refers here swiftness a new notion
by the overhead of the retransmissions to simulate reliabléhat captures the fact that an algorithm, once the system has
links. stabilized, progresses at the speed of the messages. Our new
round-based implementation combines the advantages of
failure detector solutions (swiftness) and round-basedeho

For the tests with the physical network, we used a cluste(lossy links). This weak link assumption makes round-based
of Dual Pentium 4 at 3.00GHz with 1GB memory connectedalgorithm easy to adapt to the crash-recovery model with
by a 1Gbit Ethernet. Each process run on a separate nodgable storage [11].
and the ping time between two nodes was between 0.1 and We have illustrated the new round-based implementation
0.2ms. The failure detector was configured with= 70O on a specific consensus algorithm (OTR). This does not
andr =2TO.

Figure 6 shows that on the cluster even a timeoutrak

B. Physical network (cluster)

; ; _ Classical New
is enough for OTR to terminate. S-OTR always outperforms round-based [11] FD-based [8] round-based
the two other algorithms. Compared to NS-OTR, even (Algorithm 2) (Algorithm 4) (Algorithm 5)

with a 1ms timeout, S-OTR performs better. Lowering the

. . . . Link lossy reliable lossy
timeout of NS-OTR may improve its performance, but with Exec. time 4A + 5 + 0(1) 36 +0(1) 38+ O(1)
such small timeouts the algorithm becomes sensible to the Swift no yes yes
normal variability of the system, which is caused by non- Table |

deterministic factors like OS scheduling and background REPEATED CONSENSUSALGORITHMS ANALYZED IN THE PAPER
activity, either on the hosts or on the network. This will sau

mean that the new solution is limited to OTR. It applies [8] E. Gafni, “Round-by-round fault detectors (extended- ab
to any consensus algorithm expressed in the round model,

in particular to the_astVotingalgorithm [10], a round-based

variant of Paxos [13] that requires onty> 2f.
REFERENCES

[1] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impodipi
of distributed consensus with one faulty procegdsiirnal of
the ACM vol. 32, no. 2, pp. 374-382, Apr. 1985.

[2] C. Delporte-Gallet, S. Devismes, H. Fauconnier, F. tPeti

stract): unifying synchrony and asynchrony,”’Rmoceeding of
the 16th Annual ACM Symposium on Principles of Distributed
Computing (PODC'98) Puerto Vallarta, Mexico: ACM
Press, 1998, pp. 143-152.

[9] T.D. Chandra and S. Toueg, “Unreliable failure detestfmr

(10]

and S. Toueg, “With finite memory consensus is easier than

reliable broadcast,” iOPODIS 2008, pp. 41-57.

[3] M. Hutle and J. Widder, “On the possibility and the impiess [11]

bility of message-driven self-stabilizing failure defect” in

Self-Stabilizing System2005, pp. 153-170, appeared also as

Brief Announcement at PODC’05.

[4] M. Biely and J. Widder, “Optimal message-driven impleme

tations of omega with mute processeACM Trans. Auton.
Adapt. Syst.vol. 4, no. 1, pp. 1-22, 2009.

[5] L. Lamport, “Fast paxos,Distributed Computingvol. 19,
no. 2, pp. 79-103, 2006.

[6] N. Lynch, Distributed Algorithms Morgan Kaufman, 1996.

[7] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the

presence of partial synchronyJournal of the ACMvol. 35,
no. 2, pp. 288-323, Apr. 1988.

(12]

(13]

reliable distributed systemsJournal of the ACM vol. 43,
no. 2, pp. 225-267, Mar. 1996.

B. Charron-Bost and A. Schiper, “The heard-of modeineo
puting in distributed systems with benign faultBistributed
Computing vol. 22, no. 1, pp. 49-71, 2009.

M. Hutle and A. Schiper, “Communication predicates: A
high-level abstraction for coping with transient and dyi@am
faults,” in Dependable Systems and Networks (DSN 2007)
IEEE, Jun. 2007, pp. 92-10.

A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostic,
J. Chase, and D. Becker, “Scalability and accuracy in a large
scale network emulatorSIGOPS Oper. Syst. Revol. 36,

no. Sl, pp. 271-284, 2002.

L. Lamport, “The part-time parliamentACM Transactions
on Computer Systengl. 16, no. 2, pp. 133-169, May 1998.

p1 to start, some the timeout of roundof some process has
\‘A A/‘ to expire. []
P2 FAERETREL TOp 11711 o Lemma 6. Consider Algorithm 2. LetR be a A-partial
K = y synchronous run. Then by tin@ST + TO + (n + 2) at

least one process has started a new roupd
Figure 9. TimeoutTO > TOp + 2A + (2n.+ 5) "We call a message ready for reception if it must be receivat thie
next receive step of the receiver process.

