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ABSTRACT

Existing content-based publish/subscribe systems are de-
signed assuming that all matching publications are equally
relevant to a subscription. As we cannot know in advance
the distribution of publication content, the following two
unwanted situations are highly possible: a subscriber either
receives too many or only few publications. In this paper
we present a new publish /subscribe model which is based on
the sliding window computation model. Our model assumes
that publications have different relevance to a subscription.
In the model, a subscriber receives k most relevant publi-
cations published within a time window w, where k and w
are parameters defined per each subscription. As a conse-
quence, the arrival rate of incoming relevant publications per
subscription is predefined, and does not depend on the pub-
lication rate. Since all relevant objects (i.e. publications in
our case) cannot be kept in main memory, existing solutions
immediately discard less relevant objects, and store only a
small representative set for subsequent delivery. In this pa-
per we develop a probabilistic criterion to decide upon the
arrival of a new object whether it may become the top-k ob-
ject at some future point in time and should thus be stored
in a special publications queue. We show that by accepting
typically very small probability of error, the queue length is
reasonably small and does not significantly depend on pub-
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lication rate. Furthermore, we experimentally evaluate our
approach to demonstrate its applicability in practice.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Communica-
tions Applications; H.2 [Database Management|: Sys-
tems— Query processing

General Terms

Algorithms, Experimentation, Performance

1. INTRODUCTION

Despite of extensive research efforts done in the last 15
years, content-based publish/subscribe (CBPS) systems are
yet to be widely deployed. According to [33], the main rea-
sons for their slow acceptance are the following: 1) complex-
ity of the general CBPS problem, 2) system heterogeneity
and 3) lack of wide-area deployments of CBPS systems. In
this paper we argue that there is another reason for the lack
of adoption of CBPS systems—an unpredictable number of
matching publications that are delivered to subscribers. Ei-
ther too many or only few received publications may cause
user dissatisfaction with a provided service, for example, in
applications such as RSS news feeds, network monitoring,
or advertisement dissemination. Moreover, in networks with
limited resources such as MANETS or sensor networks, it is
highly desirable to minimize and control network traffic.

1.1 Motivation

In current systems, subscription is a stateless Boolean
function [28]: A decision whether to deliver a publication
to a subscriber is made based on the result of the matching
process comparing the publication and subscriber’s subscrip-
tion as shown in Figure 1. The matching process depends
only on the publication and subscription content, and does
not take into account any additional information present in
the system. This approach has the following drawbacks:

e subscriber may receive only few publications;
e subscriber may be flooded with too many publications;

e there is no ranking function to compare publications;
and
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Figure 1: Matching in current systems

e partial matching between subscriptions and publica-
tions is not supported.

As the actual distribution of publication content is in gen-
eral unknown in advance, it is impossible to predict the num-
ber of future publications matching an existing subscription.
If a subscription is too general, a subscriber may receive too
many publications. On the contrary, in case of an over-
specified subscription, the subscriber may receive too few
publications or none in the worst case. Thus, a subscriber
has to specify an ”ideal” subscription to receive an optimal
number of matching publications. It is a sort of guessing,
where even a slight change in subscription results in a drasti-
cally different number of matching publications. In general,
an end user percepts the entire system through both the
quantity and quality of received publications. Therefore, a
large quantity of received publications will be considered as
a sort of spam, while a system that delivers few publications
might be recognized as non-working. The number of re-
ceived publications is crucial for the acceptance of an actual
system by end users even more if, for example, subscribes
pay for each delivered publication matching subscriber in-
formation interest.

The quality of a publication can be assessed through its
relevance to a subscription. In information retrieval, rele-
vance is the measure of probability that an object will sat-
isfy a given query [25]. Similarly, for publish/subscribe sys-
tems relevance can be defined as the measure of probabil-
ity that a publication satisfies a given subscription. If we
assume the content of every publication is unique (in its
present context), different publications have different rele-
vance to subscriptions. State-of-the-art publish/subscribe
systems do not support publication ranking and all match-
ing publications are considered equally relevant to a sub-
scription. One one side, without publication ranking it is
impossible to avoid delivery of a large number of match-
ing publications in case subscription is too general. On the
other side, over-specified subscriptions may deliver too few
publications unless partial matching is supported. Unfor-
tunately, as a consequence of the complexity of the general
CBPS problem, state-of-the-art systems do not support par-
tial matching and focus on fast matching of publications to
subscriptions [18].

1.2 Proposed Solution

In this paper we present a new publish/subscribe model
that ranks publications according to their relevance to a sub-
scription and delivers top-k publications per subscription in
a predefined sliding time window. Therefore, the quantity
of received publications does not depend on the number of
published publications. Obviously, the quality of received
publications will depend on the relevance of published publi-
cations to a defined subscription, but statistically the quality
will probably be proportional to number of published publi-
cations. Therefore, matching in our model is based on both
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Figure 2: Matching in our model

relevance of a publication to a subscription and the relevance
of other publications to the same subscription as depicted
in Figure 2.

For any subscription, it is possible to deterministically
identify k most relevant publications published in the past
(e.g. top-5). The problem is known as the top-k problem in
information retrieval [26]. The top-k/w publish/subscribe
is a bit different as we have to identify most relevant pub-
lications among those published in both past and future.
Obviously, this cannot be done deterministically in advance
since each publication is in a way competing with nonexis-
tent publications. However, we can compare the relevance
of a newly published publication to a certain number of the
most relevant previously published publications, but it is
not clear how many of them should we take into account.
We propose that a subscriber defines the number of publi-
cations competing simultaneously for a position among the
top-k publications either by defining the number of compet-
ing publications (e.g. top-12/350) or the time window (e.g.
top-8/day). We refer to the former as number-based window
and the latter as time-based window. The time window does
not depend on the intensity of publishing and is therefore
used in our approach.

A practical solution to the top-k/w (i.e. top-k relevant
publications in a time window w) problem is based on the
existence of a sorted set of previously published publications
for each subscription, to which we will refer as publications
queue. Using this queue, it is possible to determine for each
newly published publication, at a point in time of its publish-
ing, whether it is among top-k publications in the queue sim-
ilarly to the sliding window computation model [14]. As time
passes, the newly published publications enter the queue,
and the ones older than the size of the time window are
dropped from it. At some later point in time, it is possible
that a publication, which was not among top-k publications
in the queue at the moment of its publishing, becomes a
top-k publication in the queue, because some more relevant
and older publications can be dropped from the queue, while
younger publications become less relevant than the observed
publication.

For example, let us take a look at Figure 3. At each
point in time a publication older than w = 5 (the crossed
one) is dropped from the queue, while a new one (the gray
one) is added to it. At ¢t = 6 the publication published at
t = 1 is dropped, and a new one is added to the queue. The
publication born at t = 5 becomes a top-2 publication at
t = 8 although it was not among top-2 publications in the
queue at the moment of its publication.

Thereby, two possible sets of top-k/w publications exist:
1) the set of publications that are among top-k publications
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Figure 3: An example for £ = 2 and number-based
window w =5

in the queue at the moment of their publishing, and 2) the
set of publications that are among top-k publications in the
queue at a moment of their publishing or will be in some
later point in time, before time window w passes. With-
out the loss of generality, we will focus on the latter set.
This causes a problem related to the length of publications
queue because shorter queue requires less processing and less
memory. Intuitively, it is clear that some publications will
unlikely become a top-k publication in the queue at some
later point in time. Therefore, by dropping such publica-
tions at the moment of their publishing, we can reduce the
required length of the queue.

We use the relevance of the last publication (i.e. thresh-
old) in a queue as the criterion for keeping newly published
publications in the queue and accept a predefined probabil-
ity of error o for making an erroneous decision of dropping a
publication that will become a top-k publication in a future
time window. The sum of probabilities to become a top-
k publication before time w passes has to be smaller than
o. Within this setup, we determine the required length of
publications queue that certainly contains all publications
with more than a minimal probability o of becoming a top-
k publication before time w passes. Our approach is purely
probabilistic and is based on the assumption that relevances
of publications to a subscription are independent of their
publication time. For each subscription, publications queue
length can be calculated at a point when subscription is acti-
vated. The length does not depend on publication intensity
and can be determined a priori for each subscription.

1.3 Real World Example

Suppose that there exists a popular commercial website
for renting and selling apartments where each publication is
an add that defines a few attributes describing an advertised
apartment (e.g. the number of rooms, size, floor, location,
price, etc.). In state-of-the-art CBPS systems, a subscrip-
tion would define characteristics of a desired apartment and
thus it would cover a subspace of the given attribute space.
As a consequence, such subscription may cause the draw-
backs mentioned in Section 1.1. Suppose that we take an-
other approach and define subscriptions as attribute space
points, such that each subscription describes subscriber’s
”ideal” apartment. Then, using some user defined rank-
ing function, the system could achieve ranking of published
adds according to a given subscription. Moreover, using our
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model, a subscriber could subscribe to certain number of
most related adds per day, and therefore receive the pre-
dictable number of adds per each day.

1.4 Contributions

To summarize, we make the following contributions in the
paper: We propose a novel CBPS model that uses relevance
between publications and subscriptions as the matching cri-
terion and is based on sliding window computation model
to choose top-k publications within sliding window w. The
practical implementation of the model requires a publica-
tions queue for which we prove that its length does not de-
pend on publication rate while accepting a predefined prob-
ability of error. Experiential results show that our model is
applicable in practice.

The remainder of the paper is structured in the following
way. We formally define our model in Section 2 and ad-
dress the problem of publications queue length in Section 3.
We experimentally evaluate our approach in Section 4 using
both the representation of publications and subscriptions,
and datasets from [4]. An overview of related work is pre-
sented in Section 5, and we give our conclusion and direc-
tions for future work in Section 6.

2. TOP-K/W MODEL

In this section we formally define a new publish /subscribe
model called top-k/w publish/subscribe model. In this model,
a subscriber receives only those publications that are among
k most relevant ones published in a time window w, where k
and w are constants defined per each subscription. We can
interpret this situation in the following way. For a subscrip-
tion s there exists a sliding time window w,(t) that shifts
through time. It starts from a point in time when s is acti-
vated, and continues until a point in time in which s expires.
If a publication is among top-k publications in any of these
different window positions it will be delivered to the sub-
scriber of s. It is important to notice that the time window
has different sizes at different positions in time, as shown in
Figure 4.

As a consequence, the arrival rate of relevant publications
received per subscription is predictable and does not depend
on the publishing rate of publications. Publications that are
among top-k publications at the moment of their publishing,
to which we will refer as excellent candidates will be deliv-
ered to the subscriber immediately after being published.
Other relevant publications, i.e. such publications that be-
come the top-k publications at some later point in time,
to which we will refer as good candidates, will at that later
point be delivered to the subscriber. Hereafter we define the
model formally.

We define a triple B = (C,P,S), where C is a finite set
of clients, P is a finite set of publications, and S is a finite
set of subscriptions in a system. A client ¢ € C may publish
publications from P, or it may activate subscriptions from S,
or both. A client ¢ € C that activated a subscription s € S
is called the subscriber of s. Analogously, a client d € C that
published a publication p € P is called the publisher of p.

Definition (Publication) Suppose that t, and 7, are two
points in time such that ¢, < 7, and ¢ € C is a client in the
system. We define publication p € P as some content'that
is published by c in ¢, and expires in 7.



We say that a publication p € P is active at a point in time
t, if it is published before t+d,, and will expire at some later
point in time, where 6§, is the mazimal publication diffusion
delay in the system. Formally, ¢, +dp, <t AT, >t

Definition (Active Publications) Suppose that ¢ is a point
in time. We define a set of all active publications P“(t) C P
in the system at ¢ as:

PAO) L peP ty+6, <tATp, >t}

(1)

It is important to notice that the set P*(¢) depends on
the parameter t. Therefore, at different points in time, a
different set P (t) of currently active publications exists.

Definition (Subscription) Suppose that ts and 75 are two
points in time for which ¢; < 75, and ¢ € C is a client in
the system. We define subscription s € S as some data'
about the interest of ¢ that is activated in ¢; and expires in
7s. For every subscription, the following two parameters are
defined?: an integer k. and a real number ws.

Analogously to active publications, a subscription s € S
is active in t if it is activated before ¢t + ds and will expire
after ¢:

def

SA) E{s €S ts+ 06, <t ATy >t} 2)

where d5 is the mazimal subscription processing delay in the
system.

Definition (Candidate Publications) Suppose that ¢ € C is
a client in the system, s, € S is a subscription of ¢, and ¢
is a point in time in which s is active. We define the set of
candidate publications PE (t) C PA(t) for s, in t as

def

PE(t) = {p e PA(t) : tp > max(ts, t — ws)}.

®3)

Candidate publications at ¢ are all publications published
after subscription activation at ts, but only those published
within the preceding time window ws, ie. t, > t — ws.
As the set P (t) depends on both s and t, note that for a
subscription s € § at different points in time ¢ for which s
is active, different sets PC (t) exist.

At this point it is important to note that each publica-
tion is a candidate publication for all active subscriptions at
the moment of its publishing. Therefore, a set of candidate
publications has to be additionally filtered before delivery to
subscriber. Otherwise, all subscribers with at least a single
subscription would receive all publications published in the
system. The following function performs such filtering.

Hypothesis (Relevance) Suppose that for P and S the fol-
lowing function exists®:

relevance : (P x §) — [0,1],

where Vp € P,Vs € S : fr € P Ap # r A relevance(p, s)
relevance(r, s).

(4)

1To simplify the discussion in this section, we will neglect
the actual representation (i.e. content and structure) of pub-
lications and subscriptions. A reader interested in the rep-
resentation should refer to Section 5.

2The meaning of these parameters is explained in Sec-
tion 1.2, and will be formally defined in the rest of this
section.

3This function is differently defined for various representa-
tions of subscriptions and publications in different domains
of interest.
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In other words, each publication p € P is relevant to a sub-
scription s € § with an unique degree of relevance between
0 and 1. The degree of relevance 0 means that a publication
is not relevant to subscription, and 1 means that the publi-
cation is completely relevant to subscription. This function
breaks ties such that two different publications with an equal
degree of relevance to the same subscription do not exist.

Using (4) as a binary relation for comparing the relevance
of publications from P to a subscription s € S, we can ac-
tually define an order on P.

Definition (Order) For every subscription s € S we define
a binary relation < over P as follows:

<= {(p,7) : p,7 € PA

[relevance(p, s) < relevance(r, s)]}.

(5)

An order <5 will be a strict total order on P if it is ir-
reflexive, transitive and total. These are requirements on
both function (4) and order (5). Therefore, for an actual
domain of interest, we have to define (4) in such a way that
the corresponding <, will be a strict total order on P.

LEMMA 2.1. Every set of candidate publications PC (t)
paired with its strict total order < is a totally ordered set.

PROOF. If <; is the strict total order on P, then P paired
with it will be a totally ordered set, and every subset of P
will be a totally ordered set too. Therefore, a set P (t) C
PA(t) C P paired with <, is a totally ordered set. [J

Definition (More Relevant Set) Suppose that s € S is a
subscription and P C P is a set of publications, and p’ is
a publication in the system, where p’ € P or p’ ¢ P. We
define a set P2 (p’, P) C P of publications from P that are
more relevant to a subscription s than p':

PE(p',P)

def

{peP:p <.p} (6)

Using a strict order <, on a set PE (t) we can decide which
candidates are better than others, and thereby we will select
the best ks among them for delivery to the subscriber of s.
We will refer to these ks best candidate publications in ¢ as
top-k publications at t.

Definition (Top-k Publications) Suppose that s € S is a
subscription in the system, and ¢ is a point in time where s is
active. We define a set of top-k publications P (t) C PE (t)
for s in t as follows:

Prt) = {pe PC(t): [PP(p, PE (1) < ks}.  (7)

In other words, a publication p € Psc(t) will be an element
of PT (t) if there are less then ks more relevant elements than
pin PO(t).

It is important to notice that for different points in time,
the corresponding set PE (t) is probably different, because
it depends on time. As time passes old publications expire
while some new ones are published. Up to this point, we
have explained which publications are better than others,
and we have defined the top-k publications at some point
in time. Now, we will define which publications have to be
delivered to a subscriber.

def

Definition (Top-k/w Publications) Suppose that s € S is
a subscription in the system. We define a set of top-k/w
publications PP C P for s as follows:

PP peP:pe PPO)At > ts+ 6, At <75}

(8)
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Figure 4: Sliding time window

In other words, a publication p € PE (t) will be delivered
to subscriber of s if it is among top-k publications in at least
one moment in time while s is active.

2.1 diding Time Window

There is an alternative way of looking at the set PE(t)
defined in (3). We can say that for each point in time ¢ > ¢,
there exists a corresponding time interval (max(ts,t—ws), t]
to which we refer as the time window ws(t). The set PC (t) is
actually the set of publications published within ws(t) such
that they are still active at t. For t < ts + ws, the size of
the time window is t — ts and otherwise it is ws, as shown
in Figure 4.

We see that the set PT(t) of subscription s defined in (7)
is actually the set of ks most relevant publications that are
published inside a time window ws(¢) such that they are
still active at t. We also see that the set P defined in (8) is
actually the set of all top-k publications from every different
time window ws(¢) in which s is active.

We can interpret this situation in the following way. For a
subscription s there exists a sliding time window ws(t) that
shifts through time. It starts from a point in time t = ¢,
when s is activated, and continues until ¢ = 7, in which
s expires. If a publication is among top-k publications in
any of these different window positions (i.e. it is a top-k/w
publication for some point in time t), it will be delivered to
the subscriber of s. It is important to notice that the time
window has different sizes at different positions in time, as
shown in Figure 4. It is a logical consequence of the fact that
the time window of a subscription cannot start before the
activation of the subscription, because we cannot guarantee
that we will keep the candidate publications of a subscription
before we know that it exists.

2.2 Special Cases

In this subsection we discuss how our model behaves for
the extreme values of parameters k and w: 1) k = 0, 2)
k — 00, 3) w — 0, and 4) w — oo. The standard case,
for which k£ # {0,000} and w # {0, 00}, we call the top-k/w
case.

Parameter &k = 0. Suppose that ¢ is a point in time,
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that s € § is an active subscription of a client ¢ € C in ¢ for
which parameter ks = 0, and that P (t) is a set of candidate
publications of s in t. Then a finite set PY(t) C PE(t) of
top-k/w publications of s in ¢ becomes equal to:

[P ()]k,=0 = 0. (9)

Thus, we conclude that a subscription with parameter ks =
0 is an empty subscription, and regardless of the value of
parameter ws, it will never cause the delivery of any publi-
cation to ¢. We will refer to this spacial case as the top-0
case.

Parameter k — oo. Suppose that t is a point in time,
s € S is an active subscription of a client ¢ € C in ¢ for which
ks — oo, and PE (1) is a set of candidate publications of s in
t. Then a finite set PY(t) C PE(t) of top-k/w publications
of s in t becomes equal to:

[P )]k~ = PE(2). (10)

In this case, regardless of the value of parameter ws, all
published publications (i.e. all candidate publications) will
be delivered to c. We will refer to this spacial case as the
top-oo case.

Parameter w — 0. Suppose that ¢ is a point in time
and s € S is an active subscription of a client ¢ € C in t for
which ks - 0. If parameter ws is sufficiently small, as in this
case, every published publication will be the only member
of candidate publications of s at the exact moment of its
publishing and therefore it will be delivered to ¢, according
to (3). We conclude that this case is also the top-co case.

Parameter w — oo. This is the case where a subscribed
client "wants” to receive only k£ publications among publica-
tions published since it has subscribed, such that they are
the most related to its subscription. This case is an optimal
stopping problem known as the multiple secretary problem,
for which the optimal strategy has been proven in [6, 7]. In
the top-k/w model we refer to this case as the top-k case.

Low Intensity of Publishing. Suppose that s € S is an
active subscription of a client ¢ € C with some parameters ks
and ws. In the previous four cases we did not care about the
distribution of the publishing of publications. In this case,
we will assume that the distribution of publishing is Poisson
with an intensity A < ks/ws. In this case, the expected
number of publications that are published during ws is equal
to A - ws, which is smaller than k5. Therefore all published
publications will be delivered to c¢. This case is also the
top-o0 case.



We depict how the combination of parameters k and w
influences the top-k/w problem for the five mentioned cases
and the standard case with A > ks/ws which is the top-k/w
case in Figure 5. The standard top-k/w case is analyzed
hereafter in the paper.

3. THEORETICAL ANALYSIS OF PUBLI-
CATIONS QUEUE

As previously stated, a practical solution to the top-k/w
problem is based on the existence of a sorted set of previ-
ously published publications for each subscription, to which
we refer as publications queue. In this section we deal with
the problem of publications queue length. The queue length
is very important because shorter queue means faster pro-
cessing and requires less memory. We can reduce the length
of a queue by omitting to store publications which are highly
unlikely to ever become top-k/w publications.

As time passes, the newly published publications enter the
queue (i.e. they are born), while the ones older than ws are
dropped from it (i.e. they died). Each publication in the
queue belongs to one of the following categories:

1. Ezcellent Candidates—Publications among top-k pub-
lications in the queue at the moment of their publica-
tion,

2. Good Candidates—Publications not among top-k pub-
lications in the queue at the moment of their publish-
ing, such that their probability to become a top-k pub-
lication at some later point in time before ws passes is
larger than a minimal probability o, and

3. Bad Candidates—Publications for which this proba-
bility is less than o.

We propose a solution to the top-k/w problem which main-
tains only excellent and good candidates in the queue. Each
queue has two parts: 1) the head for keeping excellent can-
didates, and 2) the tail for keeping good candidates. The
length of the head is obviously &, while the length of the tail
depends on the minimal probability . In this section we
answer the following question: What is the minimal length
of the tail of a queue that certainly has all good candidates?

