
Swift Algorithms for Repeated Consensus

Fatemeh Borran Martin Hutle Nuno Santos André Schiper
Ecole Polytechnique F́ed́erale de Lausanne (EPFL)

1015 Lausanne, Switzerland
{firstname}.{lastname}@epfl.ch

Abstract—We introduce the notion of a swift algorithm.
Informally, an algorithm that solves the repeated consensus
is swift if, in a partial synchronous run of this algorithm,
eventually no timeout expires, i.e., the algorithm execution
proceeds with the actual speed of the system. This definition
differs from other efficiency criteria for partial synchron ous
systems.

Furthermore, we show that the notion of swiftness explains
why failure detector based algorithms are typically more
efficient than round-based algorithms, since the former are
naturally swift while the latter are naturally non-swift. W e
show that this is not an inherent difference between the
models, and provide a round implementation that is swift,
therefore performing similarly to failure detector algori thms
while maintaining the advantages of the round model.

I. I NTRODUCTION

Timeouts are often required to solve problems in dis-
tributed computing. Due to the FLP impossibility result [1],
there is a need of some minimal synchrony assumptions for
solving the consensus problem, and timeouts are the dom-
inant mechanism for algorithms to make use of synchrony
assumptions.

Timeouts are often chosen conservatively, so that an
algorithm is correct for a large number of real-life scenarios.
However, timeouts should be used only to cope with faults,
and not slow down the execution time in good cases. As
an example, when implementing communication-closed syn-
chronous rounds in a synchronous message passing system,
after a process sent its messages for a certain round it
usually waits for a timeout, before it terminates the round
and sends its messages for the next round. However, in many
runs of the algorithm, a process might have received all
messages from other alive processes already long before that.
It would be favorable to start the next round immediately
after all messages from correct processes are received. This
is, for example, the case for an algorithm that uses a♦P
failure detector (FD). Here, a process waits for a message
from some processp until p is in the FD output. Ifp has
crashed, this involves waiting for a timeout, but only once:
later rounds profit from the fact that the failure detector
“remembers” information about faults. We formally capture
such a behavior by the definition ofswift, which we define
in the context of repeated consensus [2]. The main intuition
behind our definition is that swift algorithms make progress

at the speed of the system, and therefore, are more “efficient”
than non-swift algorithms. A swift algorithm for a repeated
problem is thus one in which eventually all instances of the
problem are “efficient”.

In more detail, for the definition of swift we look at
partial synchronous runs,i.e., runs where a bound∆ on the
transmission delay eventually holds forever.1 For the good
period of such a run, that is the partial runR in which
bound∆ holds, we can define the actual transmission delay
δ(R) as the maximum of all transmission delays inR. Such
an actual transmission delay can be much smaller than the
bound∆. If in this case the execution time for each instance
of the repeated consensus eventually depends only onδ(R)
(in contrast to∆), the algorithm isswift.

While intuitively swift algorithms progress at the speed of
messages in good periods, and non-swift algorithms progress
sometimes only by the expiration of timeouts, we refrained
from calling these two classes of algorithmsmessage-driven
andtimeout driven. This is because the termmessage-driven
is used in [3], [4] with a different meaning, namely to refer
to the way events are generated at a process. If processes are
allowed to measure time (e.g., with clocks or step counting),
then it is possible to construct message-driven algorithms
(according to this definition) that are not swift. On the
other hand, if processes use an adaptive timeout, then the
algorithm can be swift despite timeout expiration. Thus these
terms are not suitable to precisely characterize this classof
algorithms.

Other notions of efficiency for distributed algorithms have
been considered. The termfast has been used to refer
to (consensus) algorithms that solve consensus with less
communication steps in favorable cases [5]. A favorable
case corresponds usually to an execution without faults that
is synchronous from the beginning. On the contrary, the
definition of swift is related to the executiontime of an
algorithm in the context ofrepeatedconsensus. Furthermore,
the definition of swift considers also runs with faults. The
notion of fast is orthogonal to the notion of swift: it is
possible to design both, fast algorithms that are swift and
fast algorithms that are not swift. The same argument holds
for early terminatingalgorithms [6].

1Note that such a run exists also,e.g., in an asynchronous system, and
all runs of a synchronous systems are of course also partial synchronous.
The definition is thus not limited to partial synchronous systems.



The paper makes the following two contributions. The first
contribution is the definition of swift algorithms that we just
discussed. The second contribution is a new implementation
of a communication-closed rounds in a partial synchronous
system with crash faults. This new implementation leads
to swift round-based consensus algorithms, while previous
round implementations, including those described in [7], [8]
are not swift. This result is especially relevant in the con-
text of comparing advantages and drawbacks of the failure
detector approach [9] with the round-based approach [7],
[10] for solving agreement problems. Indeed, failure detector
based algorithms, despite the usage of timeouts in the im-
plementation of the failure detector algorithm, are naturally
swift. On the other hand, round implementations in a partial
synchronous model have some advantages over FD based
implementations [11]. Our new solution thus combines the
advantages of both approaches.

The rest of the paper is structured as follows. In the next
section, we specify our model and give a formal definition
of swift. Then, in Section III we show a simple round-based
consensus algorithm that is not swift, and in Section IV we
show that the same consensus algorithm expressed using
a failure detector is swift. In Section V we present our
main contribution: we show a new implementation of rounds
that is swift. Section VI validates the theoretical analysis
with experimental results comparing the swift and non-swift
implementations. Section VII concludes the paper.

II. D EFINITIONS AND MODEL

We consider a system ofn processes connected by a
message-passing network. Among thesen processes, at most
f may crash. We attach an in-queue and an out-queue to
each process, where for repeated consensus, the in-queue
contains the consensus proposals, and the out-queue contains
the consensus decisions. Processes execute an algorithm
by taking steps, where a step can be either a send step
〈p,SEND,m〉, in which a process sends a message to another
process, a receive step〈p,RECEIVE, S〉, in which a (possibly
empty) setS of messages is received, an input step〈p, IN, I〉,
in which a value is read fromp’s in-queue, or an output step
〈p,OUT, O〉, in which a value is output top’s out-queue. We
denote withInp (resp.Outp) the in-queue (resp. out-queue)
of processp. In each step a process also performs a state
transition.

We assume an abstract global discrete time. Without loss
of generality, at each timet at least one process makes a
step. A single process can make at most one step at any
time. Processes measure time by counting their own steps.

Channels satisfy validity and integrity.2 Channels are
reliable if additionally the following property holds:

2Validity: A messagem that is received byq was previously sent by
some processp to q; Integrity: A messagem that is sent fromp to q is
received byq at most once.

Reliability: If messagem is sent fromp to q and
q performs an infinite number of receive steps, then
eventuallym is received byq.

We consider partial synchronous runs, defined by a bound
Φ on the process relative speeds and a bound∆ on the
transmission delay of messages [7]. For a runR, we say
that the process speed boundΦ holds inR if, in any partial
run of R that containsΦ steps, every non-crashed process
makes at least one step. Further, we say that the transmission
delay∆ holds inR after some timet0 if (i) any message
sent byp to q at timet ≥ t0 is received the latest in the first
receive step aftert+∆; and (ii) every message sent before
t0 is received the latest in the first receive step aftert0+∆.

Definition 1 (Partial synchrony). A run R is (∆,Φ)-partial
synchronousif there is a timeGST (Global Stabilization
Time) such that afterGST the transmission delay bound
∆ holds, the process speed boundΦ holds, and no process
crashes afterGST .

We call the time interval(GST ,∞) the good period
of R. We say asystemis (∆,Φ)-partial synchronousif
every runR of the system fulfills Definition 1. To simplify
the presentation, we assumeΦ = 1, and write∆-partial
synchronous for(∆, 1)-partial synchronous.

Definition 2 (Actual parameters). Let R′ be a partial run.
Then δ(R′) denotes the maximum transmission delay of
the partial runR′, i.e., the smallest valueδ such that the
transmission delay is bounded byδ in the partial runR′.

If R′ is the good period of a∆-partial synchronous
system, thenδ(R′) ≤ ∆. WhenR′ is clear from the context,
we simply writeδ. The bound∆ may be known or unknown.
For the algorithms in this paper, we assume that∆ is known.
However,δ is unknown (it represents the performance metric
of a singlerun).

A. Repeated consensus

We focus on the repeated consensus problem. The in-
queue and out-queue are queues of pairs〈i, v〉, wherei is
a consensus instance number andv a value. In the repeated
consensus problem, for each instancei, the following holds:

• Validity: For every processp, if 〈i, v〉 ∈ Outp then
there exists some processq such that〈i, v〉 ∈ Inq.

• Uniform agreement:For all processesp, q, if 〈i, v〉 ∈
Outp and 〈i, v′〉 ∈ Outq thenv = v′.

• Termination:For every correct processp there existsv
such that〈i, v〉 ∈ Outp.

B. Swift algorithms

Before giving a formal definition of swift, we need to
formalize the notion of execution time of an instance of
consensus.

Definition 3 (Execution time). Consider a runR of a
repeated consensus algorithm. The execution timeτi(R) of



Algorithm 1 OneThirdRule (OTR) (code of processp)
1: State:
2: xp ∈ V
3: decisionp ∈ V

4: Round r :
5: Sr

p :
6: send〈xp〉 to all processes
7: T r

p :
8: if number of values received> 2n/3 then
9: xp ← x smallest most often received value
10: if more than2n/3 values received are equal tov then
11: decisionp ← v

instancei of consensus is defined as follows. Lettin =
max{t : 〈i, v〉 is taken fromIni at some processp at time
t}, tout = max{t : 〈i, v〉 is output toOuti at some process
p at time t}. Thenτi(R) = tout − tin.

Let A(∆) denote algorithmA parametrized with∆.3

Definition 4 (Swift algorithm). An algorithm A(∆) that
solves repeated consensus isswift if there are constants
k, c ∈ N such that for every runR of A(∆) that is ∆-
partial synchronous with good periodR′, and includes an
infinite number of instances, there existsi′ such that for all
instancei ≥ i′, we haveτi(R) ≤ kδ(R′) + c.

Note that this definition does not refer to timeouts. Our
definition only depends on the relation between system prop-
erties (i.e., transmission delays) and algorithm properties
(i.e., execution time), and therefore avoids any reference to
timeout expiration.

III. A NON-SWIFT ROUND-BASED ALGORITHM

We illustrate swiftness and non-swiftness on simple con-
sensus algorithms. The algorithms we consider belong all
to the same class of consensus algorithms,i.e., algorithms
that requiref < n/3. We consider a round-based algo-
rithm, namely the OneThirdRule (OTR) consensus algorithm
from [10], see Algorithm 1. The round-based model has
been introduced in [7]. In each roundr, a process sends
its estimatexp to all processes (line 6) and then, after an
implicit receive step where only messages of roundr may be
received, performs the state transition functionT r

p (lines 8
to 11). Algorithm 1 is always safe. For liveness, we need two
rounds in which the setΠ0 of alive processes (at least2n/3)
receives all messages from processes inΠ0, and only from
these processes. This property is calledspace uniformity. It
can be ensured by the round implementation layer during
the good period of a partially synchronous system.

The implementation of the round structure is given by
Algorithm 2. It is an extension of the implementation given
in [11] with support for repeated instances of consensus.

3For models with known bounds on transmission delays,∆ represent this
knowledge. For models with unknown∆, or asynchronous algorithms, we
assumeA(∆) to be a constant function,i.e., A(∆) represents one single
algorithm.

Algorithm 2 A non-swift round implementation (code ofp)
1: rp ← 1 /* round number */
2: next rp ← 1
3: Rcvp ← ∅ /* set of received messages */
4: ∀i ∈ N : statep[i]← ⊥ /* state of instancei */

5: while true do
6:

in
pu

t
&

se
nd

I ← input()
7: for all 〈i, v〉 ∈ I do
8: statep[i]← 〈v,⊥〉
9: for all i : statep[i] 6= ⊥ do
10: msgs [i]← S

rp
p (statep[i])

11: for all q ∈ Π do
12: Mq ← {〈i,msgs [i][q]〉 : statep[i] 6= ⊥}
13: send(Mq , rp, p) to q

14:

re
ce

iv
e

ip ← 0
15: while next rp = rp do
16: ip ← ip + 1
17: if ip ≥ TO then
18: next rp ← rp + 1
19: receive(M )
20: Rcvp ← Rcvp ∪M
21: next rp ← max({r : 〈−, r,−〉 ∈ Rcvp} ∪ {next rp})

22:

co
m

p.
&

ou
tp

ut

O ← ∅
23: for all i : statep[i] 6= ⊥ do
24: for all r ∈ [rp,next rp − 1] do
25: ∀q ∈ Π : Mr[q]← m if ∃M 〈M, r, q〉 ∈ Rcvp

∧〈i,m〉 ∈M , else⊥
26: statep[i]← T r

p (statep[i],Mr)
27: if the first timestatep[i].decision 6= ⊥ then
28: O ← O ∪ 〈i, statep[i].decision〉
29: output(O)
30: rp ← next rp

Each iteration of the outermost loop is composed of three
parts: input & sendpart, receivepart andcomp. & output
part. In theinput & sendpart, the process queries the input
queue for new proposals (line 6), initializes new slots in
the state vector for each new proposal (line 8), calls the
send function of all active consensus instances (line 10),
and sends the resulting messages (line 13). The process
then starts thereceive part, where it waits for messages
until either the timeoutTO expires (line 17) or it receives
a message from a higher round (line 21). Finally, in the
comp. & outputpart, the process calls the state transition
function of each active instance (line 26), and outputs any
new decisions (line 29). Note that some rounds may be
partially skipped (no message sent, no message received,
only transition function executed): this happens whenevera
message from higher round is received.

In Appendix A we prove the correctness of the round
implementation forTO ≥ 2∆ + 2n + 5. We also show
that for each instancei of consensus started afterGST ,
we have an execution timeτi ≤ 2TO + δ + 3n + 6. This
defines the maximum execution time. We now show that
the implementation is not swift by computing the minimum
execution time for each instance of consensus.

Lemma 1. Consider Algorithm 2 withTO ≥ 2∆+2n+5,
n > 3f . Let R be a∆-partial synchronous run. Letr0 be



p

q
r n

δ

n

r

r + 1

r + 1

tsp > ∆
tep

tsq
TO + n+ 2 teq

Figure 1. Illustration for Lemma 1

the first new round that is started afterGST . Then for all
instancesi started in a roundr ≥ r0, we have an execution
time τi > ∆.

Proof: We prove the result by showing that, for every
round r ≥ r0, every processp stays in roundr for more
than∆ time.

Let tsp andtep be the time whenp starts and finishes round
r, respectively. Processp may finish roundr either (i) by
the expiration of its timeout (line 17), or (ii) by receivinga
higher round message (line 21).

In case (i) we havetep − tsp = TO + (n + 2) > ∆, that
is the timeout,n send steps, one input step, and one output
step. Thusp stays in roundr more than∆ time.

For case (ii), we calculate the minimum duration of round
r by determining the latest timetsp and the earliest timetep
whenp could have started and ended roundr, respectively
(see Figure 1). Letq be the first process to finish roundr at
time teq. Then the earliest thatp may receive a roundr + 1
message isteq + 3 (one input step byq at the start of round
r+1, one send step, and one output step byp to finish round
r). Hence,tep = teq + 3.

Let tsq be the time whenq started roundr. Processq sends
a roundr message top the latest bytsq+n+1 (if the message
to p is sent in the last send step). By assumptionr ≥ r0,
so tsq is after GST . Therefore,p receives the message at
mostδ + n+ 2 later (δ is the maximum transmission delay
in this run and, in the worst case,p is taking an output
step when the message is received, so that in total it takes
one output step, one input step, andn send steps, before
the next receive step). After one final output step,p enters
roundr. This happens the latest bytsq+δ+2n+4. Therefore
tsp = tsq + δ + 2n+ 4.

The minimum duration of roundr at p is tep − tsp = (teq +
3)− (tsq + δ+2n+4) = (teq − tsq)− δ− 2n− 1. To calculate
teq − tsq, recall thatq finishes roundr by timeout and not by
receiving a higher round message, because by assumption
no other process started a round higher thanr before q.
Therefore,q stays in roundr a total ofteq−tsq = TO+n+2.
Substitutingteq − tsq, we obtaintep − tsp = (TO + n + 2)−
δ − 2n − 1 ≥ 2∆ + n + 6 − δ ≥ ∆, which means thatp
stays in roundr more than∆ time.

Algorithm 3 OTR with the failure detector♦P (code ofp)
1: State:
2: rp ← 1 /* round number */
3: xp ∈ V
4: decisionp ∈ V

5: while true do
6: send〈rp, xp〉 to all processes
7: wait until received values for roundrp from all processesq /∈ ♦Pp

8: if number of values received> 2n/3 then
9: xp ← x smallest most often received value
10: if more than2n/3 values received are equal tov then
11: decisionp ← v
12: rp ← rp + 1

Since the execution time is proportional to the parameter
∆ and independent of the effective transmission delayδ, the
implementation is not swift:

Theorem 1. The round implementation of Algorithm 2 is
not swift.

Proof: In case thatTO < 2∆+ 2n+ 5, the algorithm
is not live. Therefore we only considerTO ≥ 2∆+2n+5.
Assume by contradiction that the collection of algorithms
A(∆) given by Algorithm 2 is swift. Then, there existk, c ∈
N, such that in every∆-partial synchronous runR with a
good periodR′, there is aniR such that, for all instances
i > iR, τi(R) < kδ(R′) + c. For a contradiction, consider
A(kδ(R′) + c). By Lemma 1, for all instances started after
GST , we haveτi > ∆ = kδ(R′) + c. A contradiction.

IV. A FAILURE DETECTOR-BASED ALGORITHM THAT IS

SWIFT

We consider now the OTR algorithm expressed with the
failure detector♦P (Algorithm 3). Intuitively it is easy to
see that repeated execution of this algorithm is swift. Indeed,
some time afterGST , the failure detector list contains ex-
actly the faulty processes. At this point, by line 7, all correct
processes wait only for messages from correct processes
and, sincef < n/3, the condition on line 8 is always
true. Note that the failure detector model requires reliable
links, contrary to the solution in the previous section.4 In
this section we assume that links are reliable.

Repeated execution of Algorithm 3 is expressed by Al-
gorithm 4. The box in Algorithm 4 corresponds to line 7
of Algorithm 3. For simplicity, we have not shown in
Algorithm 4 the (trivial) implementation of♦P . We assume
that both Algorithm 4 and the implementation of♦P run in
the same partial synchronous system in the following way:
in every even step Algorithm 4 is executed, in every odd
step the implementation of♦P is executed.

The correctness of Algorithm 4 follows from the follow-
ing lemma:

4Consider two correct processesp andq and line 7 executed byp. If the
message sent byq is lost, andp’s failure detector never suspectsq, thenp
is blocked forever at line 7.



Algorithm 4 Multiple instances of Algorithm 3 (code ofp)
1: Initialization:
2: rp ← 1
3: ∀i ∈ N : xp[i]← ⊥
4: ∀i ∈ N : decisionp[i]← ⊥

5: while true do
6: I ← input()
7: for all 〈i, v〉 ∈ I do
8: xp[i]← v
9: send〈rp, xp, p〉 to all processes
10: while not received〈rp, xq, q〉 from all processesq /∈ ♦Pp do
11: receive(M)
12: Rcv ← Rcv ∪M
13: O ← ∅
14: for all i : xp[i] 6= ⊥ and decisionp[i] = ⊥ do
15: if number of values received〈rp, x′,−〉 > 2n/3 then
16: xp[i]← smallest most often valuex′[i]
17: if more than2n/3 valuesx′[i] are equal tov then
18: decisionp[i]← v
19: O ← O ∪ {〈i, v〉}
20: output(O)
21: rp ← rp + 1

Lemma 2. For Algorithm 4, there is eventually a round
GSR so that for all roundsr ≥ GSR, every correct process
receives a message from every correct process in roundr
and receives no message from faulty processes.

Proof: By the properties of♦P , there is a time where
the FD is accurate and complete,i.e., a process is suspected
if and only if it is faulty. In every round that is started after
this time, every correct process waits for a message from
every correct process.

Theorem 2 proves that Algorithm 4 is swift, by showing
that eventually every instance of consensus decides in at
most3δ + 6n+ 6.

Theorem 2. For a run of Algorithm 4 withn > 3f and
an infinite number of instances of consensus, there is an
instancei0 such that for alli > i0, we haveτi ≤ 3δ+6n+6.

Proof: Let GSR be the round defined by Lemma 2.
Since in every input step only a finite number of instances
are read, there is an input step so that this step and all later
input steps are in a round afterGSR. Let i0 be the largest
consensus instance started in a round beforeGSR (instance
i is started in the round in which the last process starts
instancei). Consider an instancei > i0. The maximum
execution time ofi corresponds to the maximum duration
of two rounds. This follows from Lemma 2, which ensures
that instancei decides in at most two rounds. It remains to
calculate the maximum time for two rounds afterGSR.

Let t be the first time a process, sayp, starts roundr >
GSR. Sincer−1 ≥ GSR, p received roundr−1 messages
from all correct processes. This must have happened the
latest by timet−2 in order to allowp to execute the output

step of roundr−1, and to enter roundr at timet.5 Therefore
p executed the receive step of roundr − 1 at latest by time
t − 4, and all correct processes started the send steps for
roundr− 1 at latest by timet− 4; these send steps finished
at latest by timet − 4 + 2n = t + 2n − 4, and messages
are received at latest by timet + 2n − 4 + δ. Adding the
output step, all correct processes started roundr the latest
at t′ = t+ 2n− 2 + δ.

