
Appears in Proceedings of the Intl. Conference on Dependable Systems and Networks (DSN), June 2009

LFI: A Practical and General Library-Level Fault Injector

Paul D. Marinescu and George Candea

School of Computer and Communication Sciences

EPFL

Lausanne, Switzerland

Abstract

Fault injection, a critical aspect of testing robust sys-

tems, is often overlooked in the development of general-

purpose software. We believe this is due to the absence of

easy-to-use tools and to the extensive manual labor required

to perform fault injection tests. This paper introduces LFI

(Library Fault Injector), a tool that automates the prepa-

ration of fault scenarios and their injection at the bound-

ary between shared libraries and applications. LFI extends

prior work by automatically profiling fault behaviors of li-

braries via static analysis of their binaries, thus reducing

the dependence on human labor and perfect documenta-

tion. We present techniques for automatically generating

injection scenarios and we describe a simple language for

expressing such scenarios. LFI does not require access to

libraries’ source code and works for Linux, Windows, and

Solaris on x86 and SPARC platforms.

1. Introduction

General-purpose applications rely heavily on shared li-

braries. For example, we found that the MySQL database

server directly links to 13 shared libraries, the Apache Web

server can link to more than 30 shared libraries depend-

ing on compile options and Adobe Photoshop directly links

to 36 shared libraries. If we count recursively the shared

libraries used by libraries themselves, the numbers are as

high as 138 in the case of Adobe Photoshop.

These applications make important assumptions about

how the underlying libraries work, and any guarantees they

try to provide to users depend heavily on the correctness of

such assumptions. For software that is expected to be highly

dependable (database servers, Web servers, email clients,

etc.) testing must verify that the ways in which applica-

tions use these libraries is consistent with the actual library

behavior. In particular, it is essential to verify that the appli-

cations correctly handle faults at or below the library layer

that manifest as errors returned by the library functions.

Unfortunately, corner cases are easy to miss and can lead

to crashes or correctness violations, such as when the result

of a memory allocation is not checked, or when a read()

call is not retried after getting an EINTR return code. These

bugs are hard to find through input testing, because they

are triggered by low-probability events that are typically

input-independent and occur below the library layer. To test

program robustness, we wish to simulate such error events

at the program/library interface and then observe the pro-

gram’s reaction. Ideally, the simulation should be mini-

mally invasive and should not require access to proprietary

portions (e.g., source code) of the program or library.

The challenge, though, is that regular systems have an

overwhelming number of libraries: a typical Linux system

has ∼1000 libraries, Windows XP ∼1400, and Windows

Vista ∼1650. To our knowledge, current library fault injec-

tors require considerable amounts of manual work and are

restricted to the C standard library (libc), thus not scaling to

test all libraries used by programs. Library fault injection

must therefore be generalized and automated to the utmost,

or else the scope of testing will have to stay narrow.

Not only is it necessary to automate the injection of

faults, but also the inference of the libraries’ fault profiles.

Libraries can change frequently; e.g., GNU libc, perhaps

the most widely used shared library, has already seen two

releases in the first three months of this year [8]. By us-

ing shared libraries, applications accept that these libraries

may change underneath them; yet, can they suitably cope?

Frequent changes can introduce unexpected new behavior,

much of which may not even be documented. While many

libraries aim for backward compatibility, even GNU libc

has not always guaranteed compatibility.

Relying on documentation to decide how a library may

expose faults is risky: even if the documentation exists and

is correct for one library version, it can get out of sync

with the next one. As we show in §3.1, library documen-

tation can be incomplete and miss some of the error return

codes. We must therefore extract information on the po-

tential errors directly from the libraries; since source code

is often not available, the library binaries themselves must

1

be analyzed. Finally, since libraries can have hundreds of

functions in their API, we must automatically generate test

scenarios and allow developers to tweak them, instead of

requiring them to write tests from scratch.

In this paper we introduce LFI, a tool for automated

library fault injection. We wish to make fault injection

easy to adopt in the development of general-purpose soft-

ware, where programmers must be very agile and are sub-

ject to constraints different from those encountered in build-

ing safety-critical systems. LFI consists of two parts: a pro-

filer and a controller. The profiler uses static analysis of

libraries’ binaries to extract their fault profiles and to de-

termine the side channels used to communicate failure in-

formation (such as errno in libc). The profiler also gener-

ates fault injection scenarios. The controller uses profile in-

formation to synthesize an interceptor library that can then

drive automated injection of fault scenarios.

In the rest of this paper we provide an overview of

LFI (§2), describe the LFI profiler (§3), fault scenario gen-

eration (§4), and the LFI controller (§5). We then evaluate

LFI (§6), survey related work (§7), and conclude (§8).

2. System Overview

The goal of the LFI fault injector is to give testers a fast,

easy and comprehensive method to test program robustness

in the face of failures that are exposed at the interface be-

tween shared libraries and the programs under test. We en-

vision LFI being used not only by testers and researchers

evaluating their software prototypes, but also by customers

who want to validate closed-source products, or in bench-

marks that compare in a systematic way the fault-tolerance

of different applications. LFI can also be used as an explo-

ration tool, to understand the behavior of third-party code.

LFI can be downloaded from http://lfi.epfl.ch/.

Using LFI consists of two steps: (a) profile the target ap-

plication’s shared libraries to determine a set of meaningful

faults to inject, and (b) conduct fault injection experiments

using various fault scenarios. This is reflected in LFI’s ar-

chitecture (Figure 1).

Testers point LFI at a target application and the profiler

automatically finds which shared libraries the application

links to and then profiles them. For each library, it deter-

mines the exported functions and, for each exported func-

tion, the possible error return values—we refer to this in-

formation as the library’s fault profile. LFI does not re-

quire symbols and works on both stripped and unstripped

libraries; of course, for a library to be useful, libraries must

provide symbols for their exported function signatures.

Since profiles are obtained automatically, testers do not

need to be familiar with the internals of the libraries. How-

ever, if they do have such knowledge or additional domain-

specific information, they can alter the generated profiles to

obtain faster, more accurate results (e.g., by removing func-

tions or faults that are not of interest).

libc.profile

libssl.profile

...

 Application

(MySQL, Oracle, ...)

LFI Controller

lib
c.so

lib
ssl

.so ...

Test workload

test log

fault replay scripts

 LFI

Profiler

fault scenario

Figure 1. Architecture of the LFI fault injector.

The LFI controller receives these fault profiles and com-

bines them with a fault scenario specification to drive the

fault injection. The controller is a transparent shim inter-

posed between the application and the libraries; it intercepts

the calls to libraries and injects the desired error codes. In

order to be useful “out of the box”, LFI automatically gen-

erates a set of simple fault scenarios—exhaustive injection

and random injection—so, in many cases, testers need not

do any manual work. The scenarios can, however, be freely

modified after the automatic generation. We show in §6 how

random fault injection found a previously-unknown bug in

Pidgin, a popular instant messenger client.

The output of LFI experiments is a test report and gener-

ated scripts that can replay the injections, enabling develop-

ers to debug and test in more detail the scenarios of interest.

The results in the report can pinpoint bugs or weak spots

in the target software that may be good targets for further

examination. The replay scripts can then be incorporated in

regression test suites of the target system.

3. LFI Profiler

The interface of a library consists of a set of functions

“exported” to programs that use the library. The LFI profiler

statically analyzes the library to identify the error return val-

ues for every exported function (§3.1). Some libraries pro-

vide additional details about error conditions through vari-

ous side effects; LFI identifies these side channels as well

(§3.2). The LFI profiler then outputs a fault profile (§3.3).

3.1. Return Code Analysis

We designed LFI to work directly on the libraries’ bina-

ries, because requiring access to source code would hamper

the practicality of LFI. First, source code may be unavail-

able, as is the case for most of the DLLs on Microsoft Win-

dows systems. Second, obtaining source code matching the

exact versions of the libraries being used may be difficult

2

(e.g., the original GNU libc code is slightly different from

the version used by RedHat Linux, which in turn differs

from the version used by Ubuntu Linux). Third, handling

large source code bases for all the required libraries, with

each one having its own set of compile and build require-

ments, would involve substantial manual work. We believe

this would deter practitioners from adopting LFI.

The LFI profiler disassembles the library and identifies

all exported functions, along with the dependent functions,

i.e., other internal or exported functions that are invoked by

the exported functions. Dependencies are determined recur-

sively, both within the same library and other libraries called

by the current one. It then constructs for each function a

control flow graph (CFG), like the one shown in Figure 2.

LFI uses platform-specific tools, such as ldd and objdump

on Linux and Solaris, and dumpbin on Windows.

start

08048524<_Z4blahi>:

8048524: push ebp

8048525: mov ebp,esp

8048527: sub esp,0x10

804852a: cmp DWORD PTR [ebp+0x8],0x0

804852e: jne 8048539 <_Z4blahi+0x15>

8048539: cmp DWORD PTR [ebp+0x8],0x1

804853d: jne 8048546 <_Z4blahi+0x22>

8048530: mov DWORD PTR [ebp-0x4],0x0

8048537: jmp 8048546 <_Z4blahi+0x22>

8048546: mov eax,DWORD PTR [ebp-0x4]

8048549: leave

804854a: ret

804853f: mov DWORD PTR [ebp-0x4],0x5

Figure 2. A simple example of a control flow graph

for an exported library function.

In most libraries, return codes are constants, typically de-

fined with #define directives; these codes end up stored in

a memory location or register (we refer to both of these as

locations). For each assignment of a constant to a location,

the static analyzer looks for the paths through the CFG that

propagate this constant to the return location in an exit ba-

sic block. For most application binary interfaces (ABIs) the

return value is placed in a well-defined location. For exam-

ple, in the case of the Intel ABI, the return value is placed in

the eax register, so we need to find the paths that propagate

constants to the last eax write before a return instruction.

To make this path search efficient, the LFI profiler trans-

forms the CFG G(V, E), which has basic blocks B1, B2, ...

as vertices, into another graph G′(V ′, E′), with V ′ = V ×
{l1, l2, ...}, where li are the locations to which constants are

written. E′ = {(<Bs, li>,<Bd, lj>) | (Bs, Bd) ∈ E ∧

li is propagated to lj by Bs}. We say li is “propagated” to

lj by basic block B if the content of li is used to compute

and write the contents of lj within B. For calls to depen-

dent functions, we consider all of the dependent function’s

return values (determined recursively) to be propagated.

The profiler identifies all writes to the return location

preceding a return instruction and searches from this point

in reverse, to find all paths in G′ along which constants can

be propagated to that location. One could think of this algo-

rithm as a “reverse” constant propagation. Constant folding

is not necessary, since compilers automatically do this when

generating the library code, so the disassembled code offers

no opportunity for further folding. We have not encountered

any problems related to pointer aliasing in practice; it ap-

pears that modern compilers prefer to use the same canoni-

cal location to refer to these variables. To reduce the search

space, the profiler generates G′ on-demand, only expanding

the nodes of interest.

In order to avoid injecting “obvious” non-faults, LFI can

optionally apply two heuristics. First, it tries to distinguish

success from error returns, to avoid injecting success re-

turns; this heuristic removes 0-return values from all func-

tions for which more than one constant return value were

found (if only 0 was found, it is likely a null pointer re-

turn). Second, the LFI profiler eliminates short functions

that return 1 or 0 and only check for conditions of the type

isFile(); LFI infers that neither return value reflects a

failure. Since both heuristics are unsound, they are disabled

by default in LFI—we prefer to risk injecting some non-

faults rather than miss valid faults.

A special type of dependency occurs in the C and C++

standard libraries (libc and libstdc++): they wrap kernel

system calls, so many dependent functions reside in the ker-

nel. LFI therefore performs static analysis on the kernel im-

age as well, to identify the error codes that originate in the

kernel and may be propagated by the libraries.

An alternative to the LFI approach is to obtain error re-

turn codes by parsing documentation. This approach has

two main drawbacks. First, the analysis cannot be accurate,

because documentation often uses natural language that is

potentially confusing, such as “the same errors that occur

for link(2) can also occur for linkat()” in the linkat man

page, or “returns 0 if successful, a positive error code oth-

erwise” in the libxml2 documentation.

Second, documentation can be inconsistent. E.g., the

modify ldt man page claims three possible return val-

ues (EFAULT, EINVAL and ENOSYS), yet the LFI profiler

found a fourth one (ENOMEM), confirmed through code in-

spection. We found similar inconsistencies in libxml2,

where htmlParseDocument is alleged to only return 0 or

-1 for success/failure, but it turns out it can also return 1

in some failure cases. Such disparities between documen-

tation and reality can be the very source of program bugs,

3

so an effective fault injection tool must be aware of them.

LFI’s fault profiles could be improved based on documen-

tation, but this requires manual vetting.

It is possible to avoid analyzing exported library func-

tions that the target program never calls, and thus save some

profiling time. In LFI we opted to profile all exported func-

tions of a library, because profiling is fast anyway (∼20 sec-

onds for the biggest libraries), and we wish to reuse profiles

across multiple programs once they have been generated.

The LFI profiler is relatively portable: it obtains the ex-

ported symbols for a shared object file, disassembles it, and

builds the control flow graph—these are steps that are per-

formed using standard tools on most general-purpose plat-

forms. The CFG analyses are independent of the ABI and

platform features. As will be seen in §6.3, the LFI pro-

filer currently works for three platforms: Linux/x86, Win-

dows/x86 and Solaris/SPARC.

Limitations: Fault profiles may include false positives,

i.e., return codes that can be returned by the corresponding

function only when certain combinations of arguments are

provided. For example, the read function in libc can return

-1 and set errno to EWOULDBLOCK only when it is passed

an asynchronous file descriptor. Inferring the relationship

between arguments can be done using symbolic execution,

but the current LFI prototype does not support this yet.

Indirect calls can pose a challenge to LFI’s inter-

procedural constant propagation analysis. For such cases,

the LFI controller could dynamically resolve indirect calls

at runtime and inject the return codes corresponding to the

function being called. However, prior work [17] and our

own experience indicates that indirect calls are highly un-

common, even in event-driven object-oriented code. More-

over, our analysis of real libraries found that only 2.28%

(758 out of 33,122) of indirect calls could actually affect

the profiler’s accuracy in static error code propagation.

In theory, indirect branches can make building the CFG

hard. However, we analyzed 9,633 functions in 30 com-

monly used libraries and found that only 0.13% branches

(104 out of 78,292) were indirect. The LFI prototype cur-

rently ignores the resulting CFG incompleteness.

LFI must be able to disassemble the libraries in order

to analyze them; this may not work if the code is obfus-

cated. Fortunately, [17] reports that over 99% disassembly

accuracy can be achieved in commercial grade applications.

Since the LFI profiler and disassembler are loosely coupled,

it is possible to use as good a disassembler as is available.

3.2. Side-Effects Analysis

Besides error return values, library functions may com-

municate to callers additional information regarding the en-

countered error, via channels such as output parameters,

global variables, or thread local storage (TLS) variables,

like errno. The LFI profiler automatically discovers and

analyzes such side effects.

Shared libraries on most platforms consist of position-

independent code (PIC), i.e., machine code that executes

properly regardless of where it is loaded in memory. In PIC,

all instructions referring to memory addresses use relative

addressing. For example, in Linux, the ebx/ecx registers

are loaded with the instruction pointer in the function pro-

logue and subsequently used as a base address for access-

ing global or TLS variables. The LFI profiler starts out by

finding the possible return codes and then it scans the ba-

sic blocks that contain the constant assignments, searching

for possible writes to global/TLS variables. These writes

are identified based on the use of the base address for com-

puting the memory location to write to; propagating error

codes to these locations is considered a side effect.

We illustrate with an example from GNU libc, where a

function sets the errno TLS variable and places the return

value in the eax register after a syscall returned an error:

1. call f8596 <__frame_state_for+0xb96>

2. add ecx,0x7c91c

3. mov ecx,DWORD PTR [ecx-0x20]

4. add ecx,DWORD PTR gs:0x0

5. xor edx,edx

6. sub edx,eax

7. mov DWORD PTR [ecx],edx

8. or eax,0xffffffff

Line 1 uses the standard PIC way of obtaining the current

instruction pointer. In lines 2-4, it computes the address of

the errno variable. Lines 5 and 6 compute the value to be

stored in errno as the negative value of eax, in accordance

with the Linux system call standard, and line 7 stores the

value into errno. Finally, line 8 sets the return value of the

function to -1. The profiler first finds line 8, then detects

the side effect by analyzing the containing basic block; it

concludes that exposing the error requires the injector to

place -1 in eax and also set errno accordingly.

We take a similar approach for side effects reflected

in output arguments, i.e., when the function writes to ad-

dresses passed in as arguments. Such output arguments

are always found at a well known location—positive off-

sets from the base stack pointer when using frame pointers

on the IA32 architecture, or stack/register combinations in

general—so the LFI profiler detects writes to addresses ob-

tained from such positive offsets. E.g., on IA32, we modi-

fied the algorithm used to detect possible return values such

that it performs a forward search and looks for constant

propagations to locations of the form [ebp+??], instead

of eax. If a chain of basic blocks that sets the return value

also intersects a chain of blocks that propagates a constant

to an [ebp+??] location, we consider it to be a side effect.

4

In order to understand how frequently the different ways

of propagating error information are used in practice, we

analyzed >20,000 functions in the Ubuntu Linux libraries.

We used the ELSA C/C++ parser [6] to analyze the library

headers in all the development packages, and combined this

information with the LFI analyses described above. The re-

sults are summarized in Table 1—row labels indicate func-

tion return type, column labels indicate the method for pro-

viding error details, and values in cells indicate the cor-

responding fraction of all the functions we analyzed. We

found that more than 90% of the exported functions in

Linux shared libraries do not have side effects.

Return None Error details in Error details

Type global location via arguments

void 23.0% 0% 0%

scalar 56.5% 1% 3.5%

pointer 11.6% 1% 3.4%

Table 1. Statistics on how Linux libraries provide ad-

ditional details on error conditions exposed to callers.

3.3. Fault Profile

The output of the LFI profiler is a fault profile of the

analyzed library. This output is meant to be passed to the

LFI controller, but it could also be used for other purposes,

such as cross-checking API documentation. We therefore

chose a general XML format that is both human-readable

and easy to parse.

LFI generates one profile per analyzed library. For each

exported function, the profile contains information regard-

ing possible error return values, along with a specification

of associated side effects for each such value. Here is a snip-

pet of the profile generated for the libc close function:

<profile>

...

<function name="close">

<error-codes retval="-1">

<side-effect type="TLS"

module="libc.so.6" offset="12FFF4">

-9

</side-effect>

<side-effect type="TLS"

module="libc.so.6" offset="12FFF4">

-5

</side-effect>

<side-effect type="TLS"

module="libc.so.6" offset="12FFF4">

-4

</side-effect>

</error-codes>

</function>

...

</profile>

In case of error, close returns -1 and provides additional

information via a TLS variable (errno) at the given offset.

This side effect can be value -9 (corresponding to EBADF =

bad file descriptor), -5 (for EIO = input/output error), or -4

(for EINTR = interrupted system call).

Incidentally, this is another example where man pages

can be deceiving: on BSD systems, the man page accurately

states that close can only set errno to EBADF or EINTR.

On Linux, EIO is also possible, so programmers porting

from BSD to Linux might forget to add a check for EIO;

similarly, if porting to HP/UX they might forget to check for

ENOSPC, or on Solaris they might forget about ENOLINK, all

of which are return codes present in the corresponding libc

libraries. LFI can automatically find the errors specific to

the platform and test the programs with those values.

4. Fault Injection Scenarios

A fault injection scenario describes a sequence of faults

to be injected; it can also be referred to as “faultload.” Such

a scenario pairs faults with triggers, i.e., conditions that,

when true, should lead to an injection.

We designed a simple XML-based language to describe

scenarios as sets of <trigger, fault> tuples. Every time a

function is intercepted, the relevant triggers are evaluated

and, if any is true, the associated fault(s) is/are injected.

Due to space constraints, we do not describe the language

in detail, but provide an illustrative example below:

<plan>

<function name="readdir64" inject="5" retval="0"

errno="EBADF" calloriginal="false" />

<function name="readdir" inject="5" retval="0"

errno="EBADF" calloriginal="false">

<stacktrace>

<frame>0xb824490</frame>

<frame>refresh_files</frame>

</stacktrace>

</function>

<function name="read" inject="20"

calloriginal="true">

<modify argument="3" op="sub" value="10" />

</function>

...

</plan>

The first <function ... /> trigger matches the 5th

call to function readdir64 and returns value 0 (null

pointer), sets errno to EBADF (“bad file descriptor”), and

does not call the original readdir64 function. The second

trigger matches the 5th call to function readdir and, if

the call stack has the address 0xb824490 in the first frame

and function refresh files in the second frame, it injects

EBADF. The third trigger matches the 20th call of the read

function, modifies its 3rd argument (the number of bytes to

be read) by subtracting 10 from it, and then passes the call

on to the original read library call.

5

The current LFI prototype automatically generates two

types of scenarios: exhaustive and random. In the exhaus-

tive case, every exported function of every linked library

is included, and consecutive calls to an exported function

iterate through the possible error codes. In the random sce-

nario, LFI takes as argument a probability, which is then

used to randomly select both which call will return an error

code and which particular error code it should return.

LFI allows testers to customize generated scenarios by

using domain-specific knowledge: they might restrict the

function calls to only a subset of interest, or specify a (par-

tial) stack trace as a condition that must be matched by the

runtime backtrace in order to trigger an injection. Scenar-

ios can also be hand-written by testers, based on the library

fault profiles. The random scenario is useful for quick-and-

dirty testing, when testers have limited time and do not want

to customize the fault scenarios, or when they lack specific

knowledge that could target the testing better.

