On the Optimal Placement of Mix Zones

Julien Freudiger, Reza Shokri, and Jean-Pierre Hubaux

LCA1, EPFL, Switzerland
firstname.lastname@Qepfl.ch

Abstract. In mobile wireless networks, third parties can track the lo-
cation of mobile nodes by monitoring the pseudonyms used for identifi-
cation. A frequently proposed solution to protect the location privacy of
mobile nodes suggests changing pseudonyms in regions called mix zones.
In this paper, we propose a novel metric based on the mobility profiles
of mobile nodes in order to evaluate the mixing effectiveness of possi-
ble mix zone locations. Then, as the location privacy achieved with mix
zones depends on their placement in the network, we analyze the opti-
mal placement of mix zones with combinatorial optimization techniques.
The proposed algorithm maximizes the achieved location privacy in the
system and takes into account the cost induced by mix zones to mobile
nodes. By means of simulations, we show that the placement recom-
mended by our algorithm significantly reduces the tracking success of
the adversary.

1 Introduction

Modern mobile devices are increasingly equipped with peer-to-peer communi-
cation technologies, such as WiFi or Bluetooth, thus allowing them to directly
exchange information with other devices in proximity. Such peer-to-peer com-
munications enable context-aware applications. For example, vehicular networks
provide safer and more efficient road transportation [23J47]. Similarly, mobile so-
cial networks allow users to automatically detect and exchange information with
their friends [T/2/3/4]. In practice, mobile nodes detect each others’ presence by
periodically broadcasting messages and use pseudonyms instead of their actual
identity (i.e., MAC/IP address, public key) to identify/authenticate each other.

However, much to the detriment of privacy, external parties eavesdropping
on communications can monitor pseudonyms to learn mobile nodes’ locations.
Previous works [7I27/34] show that if the spatial and temporal correlation be-
tween successive locations of mobile nodes is not carefully eliminated, an external
party (i.e., an adversary) can compromise the location privacy of mobile nodes
and obtain the real identity of mobile nodes’ owners. For example, using location
traces collected in an office environment from the Active Bat system, Beresford
and Stajano [7] correctly identified all participants by simply examining where
the participants spent most of their time. Similarly, using GPS traces from ve-
hicles, two studies by Hoh et al. [27] and Krumm [34] found the home addresses
(and thus the identity) of most drivers. Hence, pseudonyms are not sufficient to
protect the location privacy of mobile nodes.
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One popular technique for achieving location privacy consists in using multi-
ple pseudonyms [112246] that are changed over time to impede traceability. As
a pseudonym changed by an isolated node can be trivially guessed by an exter-
nal party, pseudonym changes are coordinated among mobile nodes in regions
called miz zones [8]. But even if location traces of mobile nodes are completely
anonymized (i.e., do not contain any identifier), Hoh and Gruteser [25] were
able to reconstruct the tracks of mobile nodes using a multiple target tracking
(MTT) algorithm. Hence, to protect against the spatial correlation of location
traces, location traces should also be altered spatially. To do this, mix zones can
also conceal the trajectory of mobile nodes to the external adversary by using:
(i) Silent/encrypted periods [I7I28/37], (ii) a mobile proxy [42], or (iii) regions
where the adversary has no coverage [12]. The effectiveness of a mix zone, in
terms of the location privacy it provides, depends on the adversary’s ability to
relate mobile nodes that enter and exit the mix zone [7]. Hence, mix zones should
be placed in locations with high node density and unpredictable mobility [8I29].

While traversing a given area, mobile nodes go through a sequence of miz
zones and “accumulate” untraceability [12030]. Unlike wired mix networks such
as Tor [I6] where packets can be freely routed, the sequence of mix zones tra-
versed by mobile nodes depends on the mobility of each node. In other words,
the flow of mobile nodes cannot be controlled to maximize location privacy. In-
stead, we propose to control the placement of mix zones to impede the adversary
from tracking the nodes’ location. However, similarly to the delay introduced by
mix nodes on packets, mix zones induce a cost for mobile nodes: With silent mix
zones, mobile nodes cannot communicate while they are in the mix zone, and
with a mobile proxy, all messages have to transit through the same mobile node.
Hence, the number of mix zones to be deployed over a given area must be kept
small.

We consider a trusted central authority that is responsible for the establish-
ment of security and privacy in the network (e.g., in vehicular networks, the
vehicle registration authority [23]). This authority deploys a limited number of
mix zones in a given area to protect the location privacy of mobiles nodes. In
order to help the authority evaluate the mixing effectiveness of mix zones prior
to network operation, we first propose a metric based on mobility profiles. To do
so, we model the strategy of the adversary in assigning exiting to entering flows
as a decision problem [9]. We propose to use the Jensen-Shannon divergence [38]
to measure the probability of error of the adversary. Then, we model the problem
of placing mix zones as an optimization problem: We propose an algorithm to
find the optimal placement of mix zones by maximizing the mixing effectiveness
of the system at an acceptable cost for mobile nodes. The algorithm offers min-
imum location privacy guarantees by enforcing a maximum distance between
traversed mix zones. Finally, we compare the optimal mix zones deployment to
other deployments by using a realistic mobility simulator [33]. To the best of
our knowledge, this paper is the first to investigate deployment strategies of mix
zones in mobile networks.
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Fig. 1. Example of system model. Nodes move on plane (z,y) according to trajectories
defined by flows a, b, and c¢. To achieve location privacy, nodes change pseudonyms in
mix zones.

2 Preliminaries

2.1 System Model

We study a network where mobile nodes are autonomous entities equipped with
WiFi or Bluetooth-enabled devices that communicate with each other upon com-
ing in radio range. In other words, we consider a mobile wireless system such as
a vehicular network or a network of directly communicating hand-held devices.
Without loss of generality, we assume that each user in the system has a single
mobile device and thus corresponds to a single node in the network.

As commonly assumed in such networks, we consider an offline central au-
thority (CA) run by an independent trusted third party that manages, among
other things, the security and privacy of the network. In vehicular networks
for example, the vehicle registration authority could take this role. In line with
the multiple pseudonym approach, we assume that prior to joining the network,
every mobile node s registers with the CA that preloads a finite set of pseudo-
nyms [40] (e.g., certified public/private key pairs, MAC addresses). Mobile nodes
change pseudonyms in mix zones in order to achieve location privacy (Fig. [I).
Upon changing pseudonyms, we consider for simplicity that the old pseudonym
expires and is removed from the node’s memory. Once a mobile node has used
all its pseudonyms, it contacts the CA to obtain a new set of pseudonyms.

We assume that mobile nodes automatically exchange information (unbe-
knownst to their users) as soon as they are in communication range of each
other. Note that our evaluation is independent of the communication protocol.
Without loss of generality, we assume that mobile nodes advertise their presence
by periodically broadcasting proximity beacons containing the node’s identify-
ing/authenticating information (i.e., the sender attaches its pseudonym to its
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messages). Due to the broadcast nature of wireless communications, beacons
enable mobile nodes to discover their neighbors. For example, when a node s
receives an authenticated beacon, it controls the legitimacy of the sender by
checking the certificate of the public key of the sender. After that, s verifies the
signature of the beacon message.

We consider a discrete time system with initial time ¢ = 0. At each time step
ts, mobile nodes can move on a plane (Fig.[Il) in the considered area. As shown
by Gonzalez, Hidalgo and Barabasi [19], mobile users tend to return regularly to
certain locations (e.g., home and workplace), indicating that despite the diversity
of their travel locations, humans follow simple reproducible patterns. Hence, we
consider a flow-based mobility model [33]: Based on real trajectories of mobile
nodes in the network (e.g., pedestrian or vehicular), we construct f € F flows
of nodes in the network between the few highly frequented locations of mobile
nodes, where F' is the set of all flows. In practice, such real trajectories could be
provided, for example, by city authorities in charge of road traffic optimization.
Thus, each flow f defines a trajectory shared by several mobile nodes in the
network during a period of time. For example in Fig. [I, each node is assigned
to one of the three flows a, b, or ¢ and follows the trajectory defined by the flow
during the traversal of the plane. In stationary regime, a flow is characterized
by its average number of nodes, A. Note that during the course of the day, flows
usually vary. For simplicity, we consider one of the possible stationary regimes
of the system. Flows are defined over the road segments in the considered area.
The mobility of the nodes is thus bound to the road segments.

2.2 Threat Model

An adversary A aims at tracking the location of some mobile nodes. In practice,
the adversary can be a rogue individual, a set of malicious mobile nodes, or
might even deploy its own infrastructure (e.g., by placing eavesdropping devices
in the considered area). We consider that the adversary is passive and simply
eavesdrops on communications. In the worst case, A obtains complete coverage
and tracks mobile nodes throughout the entire area. We characterize the latter
type of adversary as global.

A collects identifying information (e.g., the MAC address or the public keys
used to sign messages) from the entire network and obtains location traces that
allow him to track the location of mobile nodes. Hence, the problem we tackle
in this paper consists in protecting the location privacy of mobile nodes, that is,
to prevent other parties from learning a node’s past and current location [§]. It
must be noted that, at the physical layer, the wireless transceiver has a wireless
fingerprint that the adversary could use to identify it [4I]. However, because
this requires a costly installation for the adversary and stringent conditions on
the wireless medium, it remains unclear how much identifying information can
be extracted in practice from the physical layer and we do not consider this
threat.
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3 Mix Zones

As described in the Introduction, location privacy is achieved by changing pseu-
donyms in regions called miz zones [7]. Mix zones are effective in anonymizing
the trajectory of mobile nodes if the adversary is unable to predict with high
certainty the relation between mobile nodes entering and exiting mix zones. In
this section, we first give a description of mix zones and then evaluate their
effectiveness using an information-theoretic divergence measure.

3.1 Mix Zones Description

A mix zone i € Z is defined by a triplet (x;,y;, R;), where Z is the set of all mix
zones in the considered area. The x; and y; coordinates are the center of the
mix zone ¢ and determine the location of the mix zone in the network. R; is the
radius of mix zone 7, which we assume constant over all mix zones, R; = R. In
other words, a mix zone is a region of pre-determined shape and size that can
be established anywhere in the considered area. We consider that the location of
mix zones is determined centrally and communicated to the mobile nodes prior
to their joining the network.

Each mix zone i is traversed by flows f; € F; C F of mobile nodes. Mobile
nodes traversing a mix zone create entering and exiting events of the mix zone.
Each node in a flow takes a certain amount of time, called the sojourn time, to
traverse the mix zone. The sojourn time models the speed diversity of mobile
nodes traversing mix zones. Speed differences are caused, for example, by a higher
density of nodes on specific flows or by traffic lights. Each mix zone i has a set of
entry/exit points L; typically corresponding to the road network. Consider the
example in Fig. [[t Mix zone 3 has three entry/exit points that are all traversed
by some flows. Based on the flows traversing a mix zone, we can evaluate the
different trajectories of mobile nodes in each mix zone. The mobility profile of a
mix zone captures the typical behavior of mobile nodes traversing the mix zone
(i.e., their sojourn time and trajectory). In practice, city authorities in charge of
traffic lights optimization could provide the measured sojourn time distributions
as well as typical trajectories over the course of the day.

There are several techniques for obtaining a mix zone: (i) Turning off the
transceiver of mobile nodes [28131137], (ii) encrypting messages [17], (iii) relaying
all wireless communications through a proxy [42], or (iv) exploiting regions where
the adversary has no coverage [12]. In all cases, the adversary cannot observe
the movements of the nodes within the mix zone. For example in Fig. [I], three
mix zones have been established encompassing the entire intersection.

