Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Combining visible and near-infrared images for realistic skin smoothing
 
conference paper

Combining visible and near-infrared images for realistic skin smoothing

Fredembach, Clément
•
Barbuscia, Nathalie
•
Süsstrunk, Sabine  
2009
Proc. IS&T/SID 17th Color Imaging Conference (CIC)
IS&T/SID 17th Color Imaging Conference

Skin tone images, portraits in particular, are of tremendous importance in digital photography, but a number of factors, such as pigmentation irregularities (e.g., moles, freckles), irritation, roughness, or wrinkles can reduce their appeal. Moreover, such “defects” are oftentimes enhanced by lighting conditions, e.g., when a flash is used. Starting with the observations that melanin and hemoglobin, the key components of skin colour, have little absorption in the near-infrared part of the spectrum, and that the depth of light penetration in the epidermis is proportional to the incident light’s wavelength, we propose that near-infrared images provide information that can be used to automatically smooth skin tones in a physically realistic manner. Specifically, we develop a framework that consists of capturing a pair of visible/near-infrared images and separating both of them into base and detail layers (akin to a low/high frequency decomposition) with the fast bilateral filter. We show that a smooth, realistic, output image can be obtained by fusing the base layer of the visible image with the near-infrared detail layer. This method not only outperforms equivalent decomposition in the wavelet domain, but the results also look more realistic than with a simple luminance transfer. Moreover, the proposed method delivers consistently good results across various skin types.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

FredembachBS2009.pdf

Access type

openaccess

Size

14.32 MB

Format

Adobe PDF

Checksum (MD5)

ad88c1d73a0d23f5f5de21e5552786c7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés