Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. EDF-schedulability of synchronous periodic task systems is coNP-hard
 
conference paper

EDF-schedulability of synchronous periodic task systems is coNP-hard

Eisenbrand, Friedrich  
•
Rothvoß, Thomas  
2010
ACM-SIAM Symposium on Discrete Algorithms (SODA10)
ACM-SIAM Symposium on Discrete Algorithms (SODA10)

In the synchronous periodic task model, a set \tau_1,...,\tau_n of tasks is given, each releasing jobs of running time c_i with relative deadline d_i, at each integer multiple of the period p_i. It is a classical result that Earliest Deadline First (EDF) is an optimal preemptive uni-processor scheduling policy. For constrained deadlines, i.e. d_i <= p_i, the EDF-schedule is feasible if and only if for all Q >= 0: \sum_{i=1}^n (floor(Q-d_i)/p_i) + 1) * c_i <= Q. Though an enormous amount of literature deals with this topic, the complexity status of this test has remained unknown. We prove that testing EDF-schedulability of such a task system is (weakly) coNP-hard. This solves Problem 2 from the survey "Open Problems in Real-time Scheduling" by Baruah & Pruhs. The hardness result is achieved by applying recent results on inapproximability of Diophantine approximation.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EDFhardness-cameraready-SODA2010.pdf

Access type

openaccess

Size

133.86 KB

Format

Adobe PDF

Checksum (MD5)

62aa11c41e6d698916442f15c155bbda

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés