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Abstract—Anticipation increases the efficiency of daily tasks ’ R ; =
by partial advance activation of neural substrates involve in it. @ O
Previous off-line studies have shown the possibility of expiting ® ®
this activation for a Brain-Computer Interface (BCI) using 0056 00sac
electroencephalogram (EEG). In the current paper we report 4.05ec e 405ec ime
real-time and single trial recognition of this activation using a @) ()

prototype of anticipation based BCI (aBCl). We report on-line
classification accuracies with peak values 085% and 80%, and
with average values 0f69.0+7.9% and 58.5+14.1% for subjects
1 and 2, respectively. Posterior off-line analysis showedrniproved
accuracies for both subjects, with an average af0.5+10.1% and 10b
69.0 +10.5% with peak values of 95% and 85% respectively.
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Index Terms—Anticipation, brain-computer interaction (BCI),
contingent negative variation (CNV), electroencephalogim
(EEG).
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Anticipation increases the efficiency of daily tasks by jaéurt el
advance activation of the neural substrates involved [&feRt co
off-line studies on the single trial recognition of thesdqm 20
tials from electroencephalogram (EEG) show the posspbilit - 0 ! . 8 4 5
of developing an anticipation based Brain-Computer laieaf
(aBCl) [2], [3]. For example, consider a scenario of naviigat ©
a bram'aCtuat.ed .Wheek:ha'r (4] glo_ng a corridor '[.OWElr_dS . 1. Contingent Negative Variation (CNV) paradigm usethie calibration
goal room. Using its onboard proximity sensors, the irgelit phase and ERP grand averages. (a) In the GO condition a \gastimulus
wheelchair can detect the presence of a doorway, but it ¢anf}) With a green dot at time = 0s is displayed and then an imperative
decid heth . h . | stimulus (S2) with a red dot is presented with IS of 4s. Setsjare instructed

ecide W ether to enter into the room or continue ao_qganticipate and press a button as soon as S2 is presentda. diferentiate
the corridor. However, the user can make the appropriahe NOGO condition from the GO condition S1 is replaced witretiow dot.

decision by anticipating the presence of the target roorne subjects are instructed to do nothing for this conditi@) The grand
average ERPs of GO (solid line) and NOGO (dashed line) taaésshown

Before rea“Z'ng S_l'!Ch a pragmahc app_hcaﬂon it 'S. .neqm for Cz electrode. The circular figures are the topographgresentation of
assure the reliability of real-time on-line recognitiontb&se average scalp distribution at different time scales for @@tpm) and NOGO

potentials in a closed |00p_ The current paper is aimed (gip)_conditions (computed using EEG of 6 subjects; repcedudrom previous
. . . studies [2])

studying such an aBCl with a simple prototype.

To record anticipation related potentials we adopted the
classical Contingent Negative Variation (CNV) paradignh [5
as experimental procedure. A vast amount of literature dstimuli and task parameter relevance [6], [7] (see Fig.1ltlier
scribes the CNV potentials (the potentials recorded usi@NV protocol with GO and NOGO conditions and EEG grand
CNV paradigm) as related to anticipation [5]-[7]. In thisaverages). This signal has been shown to be stable oveabkever
paradigm, a warning stimulus (S1) predicts the appearahcedays and in different conditions (e.g., amount of sleep fime
an imperative stimulus (S2) in a fixed inter-stimulus-imédr [6]. In addition, an early neurofeedback experiment sutgges
(IS1). A negative shift in the cortical activity with a ceptr that humans are able to modulate it [8]. The stability of this
medial distribution (under the vertex electrode, Cz) ugualpotential, and the human’s ability to modulate its ampléud
develops between S1 and S2 depending on contingencysapport the possibility of using this phenomenon for thegtes

of aBCI.
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techniques [2]. In another study it has been shown that thése Evaluation phase

slow-cortical potentials are not only recognizable reiatn In this phase we test on-line the classifiers calculatedeén th
single trials but also fast [3]. The current paper makeshturt previous phase in a modified CNV paradigm that does not
progress by testing real-time recognition with a similatime  require any muscular response (see Fig. 2). The differance i
and feedback in a simple closed-loop prototype of aBghe CNV paradigm between the previous phase and current
application. _ _ phase is that the subject does not have to press any button but