3.2 Mix Zones Effectiveness

In order to efficiently place mix zones in the network, we need to know - prior to
their deployment - their mixing effectiveness. As the previously proposed entropy
metric [7] depends on entering/exiting events of mix zones (after deployment),
we propose a new metric based exclusively on the mobility profile of mix zones
(before deployment).
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Event-Based Metric. As presented by Beresford and Stajano [7] for mobile
networks and by Diaz et al. [I5] and Serjantov and Danezis [43] for mix networks,
the uncertainty of the adversary (i.e. entropy) is a measure of the location pri-
vacy /anonymity achieved by a node. Assuming that A knows the mobility profile
of the nodes within each mix zone, the adversary can predict their future direc-
tion from their past behavior. Consider a sequence of entering/exiting nodes
traversing a mix zone i over a period of T' time steps, the uncertainty of the
adversary is:

I
Hp(i) = =Y pylogy(py) (1)

where p, is the probability of different assignments of entering nodes to exiting
nodes and [ is the total number of such hypothesized assignments. Each value
p, depends on the entering/exiting nodes and the mobility profile. In other
words, the anonymity provided by mix zones mostly depends on factors beyond
the control of the nodes. It is thus interesting to compute the average location
privacy provided by a mix zone to evaluate its mizing effectiveness. The entropy
measure is bound to the set of events happening in an interval of T' time steps
and does not capture the average mixing of a mix zone. The average mixing
effectiveness of a mix zone ¢ can be computed by taking the average entropy
over n successive periods of T' time steps: E[H(i)] = 23" | Hr, (i).

Flow-Based Metric. We propose a new method to theoretically evaluate the
mixing effectiveness provided by mix zones. The proposed metric relies on the
statistics of the mix zone, i.e., the mobility flows and the mobility profile, to
compute the mixing effectiveness of the mix zone. The advantage of the proposed
metric is that the mixing effectiveness can be computed prior to the operation
of the mobile network as it does not rely on a particular set of events.

The metric is generic and independent of the nature of traffic. However, to
simplify the treatment, we model each flow f; as a homogeneous Poisson process
with intensity A;. The distribution Pois(b;\;) denotes the probability that b
nodes enter the flow f; during a time step ¢;. Each flow f; that traverses a
mix zone ¢ is subject to a sojourn time distribution h; ;j(At), where At is the
time spent in the mix zone. Observing the exit of a mix zone ¢, the adversary is
confronted to a classical decision-theory problem: A must classify each exit event
x € X happening at time ¢, as coming from one of the F; possible entering flows.

Let m = |F;| be the number of flows in mix zone i. Assume that m = 2 flows
{f1, f2} converge to the same mix zone exit [. The probability that the adversary
misclassifies z depends on the number of nodes that can potentially correspond
to it. This is related to the time spent in the mix zone and the inter-arrival time.
We focus on a simple scenario where one mobile node from each flow enters the
mix zone. Without loss of generality, we assume that the first mobile node arrives
at time ¢t = 0 from f; and that the second node arrives with a time difference
0 from fs5. Figure 2] shows the exiting time probability distribution time for a
given §. We first compute the error probability with a fixed value of § and then
generalize our model by considering different values of ¢.
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Fig. 2. Example of exiting time distribution of two flows with h; ;j(At) ~ N(u;,0;),
j = 1,2. In this example, (u1,01) = (2,1), (p2,02) = (4,1), Ay = p2 — p1, and ¢ is the
arrival time difference between events of two flows (i.e., the first node arrives at time
t = 0, and the second one arrives at time ¢).

To compute the location privacy generated by a mix zone, we are interested
in computing the probability that an adversary misclassifies an event. In other
words, for one exit [, a successful mixing occurs whenever the adversary makes
an error, i.e., assigns an exit event to the wrong flow. It is well known that the
decision rule that minimizes the probability of error is the Bayes decision rule
(i.e., choosing the hypothesis with the largest a posteriori probability). According
to Bayes’ theorem, the a posteriori probability that an observed event z belongs
to flow f; is

pj(z )ﬂ'J :
where p;(z) = p(z|f;) is the conditional probability of observing & knowing that
x belongs to f; and m; = p(f;) is the a priori probability that an observed exit
event belongs to flow f;. The Bayes probability of error [24] is then given by:

e(p1,p2) = Y min(mipi (z), mapa(x)) 3)
reX

The a priori probabilities depend on the intensity of the flows and are equal to:
mj = Aj/(3 4.4, er Av). The conditional probabilities pi(x), p2(x) are equal to

the probability that f; generates an exit event at time ¢,: p1(z) = fotts hia(t)dt

te
and pa(z ft fatts gy hio(t — 8)dt.

A large body of research has focused on minimizing the probability of error.
For example, the MTT algorithm minimizes the probability of error when track-
ing multiple moving objects. In the location privacy context, it is used to measure
the effectiveness of path perturbation techniques by Hoh and Gruteser [25]. In
our case, we evaluate the probability of error in order to find mix zones with
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Upper and Lower bound to P,

Fig. 3. Lower and upper bounds of the probability of error with Pois(b; \;), hi ;(At) =
N(pj o5 =0.5), 5 =1,2, &1 = 0.2, A2 € [0.2,2], u1 = 2s, and pz € [2,4]s. As A2/
increases, the difference between the two probability functions increases as well and it
becomes easier to classify the events (pe becomes smaller). The decrease in p. is faster
if A, increases as well.

high mixing effectiveness, i.e., that maximize the probability of error. Because
computing the probability of error is most of the time impractical [32] (when
m > 2), we consider the distance between the two probability distributions p;, po
to compute bounds on the error probability. Intuitively, the further apart these
two distributions are, the smaller the probability of mistaking one for the other
should be. The Jensen-Shannon divergence [38] (JS) is an information-theoretic
distance measure that is particularly suitable for the study of decision problems
as the one considered here. It provides both a lower and an upper bound for the
Bayes probability of error.

JSx(p1,p2) = H(mip1(w) + map2(x)) — m H (p1(z)) — m2H (p2(z))  (4)

The JS divergence ) provides a simple way to estimate the misclassifica-
tion error of the adversary over a mix zone. The Bayes probability of error is
lower /upper bounded as follows [38]:

1

Z(H(Wlﬂfz) — JSr(p1,p2))* < pe(p1,p2) <

where H(m,ms) is the entropy of the a priori probabilities. The JS divergence
is thus particularly useful in order to select mix zones with a high mixing effec-
tiveness. In addition, the JS divergence can be extended to a larger number of

flows [38]:

%(H(ﬂ'l,ﬂ'g) —JSx(p1,p2))  (5)

JSr(p1, - Pm) = H(Z mipi(r)) — ZmH(m(w)) (6)
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Consider the following example: Two flows f1, fo with equal input Poisson
intensities A; = 0.2 share an exit ! of mix zone i. The sojourn times are dis-
tributed according to a Normal distribution h; j(At) = N(u; = 2,0, = 0.5),
j = 1,2, and § = 0. Figure [3 shows how the lower and upper bounds on the
probability of error are influenced by a difference A, of the sojourn time distri-
butions (A, = ps — p1) and by the ratio Ad2/A; of flows’ intensities. We observe
that if A, increases and A2/A\; = 1, p. decreases, showing that, with a fixed
0, a difference in the sojourn time distributions alone helps distinguish between
the two distributions. We also observe that if A2/\; increases and A, = 0, the
probability of error decreases. The intuition is that as the difference between the
flows’ intensities increases, the flow with higher intensity dominates the exit of
the considered mix zone. In addition, we observe that if both Ay/A; and A, in-
crease, p. decreases faster. The mixing effectiveness is maximal when both flows
have the same intensity and sojourn time distribution.

Until now, we focused on scenarios with one mobile node entering from each
flow, and a fixed 0. We generalize our model by considering the average difference
in arrival time of nodes in flows. More specifically, based on the average arrival
rate \j, we compute the average difference in arrival time between flows and the
average number of nodes that can potentially correspond to an exit event x. The
average difference in arrival time between any two flows depends on the flow
intensities. The average number of nodes that can be confused with an event x
depends on the maximum sojourn time window w;; = maxy,cr, ,(Aty,), where
Aty, is the time spent in the mix zone by nodes in flow f; and Fj; is the set of
flows in F; that exit at . For each flow f; € F};, there is a set of possible entering
events with average arrival time differences in a time window w;; with respect
to beginning of the window: (;l ={d;v: v/N\; <wjy,v € N}, where 6, = v/A;.
We compute the probability of error of the adversary at exit [ as follows:

Z p6<pj(x70)7pi£1(x75K1,U1)7plﬂ($75'€1,v2)7"'7pli2(x761€2,1)1)7"')
i fi€Fi
by = 7
p N |E,l| ( )

where p;(z,0) is the conditional probability p;(z) with § = 0, pk, (x, 0k, ;)
corresponds to the conditional probability py, (x) with dx, ., € (i, ;, and k1,
K2, ..., Km—1 are not equal to j. In other words, we evaluate the confusion of
the adversary for each flow with respect to other flows. Finally, we compute the
average probability of error caused by a mix zone ¢ by considering the error
created by each exit [ € L; of mix zone i:

; Zvaél
Pe= =1 (8)
| L]

With this model, we consider the average arrival rate of the nodes and can
thus compute the mixing effectiveness prior to network operation. Note that we
assumed for simplicity that the sojourn time distribution is independent of the
flows’ intensity. The model can be extended to capture the interactions between
nodes in the mix zone and their effect on the sojourn time distributions [I§].
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4 Placement of Mix Zones

In principle, mix zones can be placed anywhere in the considered area. Their
placement determines the accumulated location privacy provided by each mix
zone. Thus, the optimal solution consists in placing mix zones on the entire
surface of the considered area. However, mix zones have a cost because they
impose limits on the services available to mobile users and require a pseudonym
change. Hence, the total number of mix zones deployed in the network should be
limited to minimize the disruptions caused to mobile nodes. We assume that a
central authority, responsible for the establishment of security and privacy in the
system, is confronted with the problem of organizing mix zones in the network.
Thus, users must trust that the central authority will protect their privacy. We
propose a solution based on combinatorial optimization techniques that relies
on the divergence metric introduced in Sect. [3] to select appropriate mix zones.
Our paper, by making a possible algorithm public, increases the trustworthiness
of the authority as it provides a basis for comparison.

4.1 Mix Zones Placement

After Chaum’s seminal work on mizes [I3], there have been multiple proposals
on the way mixes should be connected and organized to maximize the provided
anonymity [II]. This led to a classification of different organization concepts.
For example, the choice of the sequence of mixes is either distributed (i.e., miz
networks) or centrally controlled (i.e., miz cascades).

The system considered in this paper, namely mix zones deployed over a consid-
ered area, presents three different characteristics: (i) The organization of mixes
depends on the placement of mix zones in the area, (ii) mobile nodes move in the
considered area according to flows constrained by the underlying road network,
and (iii) the road network is a connected network with a restricted number of
routes. Hence, we must characterize mix zones placements that maximize the
achievable location privacy.

In order to evaluate the location privacy provided by mix zones deployed over a
mobile network, one solution consists in computing the uncertainty accumulated
by the adversary with the joint entropy [43]. However, the complexity of the
formulation increases as the number of mix zones increases, making it hard to
evaluate. Instead, to compute the overall location privacy, we maximize the total
probability of error of the adversary by considering the sum of error probabilities
over each deployed mix zone and we guarantee that the distance over which
the adversary can successfully track mobile nodes is upper-bounded, i.e., the
average distance-to-confusion (dtc). A mix zone is a confusion point if the error
probability of the adversary is larger than a given threshold 6 [26].