To help bootstrap fault injection testing experiments, LFI

also comes with several ready-made fault scenarios for libc,

such as all faults related to file I/O, all memory allocation

faults, or all socket I/O faults.

5. LFI Controller

The LFI controller (Figure 3) receives from the profiler

the fault profile(s) of interest along with a fault scenario, ei-

ther automatically generated by the profiler or customized

by the developer. It then generates interception stubs which

are combined with boilerplate code to synthesize a new li-

brary. This synthetic library has the same API as the origi-

nal one, but underneath this API encodes the fault injection

logic. This new library is shimmed between the program

being tested and the original library(ies).

stub generator

C code

boilerplate

program

under

test

new libX.so

original

libX.so

libX.profile

fault scenario

log

LFI Controller

replay
scripts

Figure 3. The LFI controller.

Once the stubs are generated and installed (§5.1), the LFI

controller invokes a developer-provided script that starts the

program under test, exercises it with the desired workload,

and monitors its behavior to determine whether it terminates

normally or with an error exit code. This information is

collected in a log, along with an LFI-generated replay script

for each fault injection test case; the test scripts allow the

developer to diagnose and debug (see §5.2).

5.1. Interception Mechanics

The shimming of the synthesized library is system-

specific. On Linux and Solaris, LFI uses the LD PRELOAD

environment variable to tell the dynamic linker to load the

LFI-generated library before the original one. On Win-

dows, LFI uses a combination of WriteProcessMemory/

CreateRemoteThread, and passes the address of

LoadLibrary as the thread start address, to force a

process to load the synthetic library.

A synthesized library consists of stubs that intercept the

library calls. Each stub determines the address of the origi-

nal function, evaluates the triggers from the scenario and, if

an injection is to be done, determines the return value/side

effect to be injected and/or whether the call should be

passed to the original function or not. If no injection is

to be done, it cleans up the stack and jumps to the origi-

nal function. In general, using a jmp instruction (instead of

call) simplifies the handling of the original return address

from the stack, because it avoids the need for save/restore.

A stub looks approximately as follows:

int LIB_FUNC_NAME(void) {

static void * (*original_fn_ptr)();

static int call_count;

call_count++;

if (!original_fn_ptr)

original_fn_ptr = (void* (*)())

dlsym(RTLD_NEXT, #FUNC_NAME);

if (eval_trigger(LIB_FUNC_NAME,

call_count, call_stack)) {

/* determine return_code, side_effects */

/* apply side_effects */

return return_code;

} else {

/* return stack and registers to orig values */

__asm__("jmp [original_fn_ptr]");

/* orig func will return directly to caller */

}

}

Interceptors for multiple libraries can coexist (see §6.4).

This happens transparently, because the interception mech-

anism only relies on the function name, not on the library

where the original function resides; thus, stubs for functions

from different libraries do not interfere with each other.

Although interception is specific to the OS and CPU ar-

chitecture, porting to new platforms is straightforward.

5.2. Controller Output

The LFI controller collects information that helps devel-

opers reproduce, understand, and fix the behaviors observed

as a result of fault injection.

6

The LFI log is a text file that records each injection, the

applied side effects, and the events that triggered that injec-

tion (e.g., call count, stack trace). This output can be used

to match injections to observed program behavior, as well

as to refine the fault scenario.

The replay scripts are automatically-generated XML

files that can be fed back to the LFI controller to reproduce

the desired test case on a subsequent run. Replay is not al-

ways 100% accurate, because LFI does not control thread

interleaving, timer inputs, etc. We have found that these re-

play scripts can save a lot of time during ad-hoc testing, and

can also augment existing regression test suites.

6. Evaluation

Our goal in building LFI was to make testing based on

fault injection easier and less human-intensive; in this sec-

tion we evaluate the extent to which we reached this goal.

We analyze the effectiveness of using LFI in testing (§6.1),

measure its efficiency (§6.2), assess the accuracy of the LFI

profiler (§6.3), and measure the performance overhead in-

curred during testing (§6.4). LFI currently works on Linux

and Windows (both Intel IA-32 and IA-64 architectures), as

well as Solaris (SPARC architecture). We expect LFI to be

easily ported to other systems as well.

6.1. Effectiveness

Ease of Use: LFI’s primary contribution is ease of use.

The human effort involved in the basic use of LFI is small:

it requires issuing two commands, one for profiling and one

for running the tests. When the tester modifies the default

fault profiles, more time is required, but we expect this to

be easier than directly scripting fault injection experiments.

Below, we illustrate LFI usage with an example.

We tested Pidgin [15], a popular instant messenger

client, by instructing the LFI controller to launch it and ex-

ercise a random fault injection scenario on I/O functions

with 10% probability. Shortly after we entered the IM login

details in Pidgin, it crashed with a SIGABRT.

We restarted Pidgin using the corresponding replay

script and attached with gdb; it crashed again and we were

able to inspect the program state. In a matter of minutes,

we discovered the issue: Pidgin forks a DNS resolver pro-

cess to perform host resolution asynchronously; this process

then communicates back to the parent via a pipe. The child

does not handle the case when writes fail or are incomplete.

As a result, the child may write the answer to the parent,

but, if the write is incomplete, it may subsequently write

additional data corresponding to another request. As a re-

sult, the parent reads the status (which is ok), and then reads

the size of the (resolved) address—due to the partial write,

this read returns data written after the injection, in our case

a very large value. The parent calls malloc for this amount

of memory, which results in SIGABRT, because it is unable

to allocate the memory. Further details appear in the bug

report we filed [16].