By t′′ = t′+2n+2+δ all roundr messages are thus ready
for reception, and received byt′′+2. Again byt′′+2+2n+2
all roundr+1 messages are sent, and thus roundr+1 ends
the latest att′′ + 2+ 2n+ 2+ δ + 2 = t+ 3δ + 6n+ 6.

Remark: Failure detector based solutions require reli-
able links. This has the following implication. In contrast
to partial round implementation of Section III, no round is
skipped,i.e., processes send messages for all rounds, and
wait for the messages from all unsuspected processes. This
implies that, unlike the round implementation in the previous
section, it is no more possible to bound the time fromGST

until the first decision. To see this, note that atGST , a
processp might be in a roundr that is arbitrarily smaller
than the highest round numberrmax at that time. Since other
correct processes might wait in any roundr′, r ≤ r′ ≤ rmax,
for the roundr message of processp, p cannot skip the
sending step of all rounds betweenr andrmax. This takes
an unbounded amount of time, asrmax−r can be arbitrarily
large. Note that the problem cannot be solved by packing all
messages into a single one since, between the sending steps,
processp has to perform receive steps (to receive messages
from the other correct processes).

V. A NEW ROUND IMPLEMENTATION THAT IS SWIFT

We show now that the implementation of the round model
can be made swift. Like in the failure detector approach,
each process estimates a set of alive processes (the comple-
mentary of the set of suspected processes) and uses this set
to terminate a round earlier afterGST , namely, as soon as it
receives all messages from the alive set. Contrary to the fail-
ure detector approach, the algorithm tolerates message loss,
by using a timeout which expires only beforeGST . Like
in the round-based implementation, processes resynchronize
after message loss by skipping rounds. Skipping rounds also
allows the algorithm to decide in a bounded time afterGST .

A. Issue to address

Combining the termination of a round upon reception of
all messages from alive processes, and the round-skipping
mechanism, requires some attention. The problem is illus-
trated in Figure 2. In this scenario,p3’s round r message
is the last message needed byp2 to have all roundr
messages. Let us assume that upon receiving this message,

5Note that we have to double the time for a step, since only every second
step is of the asynchronous algorithm.



p1

p2

p3

r

r

r+1

r

r

r r + 1

missed message!

Figure 2. New round implementation: issue to address

p2 immediately sends its roundr+1 message to all. In this
case, processp1 may receive the roundr+1 message ofp2
before the roundr message ofp3. If p1 jumps to roundr+1
upon receiving the first roundr + 1 message, it will miss
p3’s round r message, thereby breaking space uniformity
on roundr. This situation may repeat in every round, thus
preventing the algorithm from deciding. We show now how
we address this problem.

B. The full algorithm

The ideas described above are used in Algorithm 5,
which is a round implementation that is swift. Algorithm 5
enhances Algorithm 2 as follows:

(i) Each processp maintains an estimation of the set of
alive processes inAlivep (see line 13), and updates it
every TOA steps.TOA is thus the timeout used to
suspect faulty processes.

(ii) A process goes directly to the next round if it receives
a message from all processes in its alive set (lines 14-
15). This is the key point to make the algorithm swift.

(iii) In any case, a process goes to the next round afterTO

time (lines 16-17).TO is thus the timeout for a round
in bad periods.

(iv) When receiving a round message from the next round
for the first time, the process waits for at mostTOD

steps before going into this round (lines 21-22). For
this and the last point, each processp maintains a
variable timeoutp, initially set to TO (line 8) which
is modified when a roundr + 1 message is received
(line 22). This is used to address the problem described
in Section V-A.

(v) When receiving a message from a round higher than
the next round (i.e., larger thanrp + 1), the process
immediately goes to this round (lines 19-20). This
ensures a fast resynchronization of the processes after
a bad period.

We now show the correctness of this solution (Sec-
tion V-C), and that the algorithm is swift (Section V-D).

C. Correctness

Algorithm 1 together with Algorithm 5 solves repeated
consensus in a partial synchronous system. As already

Algorithm 5 A swift round implementation (code ofp)
1: rp ← 1 /* round number */
2: next rp ← 1
3: Rcvp ← ∅ /* set of received messages */
4: ∀i ∈ N : statep[i]← ⊥ /* state for instancei */

5: while true do
6: input & send /* lines 6-13 of Algorithm 2 */

7:

re
ce

iv
e

ip ← 0;
8: timeoutp ← TO
9: while next rp = rp do
10: ip ← ip + 1
11: receive(M )
12: Rcvp ← Rcvp ∪M
13: Alivep ← {set of processes from whom

there is a message within lastTOA steps}
14: if ∀q ∈ Alivep : ∃〈Mq , rp, q〉 ∈ Rcvp then
15: next rp ← rp + 1
16: if ip ≥ timeoutp then
17: next rp ← rp + 1
18: r ← max{r : 〈−, r,−〉 ∈ Rcvp}
19: if r > rp + 1 then
20: next rp ← r
21: if there is a message from roundrp + 1

for the first timethen
22: timeoutp ← min{ip + TOD,TO}

23: comp. & output /* lines 22-29 of Algorithm 2 */
24: rp ← next rp

discussed, Algorithm 1 is always safe (withn > 3f ).
Before proving that the round implementation given by
Algorithm 5 provides liveness, we show some properties of
the algorithm—related to correctness—that hold afterGST .

When the good period starts atGST , processes will
synchronize to the same round using the following two
mechanisms: (i) when a process receives a higher round
message, it advances rounds either immediately (line 20),
or within TOD (lines 21-22), or when the original timeout
TO expires; (ii) in any case, processes remain in a round
at mostTO time, starting a new round when this timeout
expires (lines 16-17 and line 22). Therefore, shortly after
GST , there will be a processp that starts a new round
r that is higher than any round started by the other alive
processes. When the other processes receive the roundr
message fromp, they will advance to roundr and send
their own messages. These messages are then received by
all alive processes, resulting in a space uniform round.

As discussed in Section V-A, a roundr + 1 message
may be received before all roundr messages (Figure 2).
To address this issue, if a processp in round r receives
a message from roundr + 1 for the first time and it has
not received all the messages from its alive set, it does
not advance immediately. Instead, it waits either for an
additionalTOD or until the end of the original timeout,
whichever comes first. During the good period, all the
remaining roundr messages will be received before this
revised timeout expires. To see why, notice that for a process
to send a roundr + 1 message, it must have received



all round r messages from the alive processes, so these
messages will also be received by processp within at most
TOD = ∆ + (n − 1), namelyn − 1 send steps and∆
maximum transmission delay. In any case, all messages will
be received before the original round timeout, so the process
only has to wait for the minimum ofTOD or what is left
of TO .

If a processp in roundr receives a message from round
r+2 or higher, it can conclude that the good period has not
yet been started, sop advances immediately to roundr+2.
This holds for the following reason. Assume that the system
is in a good period, and let some processq send a round
r + 2 messages; then either (i)q received all roundr + 1
messages, includingp’s message, which is not possible; or
(ii) the timeout for roundr+1 expires, which is not possible
as the timeout is chosen in a way that processes have enough
time to receive all round messages and messages are not lost
in the good period. This shows a contradiction: the system
cannot be in a good period.

Thus we can show:

Theorem 3. Consider a run of Algorithm 5 withn > 3f
and the following timeouts:TOD ≥ ∆ + (n − 1), TO ≥
TOD + 2∆+ (2n+ 5), andTOA ≥ TO +∆+ (2n+ 1).
LetR be a∆-partial synchronous run. Then every consensus
instance that starts att decides the latest atmax(t,GST )+
TOA + 2TO + TOD + 3∆+ (6n+ 15).

The proof is based on the following two lemmas (for the
proof see Appendix B). The first establishes that eventually
rounds are space uniform (see Sect. III):

Lemma 3 (TimeoutsTO andTOD). Consider Algorithm 5
with n > 3f and the following timeouts:TOD ≥ ∆+(n−
1), TO ≥ TOD + 2∆ + (2n + 5). Let R be a∆-partial
synchronous run, andtr the time the first process starts a
new roundr after GST , such that all processes have the
sameAlive set aftertr. Then roundr is space-uniform.

The previous lemma requires all processes to have the
sameAlive set. Lemma 4 shows that this becomes true
shortly afterGST .

Lemma 4 (TimeoutTOA). Consider Algorithm 5 withn >
3f and the following timeouts:TOD ≥ ∆+(n−1), TO ≥
TOD + 2∆+ (2n+ 5), andTOA ≥ TO +∆+ (2n+ 1).
Let R be a∆-partial synchronous run. Lettr be the time
the first process starts a new roundr after GST . Then by
time tr + 2 + TOA all processes have the sameAlive set.

D. Swiftness

In order to show that Algorithm 1 together with the round
implementation provided by Algorithm 5 is swift, we show
that the execution time of a consensus instance depends only
on δ and not on∆.

The main properties of the algorithm related to the swift-
ness, which hold afterGST , are the following. First, the

Alive set becomes accurate the latest byGST + TO +
TOA+n+4 (line 13). This follows from Lemma 4, withtr
being at latestGST +TO+n+2. Then, once theAlive set
is accurate afterGST , it no more changes and therefore no
further timeout expires. Finally, all processes finish rounds
as soon as all messages from alive processes are received
and advance round by lines 14-15, rendering the algorithm
swift.

Theorem 4. Consider Algorithm 5 withn > 3f and the
following timeouts:TOD ≥ ∆ + (n − 1), TO ≥ TOD +
2∆+(2n+5), andTOA ≥ TO+∆+(2n+1). LetR be a∆-
partial synchronous run. Then every consensus instance that
is started afterGST+X withX = TOA+3(TO+n+2)+2,
has an execution time ofτi ≤ 3δ + 3n+ 5.

Proof: Let i0 be a new consensus instance started at
time ts > GST +X . Such an instance exists, because the
input queue contains an infinite number of elements and each
input step reads a finite number of instances. Letp be the
process that started instancei0 (last process doing an input
step fori0) andri the round where it was started.

We will first show that roundsr ≥ ri − 1 are space
uniform. By lines 8, 16 and 22 of Algorithm 5, processes
remain on a round for at mostTO + n + 2 time. There-
fore, the first round started afterGST starts the latest at
t0 = GST + TO + n + 2. By Lemma 4, the latest at
t1 = t0+TOA+2 all processes have the sameAlive set, and
by Lemma 3, all rounds started aftert1 are space uniform.
Therefore the first space uniform round,r′, starts the latest
at time t2 = t1 + TO + n + 2, and r′ + 1 the latest by
t3 = t1 + 2(TO + n + 2). Expanding this expression, we
obtaint3 = GST +TOA+3(TO+n+2)+2 = GST +X .
Sinceri started at timets ≥ GST +X , roundsr ≥ ri − 1
are space uniform.

Using Theorem 3 we can conclude that instancei0 is
decided by roundri + 1. We are now ready to compute the
maximum execution time ofi0. By definition, we haveτi =
te− ts, wherete is the time when the last process performs
an output step for roundi0 (andts is previously defined). To
determine the upper bound onτi, we’ll compute the smallest
and the largest values for timests andte, respectively. Since
by assumptionts happens in roundri, thents is smallest if
p is the first process starting the round. The largest value for
te is the time of the output step of the last process finishing
roundri + 1. Next we computete.

Since roundri − 1 is space uniform, processp received
all round ri − 1 messages before advancing to roundri,
hence the latest byts − 2 all alive processes had sent their
roundri − 1 message top. By ts + n− 2 all roundri − 1
messages were sent, andδ time later received. Thus, by
ts+δ+2n all processes entered roundri and finished sending
all messages.δ time later all roundri messages are received
and by timets + 2δ + 2n + 1 all processes started round
ri+1. By a similar reasoning, by timets +3δ+3n+3, all



processes finished roundri + 1. Hence, instancei0 ends at
time te = ts +3δ+3n+3, and we haveτi = 3δ+3n+ 3.

VI. EXPERIMENTAL RESULTS

In this section we present the results of an experimental
study, comparing the three algorithms presented previously.
The main questions we want to answer are (i) how much
improvement can be obtained in a round-based algorithm
using a swift round implementation, and (ii) are swift round
implementations competitive with implementations that use
failure detectors.

Experimental setup:We performed our experiments
both on an emulated network and directly on a physical
network (a cluster). The emulated network allowed us to test
the behavior of the algorithms with different transmission
delays and message loss rates, while the physical network
shows what to expect on a cluster environment.

In all experiments, processes were started with 1 second
of delay between each other. This prevents initial syn-
chronization and exercises the ability of the algorithms to
resynchronize the processes.

The metric considered is the decision time for each
consensus instance. Processes run each instance sequentially,
starting the next one either when they decide, or when they
learn the decision by receiving a message from a higher
instance. Each data point shown on the plots below was
obtained from a 10 minutes run. We then calculated the
average decision time, ignoring the first 10% of the run.
For each data point, we show the 95% confidence intervals.

Implementing♦P and reliable channels for the failure
detector algorithm: We implemented♦P by having each
process send heartbeats to all everyη time. A processp
suspectsq if it does not receive any heartbeat for more thanτ
time. We also implemented reliable channels using message
acknowledgments and retransmission. We decided not to use
TCP, because our initial experiments using TCP resulted in
very poor performance under high message loss conditions.
TCP is designed to interpret message loss as an indication
of congestion, and therefore it reacts by increasing the
retransmission time. On a typical TCP implementation, the
interval between retransmissions may reach several minutes,
which in practice forces the algorithms running on top of it
to stop.

Notation: In the following, δnet denotes the one-way
transmission delay of the physical network,δemu the delay
emulated by ModelNet, andδeff the effective one-way trans-
mission delay between two processes. On the experiments
run directly on the physical network,δeff = δnet . However,
when using ModelNet,δeff = 2δnet + δemu , since each
packet is transmitted two times on the physical network
(see Section VI-A). Finally, note that contrary toδ defined
previously in the paper,δnet is not a bound. Instead, it is

a random variable, reflecting the non-deterministic behavior
of a physical network.

In the following, NS-OTR, S-OTR, and FD-OTR de-
note respectively the non-swift OTR (Algorithm 1 + Algo-
rithm 2), the swift OTR (Algorithm 1 + Algorithm 5), and
OTR with FD (Algorithm 4 +♦P).

A. Emulated network

We used ModelNet [12] to emulate a network. ModelNet
uses two types of nodes: acore nodethat applies the traffic
policies, and one or moreedge nodesthat run the application
being tested. The edge nodes redirect all traffic sent by
the processes to the core node, which applies the traffic
policy (e.g., delay, loss and maximum bandwidth) and then
transmits the packet to the intended receiver. We varied the
emulated delay and loss rate, while leaving the emulated
bandwidth set to 1Gbps. We used two physical machines for
all experiments run on ModelNet. All 4 replicas were run-
ning on a dual Pentium 4 at 3.6GHz with 1GB RAM, while
the core node was a Pentium Pro at 200MHz with 70MB
of RAM. The machines were connected by a full duplex
100Mbits Ethernet, and had a ping time of approximately
0.3ms. Hence,δeff ≈ 0.3 + δemu .

1) Varying the timeout:In the first set of experiments,
we fixed the emulated transmission delay while varying the
timeout TO used by the algorithms. Figure 3 shows the
results forδemu = 0ms and Figure 4 forδemu = 40ms. The
x scale indicates the timeoutTO used by the algorithms
to terminate a round.6 For the tests withδemu = 40ms,
the failure detector was configured withη = TO/2 and
τ = TO . The rationale is that TO is the time an algorithm
should wait before declaring a failure and taking corrective
measures,e.g., advancing rounds or suspecting a process.
With δemu = 0ms, following the same policy would result
in the network being overloaded with heartbeats, so we opted
for η = TO andτ = 2TO .

The results clearly validate the main motivation behind
this work, in that S-OTR performs at the speed of the
network, being independent from the timeout.

With δemu = 0ms (Figure 3-left), FD-OTR performs
poorly with low timeouts. This is caused by the additional
messages sent by the failure detector and the reliable chan-
nels implementation, which slow down the processes and
congest the network. For higher timeouts, this overhead
becomes less significant and the algorithm starts performing
similarly to the other implementations. When looking only
at NS-OTR vs S-OTR (Figure 3-right), it is clear that the
decision time of NS-OTR increases linearly with the timeout,
while S-OTR is constant. Furthermore, even with the optimal
timeout of 2ms, NS-OTR performs worse than S-OTR,
because no fixed timeout can approximate perfectly the time
that it takes for a process to receive all messages (it fluctuates
from round to round).

6Equivalent to2∆ on the NS-OTR and3∆ for the S-OTR.



0 2 4 6 8
0

50

100

150

200

250

300

350

Timeout (ms)

T
im

e 
(m

s)
Time per consensus

 

 

NS−OTR
S−OTR
FD−OTR

0 2 4 6 8
0

5

10

15

20

25

Timeout (ms)

T
im

e 
(m

s)

Time per consensus

 

 

NS−OTR
S−OTR

Figure 3. Performance on ModelNet withδeff ≈ 0.3ms (δemu = 0, 2δnet ≈ 0.3). The figure on the right repeats NS-OTR and S-OTR from the left,
with a different time scale.

30 40 50 60 70 80 90
0

500

1000

1500

2000

Timeout (ms)

T
im

e 
(m

s)

Time per consensus

 

 

NS−OTR
S−OTR
FD−OTR

30 40 50 60 70 80 90
50

100

150

Timeout (ms)

T
im

e 
(m

s)

Time per consensus

 

 

S−OTR
FD−OTR

Figure 4. Performance on ModelNet withδeff ≈ 40.3ms (δemu = 40, 2δnet ≈ 0.3). The figure on the right repeats S-OTR and FD-OTR from the left,
with a different time scale.

With δemu = 40ms (Figure 4-left), NS-OTR performs
poorly with timeouts lower than80ms. For timeouts lower
than60ms, the algorithm took hundreds of rounds for each
decision, so we did not show the results as they were not
statistically significant. Notice that80ms ≈ 2δeff , which
matches the results from the analytical analysis, where a
round must lastTO = 2∆ in order to ensure decision. The
swift version S-OTR is more tolerant to a non-optimal time-
out, being able to synchronize even with timeouts slightly
above40ms. This is because processes finish rounds early,
after receiving all messages, allowing the processes that are
behind to slowly catch-up with the ones in the lead.

FD-OTR is also independent of the timeout, producing
the optimal performance regardless of the values used for

the underlying failure detector. Recall that in the absence
of message loss, the values chosen for the failure detector
(i.e., τ = 2η) prevent false suspicions, so FD-OTR can
proceed at the speed of the network. The overhead of the
implementation of failure detectors and reliable channelsis
less in this scenario, as shown in Figure 4-right, where FD-
OTR performs only slightly worse than S-OTR.

2) Message loss:Figure 5 shows the behavior of the
algorithms in networks with message loss. The experiment
was run on ModelNet withδemu = 0. Both the swift and
the non-swift versions were configured with a timeout of
10ms. The failure detector was configured withη = 10ms
and τ = 25ms, so that it tolerates 2 or 3 lost heartbeats
before (wrongly) suspecting a process. The reliable channels



0 0.1 0.2 0.3 0.4
0

50

100

150

Loss probability

T
im

e 
(m

s)
Time per consensus

 

 

NS−OTR
S−OTR
FD−OTR

Figure 5. Performance with message loss:δeff ≈ 0.3ms (2δnet ≈ 0.3,
δemu = 0)

implementation retransmits a message every25ms.
Both NS-OTR and S-OTR are very resilient to message

loss. Even with 40% messages loss, the average decision
time is only a few milliseconds more than with no message
loss. This is because the algorithms make progress as soon
as a single process receives three messages (2n/3), i.e., two
messages from other processes since its own message is
always delivered. FT-OTR performs worse because it waits
for messages from all processes that are not suspected, so
that a single message loss in a round is enough to delay
progress (suspecting a process requires more than a single
message loss).

S-OTR outperforms both NS-OTR and FD-OTR in the
presence of message loss. In particular, the performance of
FD-OTR degrades significantly with message loss, caused
by the overhead of the retransmissions to simulate reliable
links.

B. Physical network (cluster)

For the tests with the physical network, we used a cluster
of Dual Pentium 4 at 3.00GHz with 1GB memory connected
by a 1Gbit Ethernet. Each process run on a separate node
and the ping time between two nodes was between 0.1 and
0.2ms. The failure detector was configured withη = TO

andτ = 2TO .
Figure 6 shows that on the cluster even a timeout of1ms

is enough for OTR to terminate. S-OTR always outperforms
the two other algorithms. Compared to NS-OTR, even
with a 1ms timeout, S-OTR performs better. Lowering the
timeout of NS-OTR may improve its performance, but with
such small timeouts the algorithm becomes sensible to the
normal variability of the system, which is caused by non-
deterministic factors like OS scheduling and background
activity, either on the hosts or on the network. This will cause

0 2 4 6 8 10 12
0

5

10

15

20

25

Timeout (ms)

T
im

e 
(m

s)

Time per consensus

 

 

NS−OTR
S−OTR
FD−OTR

Figure 6. Performance on cluster (δeff ≈ 0.1ms)

rounds to finish without receiving all required messages,
leading to unstable performance. The timeout of S-OTR can
be set to a conservative value, making the algorithm immune
to non-deterministic factors, while still providing optimal
performance.