To answer the previous question we have to make two as-
sumptions. The first assumption is related to the law of pub-
lishing and the second to their relevance. First, we assume
that new publications are published according to Poisson
distribution with an intensity A. Therefore, the probability
that the length of a queue @ is equal to n is

Aw)"
n!

PlIQI = n) = plB(t) — Blt — w) = n] = - Q9 4y
where the number of births B(¢) is a Poisson random vari-
able with intensity A. The expected number of births dur-
ing w is equal to E[|Q|] = Aw = m. The list of symbols
used in this section may be found in Table 1. Second, we
assume that relevances of the published publications are in-
dependent from their time of publishing, and are mutually
independent.

3.1 TheRequired Length of Tail

We suppose that s is a subscription with parameters ks
and ws, and that Qs is its publications queue of the full
length (i.e. at some point in time ¢ it contains all candidate
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Table 1: List of symbols used in this section

Symbol | Meaning

n length of the queue when p is born

A intensity of publishing of publications

m expected number of births during ws

l beginning position of p in the queue

U ending position of p in the queue

b number of births

d number of deaths

i number of deaths better than p

J number of births better than p

r relative position of p
The most The least
relevant  j=2 | relevant

v
NOXEOXOXKODO

<|-1» +-—nl—>
- n >

Figure 6: An example queue: The two of the four
dead publications are better than p

publications PE (t)). Now, let us suppose that the length of
Qs at some point in time ¢ where a publication p is born is
n, and that the starting position of p in Qs is I. At some
point in time ¢’ > ¢, the new position I’ of p in Qs will be
the following

I'=1—i+j, (12)

where 7 is the number of better publications that have died,
and j is the number of better publications that have been
born between points in time ¢ and ¢’. The number of deaths
D(t) is also a Poisson random variable with intensity A, be-
cause every publication that is older than ws dies. The prob-
ability that the number of deaths between ¢t and t’ is equal
to d is

MAte

oML
a’

pa(At) = p[D(t') — D(t) = d] = (13)

where At =t —t.

Suppose that d is the number of dead publications. We
want to know the probability that among d dead publi-
cations, ¢ are better than p. Let us take a look at Fig-
ure 6. Every publication in Qs, except p which is shown as
filled square, has an equal probability of dying. Therefore,
there are (") different combinations of choosing d among
n — 1 potentially dead publications. One such combination
is shown in the figure, where dead publications are shown as
crossed squares. Additionally, 7 of d dead publications are
better than p, and thus there are (l:.l) different combina-
tions of choosing ¢ among [ — 1 publications better than p.
Up to now, we have chosen i of d dead publications, and thus
d—1 dead publications are still there for choosing among n—1
publications worse than p. Thereby, the probability that ¢
of d dead publications were better than p is
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where ] <n,i<l—1,i<dand d <n—1. Formula (14) is
the well known probability mass function of the hypergeo-
metric distribution. Analogously to (13), a probability that

the number of births between ¢ and t’ is equal to b is:

aar AP
c B

pi(l,n,d,i) = (14)

po(At) = p[B(') — B(t) =
where At =t —t.

Suppose that b is the number of born publications. We
want to know the probability that among b born publica-
tions, j are better than p. This is a conditional probability
p(X|Y), where event Y is "the position of p in ¢ is I”, and
event X is ”j of b born publications are better than p in
t'”. First, let us find p(X NY), i.e. the probability that the
position of p in ¢ is [ and that among b born publications j
are better than p in t’. Let us take a look at Figure 7. Pub-
lication p is shown as filled square, the publications older
than p are shown as empty or crossed squares, and the pub-
lications younger than p are shown as gray squares. From
(12), the new position of p in ¢’ is I’ = 1 — i+ j. There
are | — 1 + j publications better than p, and (l_;“) dif-
ferent combinations of choosing j born publications among
them. Analogously, there are n—1+b— j publications worse
than p, and ("jf;ﬂ) different combinations of choosing
b— j born publications among them. Additionally, there are
("+é’_1) different combinations of choosing b born publica-
tions among n + b — 1 equally possible positions, and n + b
different ways of picking the position of p. Thereby, the
probability p(X NY’) is given with the following formula

b =

(15)

(55

("N +0)

The conditional probability that among b born publica-
tions j are better than p is:

p(XNY) = (16)

p(XNY)

p(Y)
The probability of event Y is 1/n, because there are n pos-
sible positions of p in ¢. Thus, using (16) and (17) we may
write the following formula:

p]'(l,’l’b, bv]) :p(X|Y) = (17)

()0

")

where | < n and j < b. Using (14), (12) and (17) we may

n .
n+b

p]'(l,’l’b, bv.]) = (18)
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Figure 8: Probabilities of relative positions for | =
2000 and n = 10000

write the probability p.(I',I,n,d,b) that p is at a new posi-
tion I’ after b births and d deaths as:

pm(l',1,n,d,b) =
min(l—1,d)
S° 0 pillongdik) pi(ln, bk —|r]) i <1
k=|r|
min(l’ —1,b)
pi(l,n,d,k —|r|) - p;(l,n,b,k) else
k=|r|
(19)

where » =1’ — [ is a relative position of p in t’.