Proof: Let p be the process with the highest round

pP1
A A numberr among all processes. Then the lemma is fulfilled,
N if p is at least in round + 1 by the given time. However, in

1’1 n 1’11 n a good periodp can be in round at most forT0O + (n+2)
TO y time, the timeout and the time for an input, an output, and
n send steps.]

Figure 7. Timeout?'O 2 24 + (2n +5) Lemma 7. Consider Algorithm 2 withf'O > 2A+(2n+5),

n > 3f, and a A-partial synchronous runR. Let rq be
APPENDIX the first new round that is started afté*ST". Then for all
instanceg started in a round- > ry, we have an execution

A. Proofs for Section Ill :
fools Tor Section timer; <2TO 4+ 6 + (3n + 6).

Theorem 5. Consider a run of Algorithm 2 withl'O >

2A+(2n+5) andn > 3f. Let R be aA-partial synchronous ~ Proof: (See Figure 8 for illustration.) Let be an
run. Then every consensus instance that starts decides instance started in a round> r, by a procesg. Recall
the latest atmaxz(GST,t) +3TO + A+ 4n + 8. that Algorithm 2 needs at most two space-uniform rounds

to decide. Since by Lemma 5 roundsndr + 1 are space-
uniform, all processes decide instaridey roundr +1 (i.e,,
they output(i, z) at line 29, wherer is the decision).
Lemma 5. Consider Algorithm 2 with['O > 2A + (2n+5) It remains to calculate the maximum time for roumdmnd
andn > 3f. Let R be aA-partial synchronous run. Let, r + 1. Let p be the first process to start rouncht timet,..

be the time the first process starts a new rourafter GS7T. Proces® will finish roundr the latest at,. + 70 + (n+2),
Then roundr is space-uniform. and start the send steps for round- 1, 1 step later. By
time ¢, + TO + 6 + (2n + 3), p’s roundr + 1 messages
are ready for reception at all processes. At this point, all
processes have finished executing the send steps for round
r (processp’s roundr messages forced them to advance)
and are either executing receive steps for rourat have
entered round+ 1. Therefore, all processes will enter round
r+1 at mostl step after receiving’s roundr + 1 message.
Roundr + 1 will take at most7TO + (n + 2) time, so by
time ¢, + 270 + § + (3n + 6) all processes have finished
roundr + 1.]

Following lemmas together with the results of [10] proves
the theorem.

Proof: (See Figure 7 for illustration.) Lat be the first
process to finish the input and send steps for roundt
time t, (ts < t. + (n + 1)). We show that (i) all round
messages from all alive processes are ready for recépition
timet,+ TO, and (ii) no process expires its roundimeout
beforet; + TO. This implies that rouna is space-uniform.

(i) By time t, + A the roundr message fromp is ready
for reception at all processes. Every processill make a
receive step at most + 2) time later (if at timet; + A ¢
was on a output step of a round < r — 1, then it must
make one input step andsend steps before the next receive B. Proofs for Section V
step). After receiving the round message, every process]) .
performs an output step for its current round, advances tb€mma 3. Consider Algorithm 5 withe > 3f and the
roundr, performs one input and send steps. Therefore, by following timeouts:TOp > A + (n — 1), TO > TOp +
time t, + A + (2n +5), all processes have finished sending22 + (27 +5). Let R be aA-partial synchronous run. Let
their roundr messages, andl time later, by timef, +2A+ t,. be the time the first process starts a new roundfter
(2n 4+ 5) = t, + TO, all roundr messages are ready for GST. Let all processes have the saméve set at aftert,.

reception at all alive processes. Note that this time isigtil 1"€n roundr is space-uniform.

the good period, since, + 7O =t + TO + (n +1). Proof: Let p; be the first process to finish sending its
(ii) Since all processes start the timeout for roundfter round, messages at timg = ¢, + (n+1), and starting the

p, the timeout of no process will expires befare+ T0. timeout for round- (see Figure 9). These messages are ready

Additionally, no process advances to a higher round by, reception at mosA time later, at, +A. These messages
receiving a higher round message because for a new round

» r r4+1 r+2
1 HH— ——— ——— — A
1 n TO 1:1 n TO 11 n TO 1 :
A A :
r+2 :
D2 ——— i
11 n TO L:
2 A
GST 3TO + A+ (4n + 8)
I N
270 + A + (3n + 6)
Figure 8. lllustration for Theorem 5 and Lemma 7
P — A r 4+ 1, which is enough to receive all round messages.
n n . .
! To tt A By the assumption, since all processes have the same actual
, , alive set in the given interval, roundis also space uniform
2 . .
in this case.]
t1 TO A to

Figure 10. TimeoutTO4 > TO + A+ (2n+1)