However, mix zones induce a cost on mobile nodes that must be taken into
account in the mix zone deployment phase. The cost associated to each mix
zone depends on the considered application. For example, with silent periods,
the cost is typically directly proportional to the duration of the imposed silent
period (i.e., the size of the mix zone). Similarly, the cost also depends on the
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number of used pseudonyms. Pseudonyms are costly to use because they are a
limited resource that requires contacting the CA for refill.

4.2 Placement Optimization

In this section, we model the problem of mix zones placement as an optimization
problem. Formally, consider a finite set Z of all possible mix zones’ locations, a
set F' of mobility flows in the system, and a mobility profile for each potential
mix zone in the considered area. The goal is to optimize the placement of mix
zones to maximize the overall probability of error of an adversary tracking mobile
nodes in the considered area while respecting the cost and distance-to-confusion
constraints. We select a subset Z C Z of active mix zones, which is a solution
of the following combinatorial optimization problem:

max Y Pl -z 9
23 g

i€z
subject to Z wizi < Winas, Vf; (10)
iEfj
Eldtc(f;,Z)] < Comaz, Vf; (11)

where z; € {0,1},Vi € Z indicates if a mix zone is active (i.e., z; = 1), Z is
the set of active mix zones, p’ captures the error introduced by mix zone i, w;
is the cost_ associated with mix zone i, Wi,4, is the maximum tolerable cost,
Eldte(f;, Z)] is the average distance-to-confusion of flow f; with the set of ac-
tive mix zones Z , and Cjq, 18 the maximum tolerable distance-to-confusion.
We compute the probability of error p. by using the lower bound obtained
with the Jensen-Shannon divergence in the previous section. The first constraint
limits the number of mix zones that can be deployed per flow by taking into
account the cost associated with each mix zone. The second constraint ensures
that the average distance-to-confusion is upper bounded, i.e., Cj,q, defines a
maximal distance over which mobile nodes can be tracked on average.

5 Application Example

To test the relevance of our approach, we implemented a simulator in Java that
evaluates the tracking efficiency of the adversaryEl The simulator takes as input
a mobility trace on a map and a set of locations for mix zones. It first computes
the mobility profile of mix zones and then attempts to predict the trajectory of
mobile nodes.

5.1 Simulation Setup

We simulate mobility traces with Sumo [33], a urban mobility simulator, over a
cropped map [5] of Manhattan of 6 km*. Sumo features the creation of routes

! The code is available at: http://icapeople.epfl.ch/freudiger
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for mobile nodes using mobility flows: Each flow is defined by a source, a desti-
nation and a traffic intensity. Each mobile node belongs to a single flow and is
routed from source to destination over the shortest path. Roads have one lane
in each direction, and road intersections are modeled with yields. Some roads
(e.g., highways) have higher priority and do not have to yield.

In this application example, the constraints of the optimization algorithm are
defined as follows. The cost of mix zones w; is proportional to the cost of a
pseudonym change . We assume that the cost of a pseudonym change is fixed
and the same for all nodes, v = 1. We set W4, = 3, meaning that each node
can traverse a maximum of three mix zones. Similarly, we set C,q, = 2000m,
i.e., the adversary cannot track nodes over more than two kilometers. A total of
40 flows were deployed over the area, generating 1210 nodes in a fluid scenario
(A; ~ 0.02) and 2000 nodes in a congested scenario (A; ~ 0.04). The radius of
mix zones is a constant R = 100m. We simulate a mobile network for 20 minutes
with nodes moving at a maximum speed of 50km/h and with an average trip
time of 6 minutes. Finally, a mix zone is considered as a confusion point if the
introduced error is larger than zero, i.e., § = 0.

Mobility Profiles. We consider a powerful (worst-case) adversary that can
construct a mobility profile of each mix zone ¢ by measuring the time at which
nodes enter/exit mix zones. We denote with @ the measuring precision of the
adversary, and assume @ = 1 second. Hence, A knows for each mix zone: (i)
The distribution of nodes’ trajectories, and (ii) the sojourn time distributions.
The distribution of nodes’ trajectories is captured in a matrix of directions D;:
For each entering/exiting points (k,[), the matrix contains the probability of
the trajectory: Df’l = Pr(“ Enter at k and exit at [ 7). The sojourn time dis-
tribution is captured in a matrix of sojourn times J;: For each entering/exiting
points (k, 1), the matrix contains the probability distribution of the sojourn time:
Jik’l(At) = Pr(“Enter at k and spend At before exiting at ).

Attack. Based on the mobility profiles, the adversary A predicts the most
probable assignment of entering/exiting mobile nodes for each mix zone. To do
so, the attacker can model entering/exiting events with a weighted bipartite
graph as suggested by Beresford in [6]. Each edge is weighted according to the
a priori probability of linking an exiting event at [ to an entering event at k:
Df ok, Jik (At). Then, the maximum weight matching of the bipartite graph cor-
responds to the optimal guess of the adversary. As discussed in [45], a more
elaborate attack consists in computing all perfect matchings of the bipartite
graph to weight edges, according to the a posteriori probability of linking en-
tering/exiting events. However, this attack has a large complexity, increasing
exponentially with the number of entering/exiting pairs and its scalability re-
mains an open problem.

Metrics. Assume that Z, is the set of mix zones traversed by node s and let
Gs C Zs be the set of mix zones successfully matched by the adversary. A is
successful in tracking the location of node s in a mix zone if the real trajectory
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Fig. 4. Matching success m; of the 20 potential mix zone locations

of node s is correctly guessed. For example, G5 = {z3, 25, 210} means that node
s was successfully tracked in three mix zones.

For each mix zone i, the mixing effectiveness is m; = 17([1 where u; is the
number of successful matches in mix zone ¢ and N; is the total number of nodes
that entered mix zone i over the course of the simulation. This metric reflects
the mixing effectiveness of mix zones. The tracking success of the adversary is
defined as the percentage of nodes that can be tracked over k consecutive mix

zones: ts(k) = Nj\ﬁ(ck()k ) where Ngye(k) is the number of nodes successfully tracked

over k consecutive mix zones, and N (k) is the total number of nodes traversing
k consecutive mix zones. This metric reflects the distance over which nodes can
be tracked before confusing the adversary.

5.2 Results

Mix Zone Performance. Figuredshows the histogram of mixing effectiveness
for the 20 potential mix zone locations. We observe that the mixing effectiveness
can vary significantly across mix zones and hence some nodes might experience
a poor mixing while traversing a mix zone. This affects the optimal deploy-
ment, because mix zones with a low mixing effectiveness are sometimes chosen
to fulfill the distance-to-confusion constraint. Other than that, the optimization
algorithm will tend to choose mix zones that offer the lowest tracking success to
the adversary, e.g., mix zones 1 and 13 are particularly effective.

Mix Zone Placement. We consider a total of 20 possible mix zone locations
and test four deployments of mix zones: (i) The optimal mix zone deployment
computed according to Sect. 4.2 resulting in 6 deployed mix zones, (ii) a random
mix zone deployment of 10 mix zones selected uniformly at random, (iii) a bad
mix zone deployment of 6 mix zones with poor mixing effectiveness, and (iv)
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Table 1. Percentage of mobile nodes traversing a certain number of mix zones for
various mix zone deployments. The avg column gives the average number of traversed
mix zones. The last column gives the percentage of nodes that were successfully tracked
over all mix zones in the considered area.

|# of traversed mix zones||0]1[2]3]4]5]6[7|8]avg][Tracked (%)]

Bad (6 mix zones) 68/20| 75|00 (0[{0[0(j0.48 98
Random (10 mix zones) 14|43|24|10| 9| 0 |0|0|0}|1.56 78
Optimal (6 mix zones) 14|33(37|16/ 0 [ 0 |0|0|0}|1.55 53
Full (20 mix zones) 0]8]24|24|16|14/|8|4|2}|3.56 48

a full mix zone deployment where the 20 mix zones are in use. We observe in
Table [I] that in the optimal deployment, the majority of the nodes traverses at
least one mix zone and none exceeds the tolerable cost of three mix zones. The
random and optimal deployment perform relatively close in terms of the number
of traversed mix zones, but with the optimal deployment, less nodes are tracked
(53%) approaching the performance of the full deployment (48%). As expected,
the bad mix zone deployment performs the worst.

The average number of traversed mix zones in Table [I also reflects the total
cost. We observe that the optimal deployment has a higher cost than the bad
deployment for the same number of deployed mix zones. However, compared
to the full deployment, the optimal deployment achieves a tolerable cost and
approaches the same mixing effectiveness.

Tracking Success. We compare the tracking success of the adversary for the
optimal, random, bad and full deployment of mix zones. We observe in Fig. [0l (a)
that in general the probability of success of the adversary decreases as mobile
nodes traverse more mix zones. The optimal deployment of mix zones is more
effective at anonymizing flows than other deployments and complies with the
cost constraint. In particular, the optimal deployment is superior to the full
deployment because it avoids the bad placement of mix zones.

Note that in the case of the full deployment, traversing more mix zones does
not necessarily increase (and actually decreases) the location privacy. The reason
is that the majority of the flows traversing more than five mix zones actually
go through a sequence of ineffective mix zones. Hence, all flows are not equal in
terms of the achievable location privacy.

In Fig. [l (b), we observe the effect of an increase in the flow intensity A;
(leading to a congested scenario). The optimal deployment is not affected by the
change of intensity because it places mix zones in regions with high traffic density
anyway. The random deployment significantly improves its mixing effectiveness
and approaches the performance of the optimal deployment.

In Fig. [l (¢), we observe that as the tracking precision Q of the adversary di-
minishes, so does its ability to track nodes. A reduction of the tracking precision
of the adversary reflects scenarios where the knowledge of the adversary about
mobility profiles is noisy.
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Fig. 5. Tracking success of adversary ts(k), i.e., the fraction of nodes that can be
tracked over k consecutive mix zones. (a) Tracking success for various mix zones’ de-
ployments. (b) Tracking success in a fluid and congested scenario. (c) Tracking success
with various adversary’s precision. (d) Tracking success for various sizes of mix zone.

In Fig. Bl (d), we observe that increasing the mix zone radius R from 50 to
100 does not increase much the mixing effectiveness, whereas a small radius
R = 20 dramatically reduces the achieved location privacy. One reason is that
changes in speed and direction occur mostly at the center of mix zones. Another
reason is that with R = 20, the size of mix zones tends to be smaller than the
size of crossroads of the considered map. On one hand, it is thus important to
choose mix zones that are not too small. On another hand, large mix zones are
inappropriate because they do not significantly increase location privacy and
have a high cost.

We also vary the parameters of the optimization problem. The cost w;, associ-
ated with mix zones, changes the optimal placement of mix zones. As we increase
the cost, fewer mix zones are deployed and the achievable location privacy de-
creases compared to the full deployment. Instead, if the tolerable cost increases,
the optimal deployment performs closer to the full deployment in terms of the
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achieved location privacy. Finally, if the tolerable distance-to-confusion is low-
ered, the optimization problem might not have a solution. If there is a solution,
it will require more mix zones and will increase the cost per node.

Discussion. Our results show the limitations of mix zones, but also exhibit the
importance of optimizing their placement. In particular, the optimal deployment
prevents bad placement of mix zones. Another interesting result is that travers-
ing more mix zones is not necessarily an advantage. It must be noted that the
relatively high success rate of the adversary is also due to the application exam-
ple. First, we consider a worst-case adversary with global coverage and access
to precise mobility profiles (Q = 1). Second, we consider a relatively small map
with a simple road intersection model.

6 Related Work

There are several techniques for achieving location privacy besides the multiple
pseudonyms approach [36]. Mobile nodes can also intentionally add noise to their
location [21]), or report their location as a region instead of a point [44]. However,
in mobile wireless networks, the peer-to-peer wireless communications between
mobile nodes unveil their locations. Hence, obfuscating the location data con-
tained in messages is insufficient to protect the location privacy of mobile nodes.
In other words, the use of multiple pseudonyms is required for achieving location
privacy in such networks. To anonymize pseudonyms such as the MAC address,
one approach [22] consists in changing the MAC address over time between con-
nections with WiFi access points. Another possibility [20] is to obscure the MAC
address and use an identifier-free link layer protocol. However, in peer-to-peer
wireless networks, mobile nodes continuously broadcast messages and cannot be
anonymized only with respect to WiFi access points. Similarly, mobile nodes
must be identifiable on several layers of the protocol stack. Hence, we propose
to change pseudonyms in optimally placed mix zones.

Huang et al. suggest in [30] the use of cascading mix zones. Mix zones are
created by repeatedly turning off the transceivers of mobile nodes. They evaluate
the quality of service implications on real-time applications of users traversing
several mix zones, but do not evaluate strategies of mix zones deployments.
In [12], Buttyan et al. evaluate the performance of sequences of mix zones for
vehicular networks. The locations of mix zones correspond to regions where the
adversary has no coverage. In their system, the adversary has a high tracking
success because of the insufficient mixing of vehicles. In this paper, we provide
a theoretical framework for the analysis of the mixing effectiveness of mix zones
and of their optimal placement in a considered area.

Note that in wired mix networks, the disadvantages of free routes were studied
in [I0/14] showing the importance of route selection and network connectivity.
In this paper, we study an equivalent problem for mobile networks considering
the optimal positioning of mix zones and its effect on the achievable location
privacy.
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7 Conclusion

We have considered the problem of constructing a network of mix zones in a
mobile network. We first showed how to evaluate the mixing effectiveness of
mix zones prior to network operation by using the Jensen-Shannon divergence
measure. The proposed metric relies on statistical information about the mobility
of nodes in mix zones. Then, we modeled the problem of placing mix zones as
an optimization problem by taking into account the distance-to-confusion and
the cost induced by mix zones on mobile nodes. By means of simulations, we
investigated the importance of the mix zone deployment strategy and observed
that the optimal algorithm prevents bad placement of mix zones. In addition, we
measured the benefit brought by the optimal placement of mix zones, i.e., a 30%
increase of location privacy compared to a random deployment of mix zones, in
our considered example. We also noticed that the optimal mix zone placement
performs comparatively well to the full deployment scenario, but at a lower cost.
This work is a first step towards a deeper understanding of the advantages and
limitations of mix zones.

Future Work. We intend to extend the simulations by using real mobility
traces. In order to allow for location privacy at specific locations (i.e., nodes
might want to hide the fact that they traversed a particular location), we also
plan to weigh the importance of specific locations in the placement strategy.
Finally, it would be interesting to consider other attacks [35/39] and how an
active adversary would affect the performance of the system.

Acknowledgements

We would like to thank Mathias Humbert, Maxim Raya, Marcin Poturalski, and
Michal Piorkowski for their insights and suggestions on earlier versions of this
work, and the anonymous reviewers for their helpful feedback. Special thanks go
to Carmela Troncoso and Claudia Diaz for shepherding the paper.

References

http://en.wikipedia.org/wiki/Bluedating

http://wuw.aka-aki.com

http://csg.ethz.ch/research/projects/Blue_star

http://reality.media.mit/serendipity.php

TIGER maps, http://www.census.gov/geo/www/tiger/

Beresford, A.R.: Location privacy in ubiquitous computing. In: Ph.D. Thesis (2005)

Beresford, A.R., Stajano, F.: Location privacy in pervasive computing. IEEE Per-

vasive Computing 2(1), 46-55 (2003)

8. Beresford, A.R., Stajano, F.: Mix zones: user privacy in location-aware services.
In: Pervasive Computing and Communications Workshops, pp. 127-131 (2004)

9. Berger, J.O.: Statistical Decision Theory and Bayesian Analysis. Springer,

Heidelberg (1993)

N Ot WD


http://en.wikipedia.org/wiki/Bluedating
http://www.aka-aki.com
http://csg.ethz.ch/research/projects/Blue_star
http://reality.media.mit/serendipity.php
http://www.census.gov/geo/www/tiger/

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

On the Optimal Placement of Mix Zones 233

Berthold, O., Pfitzmann, A., Standtke, R.: The disadvantages of free MIX routes
and how to overcome them. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 30-45. Springer, Heidelberg (2001)

Bohme, R., Danezis, G., Diaz, C., Kopsell, S., Pfitzmann, A.: Mix cascades vs.
peer-to-peer: Is one concept superior? In: PET (2004)

Buttyan, L., Holczer, T., Vajda, I.: On the effectiveness of changing pseudonyms
to provide location privacy in VANETSs. In: Stajano, F., Meadows, C., Capkun, S.,
Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp. 129-141. Springer, Heidelberg
(2007)

Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24(2), 84-90 (1981)

Danezis, G.: Mix-networks with restricted routes. In: Dingledine, R. (ed.) PET
2003. LNCS, vol. 2760, pp. 1-17. Springer, Heidelberg (2003)

Diaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In:
Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54-68.
Springer, Heidelberg (2003)

Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: USENIX Security Symposium, pp. 21-21 (2004)

Freudiger, J., Raya, M., Felegyhazi, M., Papadimitratos, P., Hubaux, J.-P.: Mix
zones for location privacy in vehicular networks. In: WiN-ITS (2007)

Gazis, D.C.: Traffic Theory. Kluwer Academic Publishers, Dordrecht (2002)
Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L.: Understanding individual human
mobility patterns. Nature 453(7196), 779-782 (2008)

Greenstein, B., McCoy, D., Pang, J., Kohno, T., Seshan, S., Wetherall, D.: Im-
proving wireless privacy with an identifier-free link layer protocol. In: MobiSys,
pp. 40-53 (2008)

Gruteser, M., Grunwald, D.: Anonymous usage of location-based services through
spatial and temporal cloaking. In: MobiSys, pp. 31-42 (2003)

Gruteser, M., Grunwald, D.: Enhancing location privacy in wireless LAN through
disposable interface identifiers: a quantitative analysis. Mobile Networks and Ap-
plications 10(3), 315-325 (2005)

Hartenstein, H., Laberteaux, K.: A tutorial survey on vehicular ad hoc networks.
IEEE Communications Magazine 46(6) (June 2008)

Hellman, M., Raviv, J.: Probability of error, equivocation, and the Chernoff bound.
IEEE Transactions on Information Theory 16(4), 368-372 (1970)

Hoh, B., Gruteser, M.: Protecting location privacy through path confusion. In:
SECURECOMM, pp. 194-205 (2005)

Hoh, B., Gruteser, M., Herring, R., Ban, J., Work, D., Herrera, J.-C., Bayen, A.M.,
Annavaram, M., Jacobson, Q.: Virtual trip lines for distributed privacy-preserving
traffic monitoring. In: MobiSys, pp. 15-28 (2008)

Hoh, B., Gruteser, M., Xiong, H., Alrabady, A.: Enhancing security and privacy in
traffic-monitoring systems. IEEE Pervasive Computing 5(4), 38—46 (2006)
Huang, L., Matsuura, K., Yamane, H., Sezaki, K.: Enhancing wireless location
privacy using silent period. In: WCNC, pp. 1187-1192 (2005)

Huang, L., Yamane, H., Matsuura, K., Sezaki, K.: Towards modeling wireless lo-
cation privacy. In: Danezis, G., Martin, D. (eds.) PET 2005. LNCS, vol. 3856,
pp. 59-77. Springer, Heidelberg (2006)

Huang, L., Yamane, H., Matsuura, K., Sezaki, K.: Silent cascade: Enhancing lo-
cation privacy without communication QoS degradation. In: Clark, J.A., Paige,
R.F., Polack, F.A.C., Brooke, P.J. (eds.) SPC 2006. LNCS, vol. 3934, pp. 165-180.
Springer, Heidelberg (2006)



234

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

J. Freudiger, R. Shokri, and J.-P. Hubaux

Jiang, T., Wang, H.J., Hu, Y.-C.: Preserving location privacy in wireless LANs.
In: MobiSys, pp. 246-257 (2007)

Kailath, T.: The divergence and Bhattacharyya distance measures in signal selec-
tion. IEEE Transactions on Communication Technology 15(1), 5260 (1967)
Krajzewicz, D., Hertkorn, G., Rossel, C., Wagner, P.: SUMO (Simulation of Urban
MObility) - an open-source traffic simulation. In: MESM (2002)

Krumm, J.: Inference attacks on location tracks. In: LaMarca, A., Langheinrich,
M., Truong, K.N. (eds.) Pervasive 2007. LNCS, vol. 4480, pp. 127-143. Springer,
Heidelberg (2007)

Krumm, J.: A Markov model for driver route prediction. In: SAE World Congress
(2008)

Krumm, J.: A survey of computational location privacy. In: Personal and Ubiqui-
tous Computing (2008)

Li, M., Sampigethaya, K., Huang, L., Poovendran, R.: Swing & swap: user-centric
approaches towards maximizing location privacy. In: WPES, pp. 19-28 (2006)
Lin, J.: Divergence measures based on the Shannon entropy. IEEE Transactions
on Information theory 37, 145-151 (1991)

De Mulder, Y., Danezis, G., Batina, L., Preneel, B.: Identification via location-
profiling in GSM networks. In: WPES, pp. 23-32 (2008)

Pfitzmann, A., Kéhntopp, M.: Anonymity, unobservability, and pseudonymity — a
proposal for terminology. In: Designing Privacy Enhancing Technologies, pp. 1-9
(2001)

Rasmussen, B., Capkun, S.: Implications of radio fingerprinting on the security of
sensor networks. In: SECURECOMM, pp. 331-340 (2007)

Sampigethaya, K., Huang, L., Li, M., Poovendran, R., Matsuura, K., Sezaki, K.:
CARAVAN: Providing location privacy for VANET. In: ESCAR (2005)
Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity.
In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41-53.
Springer, Heidelberg (2003)

Sweeney, L.: k-anonymity: a model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 10, 557-570 (2002)

Té6th, G., Horndk, Z.: Measuring anonymity in a non-adaptive, real-time system.
In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol. 3424, pp. 226-241.
Springer, Heidelberg (2005)

Wong, F.-L., Stajano, F.: Location privacy in Bluetooth. In: Molva, R., Tsudik, G.,
Westhoff, D. (eds.) ESAS 2005. LNCS, vol. 3813, pp. 176-188. Springer, Heidelberg
(2005)

Xu, Q., Mak, T., Ko, J., Sengupta, R.: Vehicle-to-vehicle safety messaging in DSRC.
In: VANET, pp. 19-28 (2004)



	On the Optimal Placement of Mix Zones
	Introduction
	Preliminaries
	System Model
	Threat Model

	Mix Zones
	Mix Zones Description
	Mix Zones Effectiveness

	Placement of Mix Zones
	Mix Zones Placement
	Placement Optimization

	Application Example
	Simulation Setup
	Results

	Related Work
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