In Figure 8 we can see the probability of each possible r
of p as a function of the same number of births and deaths,
for I = 2000 and n = 10000. It is important to notice that
its relative new position is limited by the number of births
and deaths. For example, for 10 births and deaths, the ex-
treme relative positions are: 1) r = —10 for j = 0 and
¢ = 10 (i.e. 10 births of worse publications and 10 deaths
of better publications), and 2) » = 10 for j = 10 and 7 = 0
(i.e. 10 births of better publications and 10 deaths of worse
publications). As we can see from the graph, for a larger
number of births and deaths, the extreme relative positions
are larger too, but their probability drops fast. These ex-
treme positions will be maximal for the maximal number of
births and deaths, and this always happens just a moment
before p dies (i.e. ' =t + ws). In that moment, there are
no more publications older than p in @5, and therefore its
position depends only on the born publications, and we may
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Figure 9: Results of calculations

write (19) in the following way:
pe(l’,1,m,b0) = prm (', ,n,n — 1,b) = pi(l,n, b, 5), (20)

where j =1'—1+i=10'—1+(l—1) =1 — 1. From (15) we
know that the number of births between ¢’ and ¢ is a Poisson
random variable with the expected value E[B(t') — B(t)] =
Aw = m. If we sum (20) over all possible values of b mul-
tiplied by their probabilities, we will get the probability
ps(l',1,n,m) of every new position of p in ¢’ using the fol-
lowing formula:

prslm,m) = > py(w) - pi(l,n,b,j) =
b
>
b
e
b

where j = I’ — 1. It is possible that instead of summing up
over all possible values of b multiplied by their probabilities,
we just put in (20) the expected value m of the number of
births between ¢’ and t:

Aw)® )
( b') 'p]'(lvnzbv.]) =

b
m
(b!) "Dy

(l,n,b,7), (21)

pa(l/7l7n7 m) = pj(l7n7m7j) =
=147\ (n—1l4+m—j
n (500
n—ﬁ—m' s (n+m—1)] (22)

where j = I’ — 1. Our simulations show that (21) can
be very well approximated with (22), thus py(I',l,n,m) ~
pa(l’,l,m,m). For a publication p that was at a position [
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in ¢, we may get a probability of each new position I’ in
t' =t + w by fixing n and m in (21).

At this point, we have to make an important remark. Let
us recall what is n in (22). It is the length of Qs at some
point in time ¢ where our publication of interest p is born.
Thereby, to calculate probabilities of new positions of differ-
ent publications, we have to know the length of Qs at a point
in time when each publication is born. This is very imprac-
tical, so instead of the exact value we will take the expected
value of this length, which is m. Therefore, equation (22)
becomes the following formula:

pa(ll7 l7 m, m) =
m () ()

2m (m+m— 1)

Loy

pu(llv l7 m)

(23)

where j = I’ — 1. In Section 1.2 we mentioned that a win-
dow w can be either time-based or number-based. For the
number-based windows (23) is exact, because the length of
Qs is always m.

Now, let us return to time-based windows, we would like
to know which new positions have probabilities less than o
to become a top-k publication at some later point in time
before ws passes. To find that out, we have to sum the prob-
abilities of becoming a top-k publication, i.e. probabilities
of positions I’ = 1...k. For each position [ this sum is given



with the following formula:

k
pe(l,m) =Y pu(l',l,m). (24)

=1
The first position that has more than the minimal proba-
bility is thus:

lhest =1" €N:ips(l”,m) > o Aps(l” +1,m) <o. (25)

We have run four different calculations for the values [
of s from 1 to 2000, and the following values of m: 10000,
100000, 1000000 and 1000000000. The minimal probability
o was set to 0.001. The results are shown in Figure 9, where
|Qs]| is the length of Qs, and |Ts| is the length of the tail
of Qs. From this figure, we can conclude the following two
very important facts:

e The lengths of Qs and Ts almost do not depend on m,
and

e The lengths of Qs and Ts grow sub-linearly with ks.

Because of the first fact, while identifying the required
length of s, we can take the worst value of m (i.e. 1 billion),
and it will just slightly increase the length of Qs compared
to the length for smaller values of m. From Figure 9, it is
visible that this slight increase occurs for larger values of
ks, which is good, because subscribers will probably choose
smaller values for k;.

4. EXPERIMENTAL RESULTS

For a systematic analysis of our approach we used the
same representation (of publications and subscriptions) and
datasets as Bohm at al. have used in [4]. We have chosen
to compare our approach with theirs because they did an
extensive analysis of the problem very similar to ours. In
this section, we have three different goals. First, to compare
the number of delivered publications of our probabilistic ap-
proach with the top-k/w model. Second, to compare simu-
lation runtimes for different values of k£ and different data
dimensionality. Third, to compare runtime and number of
delivered publications for different values of parameters k
and w.

The following setup was used in experiments: Publications
and subscriptions are points in a multidimensional attribute
space. Relevances are Euclidean distances between subscrip-
tions and publications. We generated synthetic datasets
of various dimensionality. In particular, we used clustered
Gaussian and uniformly distributed data. The clustered
datasets contained ten clusters with standard deviation 0.1,
which were randomly distributed on the attribute space.
Additionally, we used LBL-TCP 3 dataset, which is a real
netflow dataset available at Internet Traffic Archive?. For
all experiments, we used 1 million of publications. Addi-
tionally, we used 500 subscriptions and assumed that each
subscription has the same number-based® sliding window of
size 20000 when not otherwise specified. We further assumed
that at each time stamp a new publication is published. Ex-
periments were run in Java on a PC with 2.8 GHz Pentium
Processor and 1 GB of main memory. Similarly to [4], we
represented publications queues in the main memory as two