In the next section we describe the phases of aBCl C|05"s‘ﬁhply need to anticipate for the appearance of S2 (for the GO
loop prototype along with the EEG preprocessing and classifondition alone). At the end of each trial, feedback is shown
cation techniques. In section Il we first discuss the resoft p55ed on the classification result 2s after the appearar82 of
re_al-time recogn_ition and f_eedback of these poteqtialstr_\Np (i.e., a happy smiley is shown if correctly recognized and a
discuss the off-line analysis of these EEG potentials amain saq smiley otherwise). This phase replaces motor commands
further improvement of classification accuracies. In sectV by mental commands decoded by the aBCI. We recorded 10
we discuss our future steps in realizing a pragmatic apica eya|uation sessions each containing 10 trials per comditio
of aBCI. both subjects. We also recorded an extra session for subject

after a gap of 20 min.
Il. METHODS

The development of the aBCI prototype consists of two
phases; first, @alibration phasein which we train classifiers
based on EEG potentials recorded with the CNV protocol (see
Fig.1). Then, in theevaluation phasesubjects pass through a
similar protocol in which they anticipate without providima ' T
motor response, and the classifiers built in the previousgha @ (®)
are used on-line to recognize the user's intent. It is WOrhy > Evaiuation phase (a) GO condition; similar to Figa)léxcept the
noting that the training is a very fast procedure and weetlartsubjects are instructed to anticipate for the appearang® efithout providing
the evaluation phase approximately 10 min after the calima 2ny motor response. (b) NOGO condition; same as Fig. 1(jedan the

. . I on-line classification a feedback is provided 2s after thgeapance of S2.

phase. These phases are described in detail in the following
paragraphs.

0.0 Sec

A. Calibration phase I1l. RESULTS

In this phase we compute the classifiers for on-line use In this section we first report the results of real-time radeg
in the next phase. During this phase we recorded EEG I of anticipation related potentials using the aBCl ptype.
two subjects performing CNV protocol with 100 trials peWe then report further off-line analysis of the recorded EEG
condition. The EEG signals were acquired using 64 electrodeotentials for improving the classification methods aimed a
according to the 10/20 international system with a samplidgture applications.
rate of 512Hz. The EEG was spatially filtered using common
average reference and baseline activity computed as averAg Real-time classification results
activity during [-1 O]s. To compute a reliable classifier we ag mentioned in the previous section we first cleaned
removed some ftrials which are believed to contaminate t8gme of the calibration trials to obtain best training &g
best training samples with the following criteria: ensure high training accuracy so that the feedback from the
1) A GO trial is included only if the anticipation responseBCI system is as accurate as possible to help the subject’s
time (RT) w.r.t the S2 appearance is in the range of fonditioning. Comparison of training accuracies for diéfat
0.15 0.15]s for subject 1 and [-0.2 0.2] sec for subject golynomial orders« < 1,2, 3,4, 5, 6) revealed linear approx-
(30 trials for subject 1 and 48 trials for subject 2 wergnation (n=1; the slope and offset of the signal as featuass)
included). the best order with training classification accuracies d%95
2) A NOGO trial is included if the peak negative value isind 88.3% for subjects 1 and 2, respectively. It is worthmpti
above -2(x volts (30 trials for subject 1 and 30 trialsthat the cleaning step eliminated the overlapping regidiise
for subject 2 were included). class distributions (see Fig. 3).
These heuristics were based on the reasoning that the RThe on-line classification results of each evaluation sessi
and amount of negativity correlates with the GO conditioare shown in Fig. 4. Performances above random classificatio
(in other words, better anticipation leads to shorter RT andkere obtained in all sessions for subject 1 and in most sessio
higher negativity at central electrodes). for subject 2, with peak accuracies reaching up to 80%.
For selected training trials, we computed a linear polyradmiFour out of 11 sessions and 3 out of 10 sessions achieved
approximation of the activity at Cz electrode in the intéf@a performances above 70% for subject 1 and 2 respectively.
3.25]s as suggested by previous studies [2]. The coefficiedverage classification accuracy 69.0 + 7.9% for subject 1
of this polynomial were used as features and a Linear Diand58.5+14.5% for subject 2 were observed. From the dashed
criminant Analysis Classifier (LDA) [9] is calculated fora&a lines in Fig. 4, one can notice that the system performance
subject and used in the next phase. increases during the first few sessions (1-3 for subject 1 and
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Fig. 4. Realtime on-line classification accuracies obthimethe evaluation
sessions for the two subjects are shown in dotted line. @fftllassification

accuracies are shown in solid line. ] o ) L
is a clear indication of subject’s conditioning. It also gegts

that on-line adaptation may be required to track such clenge

1-4 for subject 2), suggesting that subjects are able torgtme'n EEG for better B‘?' perforr‘nan.ce [10]. i )

stable and more separable signals over a certain periothef ti 2) Improvements in classification accuraciesfe believed
(particularly evident in the case of subject 2). Howevee tHat classifiers with high training accuracy may help the
performance in the next five sessions decreases with respatiects conditioning, which we obtained by eliminatirgre

to the initial sessions. In general, system errors are paiffialS based on behavioral and neuphysiological critesize (
due to misclassification of the NOGO condition. Performan&gction I1). However, posterior off-line analysis of theoeded
degradation may be the result of subject's fatigue, as veell EG da‘Fa of calibration and_evaluatlon phases, wherg we ex-
reduced motivational levels, as suggested by post-expetah Plored higher order polynomial features suggests thanaiea

interviews with the subjects. Moreover, the subject 1 actte of the trials was not necessary. In this analysis we obseaved

an accuracy oB5% in an extra session after a break of 2¢l€crease in the training accuracies (obtained using ediliior
min (see Fig. 4). trials without cleaning) but a significant improvement ire th

test accuracies (trials of evaluation phase) for both sibje
_ i (on average$0.5 4 10.1%, 69.0 4= 10.5% for subject 1 and 2,
B. Off-line analysis respectively, with an improvement of approximatéys). The
In this section we first report the changes in grand averagesmparison between the off-line and on-line sessions slaows
due to BCI feedback during the evaluation phase in compaifaprovement in almost all sessions for both subjects (9 dut o
son to the calibration phase. Then we discuss improvementlih for subject 1 and 8 out of 10 for subject 2). Peak accuracies
the classification accuracies with a different strategyudisré  reach95% and85% for subject 1 and 2, respectively (see Fig.
perspective. 4). We can also observe the similar increase in the first few
1) Grand average ERPs of aBCPrevious off-line studies sessions for both subjects. However, during the later @essi
showed an increasing trend in the classification accuraey ovor subject 1 the performance is very stable (sessions 6-11)
sessions [2]. Based on this observation, we have hypotrgbsiand significantly better for subject 2 (sessions 7 and 8).nAs i
that BCI feedback may help the subjects to learn to gener#te on-line analysis, the best polynomial order was sealecte
better discriminable patterns. In the current aBCI expenitn by comparing training accuracy of classifiers trained farhea
we can observe specific changes in the grand-average ERRier between 1 and 6 (i.e., using the trials of the calibrati
due to BCI feedback (see Fig. 5). The ERPs correspondingpioase). In this case the best orders were 6 and 4 for subjects 1
GO and NOGO condition appear farther apart in the evaluatiand 2, respectively. The average classification accurasies
phase compared to the calibration phase for both subjdctsevaluation sessions obtained using different polynomidés
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Fig. 7. Off-line analysis using all the evaluation trial@pbgraphies of single
electrode test accuracies computed for subject 1 and 2.

the recorded data using different strategies shows signific
improvements in accuracies for both subjects in almost all
evaluation sessions with peak values9f% and 85% with
average oR0.5 4= 10.1% and69.0 4= 10.5% for subject 1 and

2, respectively.

As hypothesized, we noticed specific changes in the EEG
during the evaluation phase as compared to the calibration
phase. The grand averages in evaluation session wererfarthe
apart. This is likely due to the BCI feedback of the recogmiti
which possibly helped the subject to adapt.

From the results reported in the previous section the follow
ing strategies have to be adopted for the next step in réializa
of a realistic aBCl application. First, the features need to
be computed using higher order polynomial approximation.
Second, cleaning of the trials for ensuring high train aacyr
may not be a necessity. Third, classifiers computed using
feature selection methods applied to multiple electrodiesga
with Cz electrode may lead to more robust classifiers. Fourth
on-line adaptation of classifiers may help in tracking cleng
EEG due to subject’s learning. Lastly, as the simplicity of
the experimental task seems to fail in keeping the subject’s
attention, we need to conduct experiments in a more engaging
realistic setup such as navigation of a robotic wheelchair i

virtual environments.

is shown in Fig. 6. From the figure it is noticeable that the
best performances are achieved with the order selected with
the calibration trials.

Neurophysiological studies suggest that CNV is observeld]
predominantly at Cz electrode. However, the correlates qj,
anticipation can be observed at other electrodes sitemd
central areas during the early peak and centro-parietalsare

. : 3]
during the later peak (see Fig. 1). As a future perspecuv%
we assess the discriminability of all the remaining eletd® [4]
separately using the same methods. The results confirm that C
electrode is the best for both subjects (see Fig. 7). However
since other electrode signal features are also discrirtenab[5]
a future step can be to explore multi-electrode features for
achieving more robust classifiers.

(6]
IV. DIsScUssION

Previous studies on single trial recognition of anticipati [7]
related potentials argued that anticipatory behavior can b
exploited for developing BCIl. However, it is necessary tog)
test real-time recognition of these methods in a closed loop
before going for a pragmatic application. In this paper w
make such an attempt by testing real-time recognition and
feedback of anticipation related potentials using a simplEo]
prototype of aBCl. This prototype consists of two phasest fir
a calibration phase during which classifiers were calcdlate
and an evaluation phase during which the classifiers were
tested and a feedback was presented. In this phase we atbserve
the peak accuracies of 85% and 80% for subject 1 and
subject 2, respectively with an average over test sessibns o
69.0 + 7.9% and 58.5 + 14.1%. We observed an increase in
the system performance during the first evaluation sessions
suggesting subject’s adaptation to the BCI. However, tigere
a performance degradation in the later sessions which may
be the result of subject’s fatigue. Further off-line anelysf
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