Improving Coverage: Besides ease-of-use, effectiveness

can also be measured by whether LFI can improve existing

regression test suites. We considered the MySQL database

server, which is the most mature open-source RDBMS,

first released in 1995; it claims 11 million installations [4].

MySQL ships with its own thorough test suite. The MySQL

5.0 test suite achieves 73% overall basic block coverage,

which is remarkable for an open-source project; we there-

fore set out to see if we can improve this with no human

effort.

We ran LFI in fully automatic mode, generating a ran-

dom fault injection scenario based on libc. With no human

help, LFI improved the coverage of the MySQL test suite to

at least 74% overall; in some modules (such as the InnoDB

ibuf implementation) coverage improved by 12%. We ex-

pect the coverage numbers to be slightly higher, because in

12 cases MySQL crashed with SIGSEGV and the coverage

information for those test cases was not saved. We are en-

couraged by the fact that, with no human assistance, LFI

was able to improve a mature, extensive test suite.

Finding Obscure Scenarios: A third aspect of effective-

ness is whether LFI is able to exercise scenarios that ex-

isting tools would not find. As already mentioned in §3.1

and §3.3, the LFI profiler found several return error codes

that are missing from the API documentation of popular li-

braries. By analyzing directly the binary, LFI helps testers

find fault scenarios that they would otherwise not be aware

of; knowing these additional fault scenarios enables testers

to write more thorough tests.

6.2. Efficiency

The running time of a test tool is an important factor in

its adoption, because testers are generally unwilling to wait

long for results. For example, the long running times of

model checkers have discouraged their wide use in testing.

The LFI profiler is fast: we measured profiling time ranging

from 0.2 seconds for a small library (libdmx, with 18 ex-

ported functions and an 8 KB code segment) to 20 seconds

for a large library (libxml2, with 1612 exported functions

and a 897 KB code segment). To profile the >1,000 li-

braries found on a typical Linux system takes several hours,

but in practice we expect testers to only profile the libraries

used by the program of interest. When updating a library

on the system, which we expect will happen about once a

month, it takes on the order of minutes to re-analyze the

7

updated library and its dependencies in order to update the

library fault profile.

Profiling time is mainly influenced by code size (i.e.,

number of machine instructions). The number of hops in

the propagation of return codes to the eax (or equivalent)

register also has an impact, but we have found this number

to be always 3 or less, due to compiler optimizations like

constant propagation and constant folding, so its effect is

negligible.

6.3. Accuracy

Accuracy of the profiler can be expressed as

TP/(TP+FN+FP), i.e., the ratio of true positives to the

sum of true positives, false negatives, and false positives.

A true positive is an error return code that was correctly

found; a false negative is a returnable error that was not

found; a false positive is a reported error code that cannot

actually be returned. A factor that can influence accuracy is

the number of indirect branches and indirect calls, because,

as explained in §3.1, indirection poses a challenge to the

static analyzer. Accuracy is also influenced by library

design: the number of false positives increases as functions

maintain more state from one call to another, based on

which they decide the appropriate return value.

For evaluation purposes, the “ground truth” for deciding

what is a false vs. true positive or negative cannot be easily

determined, because written documentation is not reliable;

if we wanted precise numbers, labor-intensive manual code

inspection would be required. We performed such an anal-

ysis on a small library (libpcre, with 20 exported functions)

and found the accuracy to be 84% (52 true positives, 10

false negatives, 0 false positives).

To scale the evaluation, we considered 18 additional li-

braries on 3 platforms, but this time we considered the

ground truth to be the documentation. We wrote documen-

tation parsers for each of the measured libraries. While this

evaluation is inexact, it is the only practical method of com-

parison. In Table 2 we show the results of running the LFI

profiler on the respective binaries.

With no access to documentation, source code, or hu-

man assistance, the LFI profiler achieves on the order of

80%-90% accuracy. False negatives result in missed fault

scenarios, while false positives result in time wasted by the

developer verifying that the injected fault condition cannot

actually occur in practice. Should structured documenta-

tion exist and a documentation parser be available, it can

be combined with LFI’s static analysis to yield higher accu-

racy.

Library Plat- Accuracy TPs FNs FPs

form

libssl Windows 87% 164 18 6

libxml2 Solaris 81% 1003 138 88

libpanel Solaris 100% 23 0 0

libpctx Solaris 83% 10 0 2

libldap Linux 85% 368 45 21

libxml2 Linux 80% 989 152 102

libXss Linux 92% 12 1 0

libgtkspell Linux 100% 7 0 0

libpanel Linux 91% 21 2 0

libdmx Linux 76% 26 8 0

libao Linux 80% 12 3 0

libhesiod Linux 100% 10 0 0

libnetfilter q Linux 92% 24 2 0

libcdt Linux 100% 15 0 0

libdaemon Linux 91% 30 3 0

libdns sd Linux 89% 50 4 2

libgimpthumb Linux 84% 31 3 3

libvorbisfile Linux 75% 133 4 39

Table 2. Profiler accuracy with no human assistance,

no documentation, and no source code, on Linux/x86,

Solaris/SPARC, and Windows/x86. We show true

positive (TPs), false negatives (FNs), and false pos-

itives (FPs) relative to library documentation.

6.4. Performance Overhead

The final question we wish to address is whether the pro-

cess of injecting library-level faults slows down the system

to the point that its behavior is no longer representative. If

this was the case, the value of testing would be decreased.

We measured the overhead introduced by the LFI con-

troller in the AB [2] benchmark on the Apache httpd server,

while LFI was simultaneously performing fault injection on

the calls to GNU libc, libapr, and libaprutil. GNU libc is a

large library, with 1535 exported functions, while the two

libraries comprising the Apache Portable Runtime (APR)

are medium-sized, totaling a little over 1,000 functions.

We allowed LFI to produce a random fault injection

plan with 10 triggers on the top-10-most-called functions

in Apache httpd, 100 triggers on the top-100, 500 triggers

on the top-300, and 1,000 triggers on the top-300, respec-

tively (in the last two cases, there were multiple triggers for

the same function, corresponding to different error returns).

In these experiments, LFI always passes the call through to

the original library after evaluating the trigger, in order to

allow Apache to properly complete the benchmark. In each

test we ran 1,000 requests with AB.

Table 3 summarizes two sets of results, obtained with

two different workloads: static HTML and PHP. The latter

is more dynamic and performs many more library calls than

8

the former, which implies that the triggers have to be eval-

uated considerably more times. As can be seen, the over-

heads introduced by trigger evaluation are negligible.

Static HTML PHP

Baseline (no LFI) 0.151 sec 1.51 sec

10 triggers 0.156 sec 1.53 sec

100 triggers 0.156 sec 1.53 sec

500 triggers 0.158 sec 1.57 sec

1,000 triggers 0.159 sec 1.60 sec

Table 3. Runtime overhead of using LFI in the Apache

httpd server with three simultaneous libraries (GNU

libc, libapr, and libaprutil). We report completion

time of 1,000 AB requests. The baseline represents

Apache httpd without any interference from LFI.

We also ran the SysBench [23] Online Transaction Pro-

cessing (OLTP) benchmark on the MySQL RDBMS with

LFI applied to GNU libc; we varied the number of triggers

from 10 to 1,000. Table 4 shows the results for two different

workloads: read-only and read-write queries.

Read-only Read/Write

Baseline (no LFI) 465.28 txns/sec 112.62 txns/sec

10 triggers 464.48 txns/sec 112.08 txns/sec

100 triggers 463.19 txns/sec 111.53 txns/sec

500 triggers 460.80 txns/sec 110.88 txns/sec

1000 triggers 459.39 txns/sec 110.10 txns/sec

Table 4. Runtime overhead while applying LFI to the

MySQL database server. We report number of trans-

actions per second, as reported by SysBench OLTP.

As in the Apache case, the runtime overhead during test-

ing is negligible, even for a large number of triggers. It is

apparent that overhead is influenced both by how intensely

the program uses the profiled library and how many triggers

are present in the fault injection plan.

7. Related Work

Performing fault injection at the software level is attrac-

tive, because it does not require expensive hardware mecha-

nisms, and it can be used to target various layers in the soft-

ware stack. Software fault injectors can either be inserted

directly into applications, or can be shimmed between ex-

isting layers of the software stack.

Software fault injection has seen varied uses in the liter-

ature, ranging from use as a method for testing the robust-

ness of device drivers [1] to testing general-purpose operat-

ing systems [9, 13, 11, 12, 10, 3] to mission-critical systems

and real-time systems [18, 19].

NFTAPE [20] is an example of a fault injection frame-

work that can inject various low-level faults with the main

purpose of assessing dependability of distributed systems.

In our experience, establishing the mapping between low-

level faults and higher-level application events across sev-

eral layers of the software stack is not easy, making diagno-

sis and debugging tedious.

Our work is focused on library-level fault injection, be-

cause we view this as an ideal layer for doing realistic test-

ing: it is the interface that is most likely to expose applica-

tions to failures that occur in their environment.

Work related to this idea includes Ballista [14], an early

system for testing the robustness of a library or operating

system API by passing boundary values as arguments. It re-

lies on domain-specific knowledge to select arguments that

will stress the tested component and also needs access to

the corresponding function prototypes. Similarly, HEAL-

ERS [7] searches for arguments that can cause a library

function to crash; it then generates wrappers that protect

the vulnerable functions from the pathogenic arguments.

Our work operates in the opposite direction: we test the

application by giving it error return values from the library.

This way, we verify that the program reacts properly to the

exposed error conditions, e.g., check how it handles situa-

tions when malloc is unable to allocate memory.

Research interest in this type of library-level fault injec-

tion is relatively recent and, to our knowledge, debuted with

FIG [5], a tool used to verify the recovery mechanisms of

applications that use the GNU libc (glibc) library. FIG in-

jects faults solely in calls to glibc and requires that the in-

jectable glibc errors be hardcoded. In contrast, LFI can be

used with any library and automatically generates stubs that

perform complete fault injection, including side effects. We

also offer control over the injection process via an XML-

based fault description language to flexibly specify injection

scenarios.

Süßkraut & Fetzer [21] introduced a system that finds ap-

plication problems via library-level fault injection and then

patches the applications to protect against these faults. The

system is limited to libc and relies on man pages to deter-

mine possible error return values. As shown in §3.1 and

§3.3, man pages can sometimes be incorrect, so in LFI we

extend the man page parsing approach with static analysis

of the library binaries, to automatically extract error return

codes. [21] also requires information on the function proto-

types in the form of header files to generate corresponding

wrappers and uses systematic error injection. LFI elimi-

nates the need for header files and decouples the specifica-

tion of fault scenarios from the fault injection mechanism,

thus allowing for more flexible test scenarios (systematic,

random, custom, etc.).

Süßkraut & Fetzer [22] further introduced a technique

for learning library-level error return values by injecting

9

system call errors (i.e., faults at the boundary between the

operating system and the library) and observing their prop-

agation to the libc interface. The LFI profiler uses static

analysis of binaries, because the system call injection ap-

proach is limited to libc (the only library that directly ac-

cesses the system call interface), and it requires recompil-

ing the kernel, in order to export the system call table. We

believe that direct analysis of the binaries makes LFI more

widely applicable.

8. Conclusion

We presented LFI, a tool for making fault injection-

based testing more efficient and accessible to developers

and testers. LFI injects faults at the boundary between

shared libraries and target programs, in order to verify

whether the programs correctly handle failures exposed by

the libraries. LFI automatically extracts information from

the binary libraries regarding possible error return codes

and their side effects. Based on this fault profile, LFI gen-

erates various fault injection scenarios, which can be used

directly or modified as desired by testers. Based on the fault

profile and scenario, LFI synthesizes a shim library that in-

jects the desired faults and records the behavior of the target

program.

LFI generalizes to the shared libraries found on com-

mon Linux, Windows, and Solaris systems, and profiling

takes on the order of seconds for each library—this makes

it practical for use in real development. We have shown

that LFI is useful even when run without human assistance

and no access to documentation or source code—it was able

to increase test coverage even on the extensive MySQL test

suite, by exercising recovery code paths that are not touched

by regular testing. The performance overhead incurred dur-

ing fault injection is negligible, which means that program

behavior remains realistic during testing.

9. Acknowledgments

We thank Ankit Singla for his early contributions to LFI.

We are grateful to the anonymous reviewers and Ming Yu

and Liviu Ciortea for their help in improving this paper.

References

[1] A. Albinet, J. Arlat, and J.-C. Fabre. Characterization of the

impact of faulty drivers on the robustness of the linux kernel.

In Intl. Conf. on Dependable Systems and Networks, 2004.

[2] Apache Benchmark (AB).

http://httpd.apache.org/docs/2.0/programs/ab.html.

[3] J. Arlat, J.-C. Fabre, M. Rodrı́guez, and F. Salles. Depend-

ability of COTS microkernel-based systems. IEEE Trans.

Comput., 51(2), 2002.

[4] C. Babcock. Sun locks up MySQL, looks to future Web

development. InformationWeek. Retrieved on 2008-02-27.

http://informationweek.com/news/showArticle.jhtml?article-

ID=206900327.

[5] P. A. Broadwell, N. Sastry, and J. Traupman. FIG: A pro-

totype tool for online verification of recovery mechanisms.

In Workshop on Self-Healing, Adaptive and Self-Managed

Systems, New York, NY, 2002.

[6] ELSA. http://www.eecs.berkeley.edu/ smc-

peak/elkhound/sources/elsa/. Accessed on 15-Mar-2009.

[7] C. Fetzer and Z. Xiao. HEALERS: A toolkit for enhancing

the robustness and security of existing applications. In Intl.

Conf. on Dependable Systems and Networks, 2003.

[8] http://ftp.gnu.org/gnu/glibc/. Accessed on 15-Mar-2009.

[9] T. Jarboui, J. Arlat, Y. Crouzet, and K. Kanoun. Experimen-

tal analysis of the errors induced into linux by three fault

injection techniques. In Intl. Conf. on Dependable Systems

and Networks, 2002.

[10] D. Joao and M. Henrique. Multidimensional characteriza-

tion of the impact of faulty drivers on the operating systems

behavior. IEICE Trans. Info. and Sys., 86(12), 2003.

[11] A. Johansson, N. Suri, and B. Murphy. On the impact of in-

jection triggers for OS robustness evaluation. In Intl. Symp.

on Software Reliability Engineering, 2007.

[12] A. Johansson, N. Suri, and B. Murphy. On the selection of

error model(s) for OS robustness evaluation. In Intl. Conf.

on Dependable Systems and Networks, 2007.

[13] K. Kanoun, Y. Crouzet, A. Kalakech, A.-E. Rugina, and

P. Rumeau. Benchmarking the dependability of windows

and linux using postmark workloads. In Intl. Symp. on Soft-

ware Reliability Engineering, 2005.

[14] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and

T. Marz. Comparing operating systems using robustness

benchmarks. In Intl. Symp. on Software Reliability Engi-

neering, 1997.

[15] Pidgin. http://www.pidgin.im.

[16] Pidgin - ticket 8672. http://developer.pidgin.im/ticket/8672.

[17] M. Prasad and T. Chiueh. A binary rewriting defense against

stack-based buffer overflow attacks. In USENIX Annual

Technical Conference, 2003.

[18] M. Rodriguez, J. Arlat, and J.-C. Fabre. Building SWIFI

tools from temporal logic specifications. In Intl. Conf. on

Dependable Systems and Networks, 2003.

[19] V. Sieh, O. Tschache, and F. Balbach. VERIFY: Evalua-

tion of reliability using VHDL-models with embedded fault

descriptions. In Intl. Symp. on Fault-Tolerant Computing,

1997.

[20] D. T. Stott, B. Floering, Z. Kalbarczyk, and R. K. Iyer. A

framework for assessing dependability in distributed sys-

tems with lightweight fault injectors. In Intl. Computer Per-

formance and Dependability Symp., 2000.

[21] M. Süßkraut and C. Fetzer. Automatically finding and patch-

ing bad error handling. In European Dependable Computing

Conference, 2006.

[22] M. Süßkraut and C. Fetzer. Learning library-level error re-

turn values from syscall error injection. In European De-

pendable Computing Conference, 2006.

[23] Sysbench. http://sysbench.sourceforge.net, 2008.

10