FD-OTR suffers again from the overhead of the imple-
mentation of failure detectors and reliable channels, resulting
in a performance worst than S-OTR.

VII. D ISCUSSION

Table I summarizes the results of the paper. We have
analyzed the efficiency of algorithms for solving repeated
consensus in two models: the round-based model (which
can be implemented on top of a partially synchronous sys-
tem), and the asynchronous system augmented with failure
detectors. Efficiency refers here toswiftness, a new notion
that captures the fact that an algorithm, once the system has
stabilized, progresses at the speed of the messages. Our new
round-based implementation combines the advantages of
failure detector solutions (swiftness) and round-based model
(lossy links). This weak link assumption makes round-based
algorithm easy to adapt to the crash-recovery model with
stable storage [11].

We have illustrated the new round-based implementation
on a specific consensus algorithm (OTR). This does not

Classical New
round-based [11] FD-based [8] round-based

(Algorithm 2) (Algorithm 4) (Algorithm 5)

Link lossy reliable lossy
Exec. time 4∆ + δ +O(1) 3δ + O(1) 3δ + O(1)
Swift no yes yes

Table I
REPEATED CONSENSUS: ALGORITHMS ANALYZED IN THE PAPER



mean that the new solution is limited to OTR. It applies
to any consensus algorithm expressed in the round model,
in particular to theLastVotingalgorithm [10], a round-based
variant of Paxos [13] that requires onlyn > 2f .

REFERENCES

[1] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility
of distributed consensus with one faulty process,”Journal of
the ACM, vol. 32, no. 2, pp. 374–382, Apr. 1985.

[2] C. Delporte-Gallet, S. Devismes, H. Fauconnier, F. Petit,
and S. Toueg, “With finite memory consensus is easier than
reliable broadcast,” inOPODIS, 2008, pp. 41–57.

[3] M. Hutle and J. Widder, “On the possibility and the impossi-
bility of message-driven self-stabilizing failure detection,” in
Self-Stabilizing Systems, 2005, pp. 153–170, appeared also as
Brief Announcement at PODC’05.

[4] M. Biely and J. Widder, “Optimal message-driven implemen-
tations of omega with mute processes,”ACM Trans. Auton.
Adapt. Syst., vol. 4, no. 1, pp. 1–22, 2009.

[5] L. Lamport, “Fast paxos,”Distributed Computing, vol. 19,
no. 2, pp. 79–103, 2006.

[6] N. Lynch, Distributed Algorithms. Morgan Kaufman, 1996.

[7] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the
presence of partial synchrony,”Journal of the ACM, vol. 35,
no. 2, pp. 288–323, Apr. 1988.

[8] E. Gafni, “Round-by-round fault detectors (extended ab-
stract): unifying synchrony and asynchrony,” inProceeding of
the 16th Annual ACM Symposium on Principles of Distributed
Computing (PODC’98). Puerto Vallarta, Mexico: ACM
Press, 1998, pp. 143–152.

[9] T. D. Chandra and S. Toueg, “Unreliable failure detectors for
reliable distributed systems,”Journal of the ACM, vol. 43,
no. 2, pp. 225–267, Mar. 1996.

[10] B. Charron-Bost and A. Schiper, “The heard-of model: com-
puting in distributed systems with benign faults,”Distributed
Computing, vol. 22, no. 1, pp. 49–71, 2009.

[11] M. Hutle and A. Schiper, “Communication predicates: A
high-level abstraction for coping with transient and dynamic
faults,” in Dependable Systems and Networks (DSN 2007).
IEEE, Jun. 2007, pp. 92–10.

[12] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić,
J. Chase, and D. Becker, “Scalability and accuracy in a large-
scale network emulator,”SIGOPS Oper. Syst. Rev., vol. 36,
no. SI, pp. 271–284, 2002.

[13] L. Lamport, “The part-time parliament,”ACM Transactions
on Computer Systems, vol. 16, no. 2, pp. 133–169, May 1998.



p1

p2

r

∆

1 1 n 1 TOD 1

r

1 n

∆

ts TO te

Figure 9. TimeoutTO ≥ TOD + 2∆ + (2n+ 5)

p1

p2

r

∆

1 1 n 1 1

r

1 n

∆

ts TO te

Figure 7. TimeoutTO ≥ 2∆ + (2n + 5)

APPENDIX

A. Proofs for Section III

Theorem 5. Consider a run of Algorithm 2 withTO ≥
2∆+(2n+5) andn > 3f . LetR be a∆-partial synchronous
run. Then every consensus instance that starts att decides
the latest atmax(GST, t) + 3TO +∆+ 4n+ 8.

Following lemmas together with the results of [10] proves
the theorem.

Lemma 5. Consider Algorithm 2 withTO ≥ 2∆+(2n+5)
andn > 3f . Let R be a∆-partial synchronous run. Lettr
be the time the first process starts a new roundr afterGST .
Then roundr is space-uniform.

Proof: (See Figure 7 for illustration.) Letp be the first
process to finish the input and send steps for roundr, at
time ts (ts ≤ tr + (n + 1)). We show that (i) all roundr
messages from all alive processes are ready for reception7 by
time ts+TO , and (ii) no process expires its roundr timeout
beforets+TO . This implies that roundr is space-uniform.

(i) By time ts +∆ the roundr message fromp is ready
for reception at all processes. Every processq will make a
receive step at most(n+ 2) time later (if at timets +∆ q
was on a output step of a roundr′ < r − 1, then it must
make one input step andn send steps before the next receive
step). After receiving the roundr message, every process
performs an output step for its current round, advances to
roundr, performs one input andn send steps. Therefore, by
time ts +∆+(2n+5), all processes have finished sending
their roundr messages, and∆ time later, by time,ts+2∆+
(2n + 5) = ts + TO , all round r messages are ready for
reception at all alive processes. Note that this time is still in
the good period, sincets + TO = tr + TO + (n+ 1).

(ii) Since all processes start the timeout for roundr after
p, the timeout of no process will expires beforets + TO .
Additionally, no process advances to a higher round by
receiving a higher round message because for a new round

to start, some the timeout of roundr of some process has
to expire.

Lemma 6. Consider Algorithm 2. LetR be a ∆-partial
synchronous run. Then by timeGST + TO + (n + 2) at
least one process has started a new roundr0.

7We call a message ready for reception if it must be received with the
next receive step of the receiver process.

Proof: Let p be the process with the highest round
numberr among all processes. Then the lemma is fulfilled,
if p is at least in roundr+1 by the given time. However, in
a good period,p can be in roundr at most forTO+(n+2)
time, the timeout and the time for an input, an output, and
n send steps.

Lemma 7. Consider Algorithm 2 withTO ≥ 2∆+(2n+5),
n > 3f , and a ∆-partial synchronous runR. Let r0 be
the first new round that is started afterGST . Then for all
instancesi started in a roundr ≥ r0, we have an execution
time τi ≤ 2TO + δ + (3n+ 6).

Proof: (See Figure 8 for illustration.) Leti be an
instance started in a roundr ≥ r0 by a processp. Recall
that Algorithm 2 needs at most two space-uniform rounds
to decide. Since by Lemma 5 roundsr andr+1 are space-
uniform, all processes decide instancei by roundr+1 (i.e.,
they output(i, x) at line 29, wherex is the decision).