“http://ita.ce.lbl.gov
5See the first part of Section 1.2 for the explanation.
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Table 2: Number of delivered publications for dif-
ferent datasets

Uniform Clustered Netflow
Gaussian
k a b a b a b
1 102 102 104 104 905 1019
2 194 194 198 198 1139 1307
5 418 418 410 410 1662 1685
10 760 760 784 784 2299 2200
20 1382 1382 1393 1393 3263 3264
50 3196 3196 3217 3216 6152 5910
100 6068 6068 6114 6114 9774 9147
200 11728 11728 11749 11749 15964 15326
500 28096 28096 28018 28018 40488 39173
1000 54631 54631 54739 54739 71447 71614
2000 | 106738 106738 | 106638 106638 | 126169 127133
x 10°
6
w
4 ]
E
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O L L L L
0 200 400 600 800 1000
d

Figure 10: Runtime for different dimensionality

double-linked lists. In the first list, the publications were
sorted by their relevance, while in the second list they were
sorted by their time of publishing.

In Table 2 we can see the number of delivered publications
for a randomly chosen subscription and different values
of parameter k. For each dataset, column a is number of de-
livered publications for tail of endless length (as it is defined
in the model), and column b is the same number for tail
with the required length determined in Section 3. For the
synthetic datasets these numbers are identical. Actually, the
only difference is for clustered Gaussian data and k = 50.
Therefore, we conclude that our approach behaves as ex-
pected with less than 0.1% of non-delivered top-k/w publi-
cations. For the netflow dataset these numbers are different,
which is the consequence of repeated identical publications
(i.e. source port, destination port and packet size) and high
dependence between publishing times and relevances in the
dataset. As previously stated, our model is based on as-
sumption that each publication is unique, while our solution
is based on assumption that relevances of publications to
a subscription are independent of their time of publishing.
Thus, we conclude that it behaves reasonably well for this
problematic kind of data. It is important to notice that be-
cause of the identical publications, the number of delivered
publications is few times larger in the case of the netflow
dataset compared to the synthetic datasets.

In Figure 10 we can see the runtime of simulation for
the uniform dataset and different number of attribute space
dimensions. Each of 500 subscriptions had the same value
of parameter £k = 1. We conclude that the runtime grows
linearly with the number of dimensions. This was expected
because the complexity of calculating of Euclidean distance
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in a multidimensional attribute space grows linearly with
the number of its dimensions.

In Figure 11 we can see the runtime of simulation in 2-
dimensional attribute space for different datasets and
different values of parameter k. We conclude that there is
no significant difference in the runtime for different datasets.
Now, let us analyze the runtime for different values of pa-
rameter k. We conclude that runtime stays between 200
and 300 seconds for the values smaller than k& = 100. For
the values k£ > 100, runtime grows almost linearly, and this
is the consequence of using sorted linked lists as publica-
tions queues, where inserting of a new element takes O(n)
[12]. Therefore, we conclude that the runtime may be ad-
ditionally improved for larger values of k by using balanced
binary trees (with O(logan)) instead of double-linked lists.

Now, it is important to remark that in [4], the authors use
query indexing algorithm and delaying of newly arriving ob-
jects that we do not. We simply check all the subscriptions
upon a new publishing event. According to simulation in [4],
the runtime of simple approach without indexing and delay-
ing is for k = 1 equal to 11.58s-63 = 729.54s. As we can see
from the beginning of the graph in Figure 11, the runtime
of our approach is for k = 1 equal to 153.50s. Therefore,
we conclude that our approach is for ¥ = 1 more than 4,5
times faster than the simple approach. Moreover, presented
results have been performed without indexing and our algo-
rithm is for values of k > 10 faster than their approach with
indexing and delaying. Furthermore, we are working on a
subscription indexing algorithm, which will according to [4]
drastically improve performances of our approach.

In Figure 12 we can see the number of delivered publi-
cations for a randomly chosen subscription and differ-
ent values of parameters k and w. We used number-based
windows and the uniform dataset in 2-dimensional attribute
space. As we know from Section 2.2, if k is more or equal
than the number of published publications in window w, all
of them will be delivered to the subscriber. For example,
there are 1 million delivered publications for k& = w = 100.
It is very important to notice that the numbers of delivered
publications will be very similar if we increase (or decrease)
both k and w for the same orders of magnitude. For exam-
ple, the number of delivered publications is almost identical
for pairs (k,w) = (10',10%) and (102, 10%).

Now, it would be interesting to see which of possible (k, w)
pairs requires less processing for approximately the same
amount of delivered publications. In Figure 13 we can see
runtimes for different (k,w) pairs. The upper-right part
represents runtimes of the top-oco®case. For these pairs, all
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delivered publications

Figure 12: Number of delivered publications for dif-
ferent values of parameters k and w
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Figure 13: Runtime for different values of parame-
ters k and w

the published publications will be delivered to subscriber.
To reduce unnecessary processing, this case should be rec-
ognized at the moment of subscription activation. As we
see, the peak is for the biggest simulated value of k = w
(i.e. 10%). This is expectable, because in this case, we have
the longest of the publications queues that contain every
active publication. The runtime is large because we have
to put each newly published publication to its right posi-
tion it the queue, although it will certainly be delivered to
the subscriber. The lower-left part represent runtimes of the
standard top-k/w® case. In this case, our advice is to choose
one of the pairs in the middle, which have better runtimes
than outer pairs. For example, it is better to choose pairs
(10%,10%) or (10, 10%) than pairs (1,10%) or (10%,10%).

5. RELATED WORK

There are many different ways for the representation (i.e.
content and structure) of publications and subscriptions in
CBPS systems. The common representation of publications

6See Section 2.2 for the explanation.



is as attribute-value pairs in a multi-attribute space, and
subscriptions as Boolean functions of simple constraints on
the attributes of the same multi-attribute space [9, 15, 32,
30, 29]. This representation is completely structured. An-
other very popular representation is XML representation
[11, 10, 36], which is semi-structured. The matching model
for all of this representations is essentially Boolean in nature,
and suffers from the drawbacks mentioned in Section 1.1.

The idea that a publication has a degree of relevance to
a subscription, instead of simply being matching or non-
matching, is not a new one [22, 24, 23, 8, 31, 20]. Liu and
Jacobsen [22, 24, 23] introduced the degree of relevance in
publish/subscribe systems. The main part of their research
is focused on expressing of uncertainties in publications and
subscriptions, and the approximate matching of such pub-
lications and subscriptions. For each match, they compute
the two measures: possibility and necessity of match. Their
approximate matching model uses a number of parameters
to control the tolerance of a match on very fine-granular ba-
sis. This is very different from our model. In our model
these parameters are not defined in each subscription, be-
cause we use the relevance of other publications to control
the number of matches instead, see Figure 2. Caporuscio
and Inverardi [8] define confidence of matching, which is a
measure similar to our degree of relevance. They use this
measure for modeling of uncertainties. The main goal of
their work is to achieve event (i.e. publication) correlation
through the use of complex filters. Picco at al. [31] deal with
the uncertainties in the tuple space model. Lekova et al. [20]
use fuzzy reasoning for filtering and matching of numerical
values in publications to imprecise data in subscriptions.

In the above systems, the degree of relevance of publi-
cations to subscriptions is the direct consequence of their
fuzzy representations. On the contrary, in our model it is
the starting point. Since our model does not depend on a
representation of publications and subscriptions, we do not
care about the domain of interest and the corresponding
representation, as long as the representation supports calcu-
lation of the relevance. Without a capability of calculating
the relevance, our model is not applicable for the chosen rep-
resentation in the corresponding domain of interest. There
are many different techniques for calculating relevance [2] for
different representations of queried objects. Some of these
techniques are intended for structured representations [5,
16], and some for unstructured [35, 34]. In some of these
techniques relevance depends only on the representations,
and in others it also includes some additional information.
Our model is general enough that it can be applied in all
these cases.

The most similar problem to top-k/w publish/subscribe is
processing of continuous top-k queries on data streams [17,
19, 27, 4, 13]. A survey of management and processing of
data streams can be found in [1]. Bohm at al. [4] develop a
criterion to decide upon the arrival of a new object if it may
become the k-NN (k-nearest neighbor) or not. It is based
on the idea that a new object arriving from the stream can
often exclude many other objects which cannot become k-
NN until the new object expires. This is actually just one of
the possible pruning strategies, which minimizes the number
of stored objects. They use query skyline—a skyline-based
object buffer associated with each query to keep potential
k-NN. See [21] for the explanation of skyline. This buffer is
very similar to publications queue in our approach. Oppo-
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site to our approach which is probabilistic, their approach is
purely deterministic and gives an exact answer. They also
propose delaying of new objects, and a very fast query in-
dexing algorithm. They did an extensive experimental eval-
uation of their approach on high throughput data streams,
comparing it with a simple approach without the indexing
and the delaying. As this is the most similar problem to ours,
and this simple approach is actually the reference point to
compare with, we compared the two approaches in Section 4.
It is important to notice that representing publications and
subscriptions as points is a multi-dimensional space is just
one of their possible representations. Gao and Wang [17]
propose discovering of patterns to predict content of new
objects. Their approach is not applicable if the content of
an object is independent of its time of arrival, which is our
assumption. Koudas et al. [19] propose approximate k-NN
answers with guaranteed error/performance bounds. Das et
al. [13] introduce a novel geometric representation of top-
k query answering problem. They also propose an index
for such objects, object pruning methods for the index, and
algorithms for its updating and querying. Their approach
is also deterministic as [4]. Mouratidis et al. [27] employ
a regular grid to index objects in present window. Their
methods relies on either precomputing or recomputing of
results of top-k queries and is therefore quite different from
our approach.

6. CONCLUSION AND FUTURE WORK

In this paper we presented the drawbacks of the current
CBPS systems and proposed the top-k/w publish/subscribe
model—a new CBPS model that is based on sliding win-
dow computation model, and which does not suffer from
the listed drawbacks. Our model supports different repre-
sentations of publications and subscriptions as long as they
allow calculation of relevance. We presented the practical
implementation of our model and developed a probabilistic
criterion to decide if a publication is (upon its arrival) worth
of keeping in the system or not. We showed that this crite-
rion allows us to process very large number of publications
in a short period of time.

The most important consequence of our approach is that
we finally can have a publish/subscribe system with com-
pletely unstructured representations of publications and sub-
scriptions. Therefore, this very popular data representation
is no more exclusively intended to be used in information
retrieval systems. The second very important consequence
is that for the first time we present a solution for too general
and over-specified subscriptions.

We are working on a fast matching algorithm based on
subscription indexing, which supports subscription cover-
ings. We are thinking of incorporating some kind of penal-
ties for publications that are waiting in a publications queue.
The more publications wait they will be less relevant, be-
cause in some applications scenarios they actually loose their
value to subscribers with time. We are currently working
on a distributed system based on our model, which uses
rendezvous-based routing [3].
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