Lemma 4. Consider Algorithm 5 withn > 3f and the
following timeouts:T7O0p > A+ (n—1), TO > TOp +
2A 4+ (2n+5), and TO4 > TO + A + (2n + 1). Let
R be a A-partial synchronous run. Let, be the time the

are received in the next receive step, which occurs thetlatep,rSt process sta”rts a new rOl;]ndaftehr GST. Then by time
after (n + 2) steps (an output step followed by an input tr +2+ T0O4 all processes have the samidive set.

step, andn send steps). This is because some process (

Proof: By time¢; = t,.+2 the first round- message can

in Figure 9) might be just started executing an output stefpe received (see Figure 10). From the code of the algorithm,
for some round’ < r. Thereforep,’s message is received every process starts a new round the latest ef@y- (n+2)

by all processes the latest at time= ¢, + A + (n + 3).
Any process that receives this message in rourd1 for
the first time, might set its timeout to, + TOp < TO
(see lines 21-22). And start roundthe latest by time; +
TOp + 1, after an output step for round— 1. By time
to =t1+ TOp + 1 4+ 1 + n, any process (includings)
has performed an input step amdsend steps for round

steps: one input step followed by send steps7’O receive
steps followed by an output step. From the fact that a process
sends at most one message in each step, every prpcess
sends messages to any progessvery TO+(n+2)+ (n—

1) steps. Since a message can take at leamtd at most

A time to be received, every process receives a message
everyz = TO + (2n + 1) + A time. From the code of

r. This message is ready for reception the latest at timehe algorithm, process, excludes process, from its alive

te = to+A =t,+TOp+2A+(2n+5). The timeoutTO =

set, if it does not receive a message witli® 4 steps (see

TOp +2A + (2n + 5) ensures that no timeout started at line 13). Comparingl'O 4 with z we haveT0 4 = x, which
time ¢, expires beford. (see line 16). So when the timeout is sufficient to receive a message from any alive procais.

expires, all messages for roundre either received or ready

to be received. Before, calling the transition function for
roundr (in line 23), a receive step is performed (in line 11);
thus every process in roundreceives a message from every

process, and round is space uniform.

Note that no process in roundcan receive a message

from round> r + 1. We prove this by contradiction. Let

be a process in roundthat receives a message from round

r+2. This means that there is some procg#sat sent round
r 4+ 2 messages. This requires that either¢(ijeceives all
roundr + 1 messages, including's message, which is not
possible; or (ii) the timeout for round+ 1 expires, which
is not possible inside the given interval.

If a process ends round at time ¢ before the end of
timeout 70, because it has received all roundnessages

Theorem 3. Consider a run of Algorithm 5 witm > 3 f
and the following timeoutsTOp > A+ (n— 1), TO >
TOp +2A+ (2n+5),and TO4 > TO + A+ (2n + 1).
Let R be aA-partial synchronous run. Then every consensus
instance that starts atdecides the latest abaxz(GST,t)+
TOA+2TO+ TOp + 3A + 6n + 15.

Proof: See Figure 11 for illustration. We distinguish
two cases (¥ < GST, (2)t > GST. In case (1) by
Lemma 3 a new round is started aft6iST the latest by
time GST + TO +n+2. From Lemma 4 all processes have
the same alive set by timg = GST+ TO+ TO 4 +n+4.

In case (2) by Lemma 4 all processes have the same alive
set by timetg = t+ TO 4 + 2, which is strictly smaller than
GST + TO + TO 4o +n+4. From the code of the algorithm

from its a!ive set (line 15), any oth_er process does so th@ processe.qg, p;, starts a new round every TO + (n +2)
latest by timet + (n — 1) + A. From lines 21-22, a process steps,i.e., the latest by time; = o + 70 + n + 2. All

in roundr that receives a message from round 1 for the
first time, waits untilt + TOp time before starting round

processes do so by time = ¢; + TOp+ A+ (2n+5). This
means that all processes start roundith the same alive

P} S e e
TOA 1n TO 1 n TO THAEDANIET

A aAf
- ‘ T s S

11’1 TOp 11 AL n AL
|
1

1.)
¢ TOA + TO + TOp + 2A + (4n + 9) "At(n+2)

Figure 11. |lllustration for Theorem 3

set. From Lemma 3, roundis space uniform. Furthermore, t3 + (n + 1). These messages can be received by all

all processes receive all roundmessages from their alive processes the latest by timg + (n + 1) + A. From

set, and end roundthe latest by times = to+ A+ (n+2) lines 14-15, all processes end roungt 1 the latest by time

and start round + 1 at this time. ts + (n+ 1) + A 4 1 after an output step. This means that
From the assumption, no process crashes afisf’, all processes decide the latest by this time which is equal

therefore, the alive set remains the same. In rourdl, toty+ TO + (TOp+2A+ (4n+9))+ (A+ (n+2)), or

all processes send their messages to all the latest by timaaxz(GST,t)+ TOA+2TO+ TOp +3A+ (6n+15). &