It remains to calculate the maximum time for roundsr and
r + 1. Let p be the first process to start roundr at time tr.
Processp will finish roundr the latest attr+TO+(n+2),
and start the send steps for roundr + 1, 1 step later. By
time tr + TO + δ + (2n + 3), p’s round r + 1 messages
are ready for reception at all processes. At this point, all
processes have finished executing the send steps for round
r (processp’s round r messages forced them to advance)
and are either executing receive steps for roundr or have
entered roundr+1. Therefore, all processes will enter round
r+1 at most1 step after receivingp’s roundr+1 message.
Roundr + 1 will take at mostTO + (n + 2) time, so by
time tr + 2TO + δ + (3n + 6) all processes have finished
roundr + 1.

B. Proofs for Section V

Lemma 3. Consider Algorithm 5 withn > 3f and the
following timeouts:TOD ≥ ∆ + (n − 1), TO ≥ TOD +
2∆+ (2n+ 5). Let R be a∆-partial synchronous run. Let
tr be the time the first process starts a new roundr after
GST . Let all processes have the sameAlive set at aftertr.
Then roundr is space-uniform.

Proof: Let p1 be the first process to finish sending its
roundr messages at timets = tr +(n+1), and starting the
timeout for roundr (see Figure 9). These messages are ready
for reception at most∆ time later, atts+∆. These messages



p1

p2

r

1 n TO 1

r+1

1 n TO 1

∆

r+2

1 n TO 1

∆

1

r+2

1 n TO 1

GST 3TO + ∆+ (4n + 8)

2TO + ∆+ (3n + 6)

Figure 8. Illustration for Theorem 5 and Lemma 7

p1

p2

r

1 n TO 1

r+1

1 n

∆

t1 t2TOA

Figure 10. TimeoutTOA ≥ TO +∆+ (2n+ 1)

are received in the next receive step, which occurs the latest
after (n + 2) steps (an output step followed by an input
step, andn send steps). This is because some process (p2
in Figure 9) might be just started executing an output step
for some roundr′ < r. Therefore,p1’s message is received
by all processes the latest at timet1 = ts + ∆ + (n + 3).
Any process that receives this message in roundr − 1 for
the first time, might set its timeout tot1 + TOD < TO
(see lines 21-22). And start roundr the latest by timet1 +
TOD + 1, after an output step for roundr − 1. By time
t2 = t1 + TOD + 1 + 1 + n, any process (includingp2)
has performed an input step andn send steps for round
r. This message is ready for reception the latest at time
te = t2+∆ = ts+TOD+2∆+(2n+5). The timeoutTO =
TOD + 2∆ + (2n + 5) ensures that no timeout started at
time ts expires beforete (see line 16). So when the timeout
expires, all messages for roundr are either received or ready
to be received. Before, calling the transition function for
roundr (in line 23), a receive step is performed (in line 11);
thus every process in roundr receives a message from every
process, and roundr is space uniform.

Note that no process in roundr can receive a message
from round> r + 1. We prove this by contradiction. Letp
be a process in roundr that receives a message from round
r+2. This means that there is some processq that sent round
r + 2 messages. This requires that either (i)q receives all
roundr + 1 messages, includingp’s message, which is not
possible; or (ii) the timeout for roundr + 1 expires, which
is not possible inside the given interval.

If a process ends roundr at time t before the end of
timeoutTO , because it has received all roundr messages
from its alive set (line 15), any other process does so the
latest by timet+ (n− 1) +∆. From lines 21-22, a process
in roundr that receives a message from roundr+1 for the
first time, waits untilt + TOD time before starting round

r + 1, which is enough to receive all roundr messages.
By the assumption, since all processes have the same actual
alive set in the given interval, roundr is also space uniform
in this case.

Lemma 4. Consider Algorithm 5 withn > 3f and the
following timeouts:TOD ≥ ∆ + (n − 1), TO ≥ TOD +
2∆ + (2n + 5), and TOA ≥ TO + ∆ + (2n + 1). Let
R be a∆-partial synchronous run. Lettr be the time the
first process starts a new roundr after GST . Then by time
tr + 2 + TOA all processes have the sameAlive set.

Proof: By time t1 = tr+2 the first roundr message can
be received (see Figure 10). From the code of the algorithm,
every process starts a new round the latest everyTO+(n+2)
steps: one input step followed byn send steps,TO receive
steps followed by an output step. From the fact that a process
sends at most one message in each step, every processp1
sends messages to any processp2 everyTO+(n+2)+(n−
1) steps. Since a message can take at least0 and at most
∆ time to be received, every process receives a message
every x = TO + (2n + 1) + ∆ time. From the code of
the algorithm, processp2 excludes processp1 from its alive
set, if it does not receive a message withinTOA steps (see
line 13). ComparingTOA with x we haveTOA = x, which
is sufficient to receive a message from any alive process.

Theorem 3. Consider a run of Algorithm 5 withn > 3f
and the following timeouts:TOD ≥ ∆ + (n − 1), TO ≥
TOD + 2∆+ (2n+ 5), andTOA ≥ TO +∆+ (2n+ 1).
LetR be a∆-partial synchronous run. Then every consensus
instance that starts att decides the latest atmax(GST, t)+
TOA + 2TO + TOD + 3∆+ 6n+ 15.

Proof: See Figure 11 for illustration. We distinguish
two cases (1)t < GST , (2) t ≥ GST . In case (1) by
Lemma 3 a new round is started afterGST the latest by
timeGST +TO+n+2. From Lemma 4 all processes have
the same alive set by timet0 = GST +TO+TOA+n+4.
In case (2) by Lemma 4 all processes have the same alive
set by timet0 = t+TOA+2, which is strictly smaller than
GST +TO+TOA+n+4. From the code of the algorithm
a process,e.g., p1, starts a new roundr everyTO +(n+2)
steps,i.e., the latest by timet1 = t0 + TO + n + 2. All
processes do so by timet2 = t1+TOD+∆+(2n+5). This
means that all processes start roundr with the same alive



p1

p2

TOA 1 n TO 1

r

1 n TO 1

r

∆

1 1 n 1 TOD 1

r

1 n

∆

∆ 1

r+1

1 n ∆ 1

r+1

1 n ∆ 1

t TOA + TO + TOD + 2∆ + (4n + 9) ∆ + (n + 2)

Figure 11. Illustration for Theorem 3

set. From Lemma 3, roundr is space uniform. Furthermore,
all processes receive all roundr messages from their alive
set, and end roundr the latest by timet3 = t2+∆+(n+2)
and start roundr + 1 at this time.

From the assumption, no process crashes afterGST ,
therefore, the alive set remains the same. In roundr + 1,
all processes send their messages to all the latest by time

t3 + (n + 1). These messages can be received by all
processes the latest by timet3 + (n + 1) + ∆. From
lines 14-15, all processes end roundr+1 the latest by time
t3 + (n+ 1) + ∆+ 1 after an output step. This means that
all processes decide the latest by this time which is equal
to t0 +TO + (TOD +2∆+ (4n+9)) + (∆+ (n+2)), or
max(GST, t)+TOA+2TO +TOD +3∆+(6n+15).


