
Crowd Patches: Populating Large-Scale Virtual Environments for Real-Time
Applications

Barbara Yersin ∗

Jonathan Maı̈m
VRlab-EPFL, Lausanne, Switzerland

Julien Pettré †

Bunraku team, INRIA
Rennes, France

Daniel Thalmann
VRlab-EPFL

Lausanne, Switzerland

Figure 1: Environments successfully populated with crowd patches. (Left) A procedurally computed pedestrian street, where patches are
generated at run-time. (Middle-left) The same image revealing the patch borders and their trajectories. (Middle-right) A pre-defined city
environment where patches are computed offline. (Right) The same image with apparent patch borders and trajectories.

Abstract

Populating virtual environments (VEs) with large crowds is a sub-
ject that has been tackled for several years. Solutions have been
proposed to offer realistic trajectories as well as interactivity, but
limitations remain on the environment dimensions with respect to
population density. In this paper, we extend the concept of mo-
tion patches [Lee et al. 2006] to densely populate large environ-
ments. We build a population from a set of blocks containing a
pre-computed local crowd simulation. Each block is called a crowd
patch. We address the problem of computing patches, assembling
them to create VEs, and controlling their content to answer design-
ers’ needs. Our major contribution is to provide a drastic lowering
of computation needs for simulating a virtual crowd at run-time.
We can thus handle dense populations in large-scale environments
with performances never reached so far. Our results illustrate the
real-time population of a potentially infinite city with realistic and
varied crowds interacting with each other and their environment.
We discuss the advantages and drawbacks of the proposed solution,
and its possible improvements in the future.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: interactive crowd, virtual environment population

1 Introduction

For a long period of time, VEs have been sparsely inhabited by
virtual people. More recently however, they have benefited from
computers’ power increase, especially in the field of graphics ca-
pabilities. As a result, it is now possible to interactively model

∗e-mail: firstname.lastname@epfl.ch
†julien.pettre@inria.fr

densely inhabited worlds. Efficient crowd rendering engines, able
to display thousands of virtual humans in real-time, have been de-
veloped: a typical approach is to store pre-computed images of in-
dividuals, and reuse them on the fly. In addition, individuals also
have to act and navigate in their environment. This is the role of
simulation, which requires real-time methods in the case of VEs.
Crowd rendering engines and simulators are thus combined to cre-
ate interactive inhabited VEs. However, crowd simulation remains
computationally expensive, even when virtual humans’ behavior is
limited to navigation. This is especially due to the costly avoidance
of collisions. One possibility is to pre-compute, store and replay
a simulation. Nevertheless, the content is then fixed, and limited
in duration and size for obvious memory storage reasons. More-
over, VEs can reach huge dimensions, like entire cities or even up
to the entire Earth, making the pre-computation of an animation for
a corresponding virtual population unthinkable. We address in this
paper the problem of densely populating any virtual environment
without any assumption or explicit limitation on its dimensions, the
possible duration of its exploration, or its population size.

Motivations. Our motivations in this work are threefold. First,
we want to consider environments of any dimensions, from small
public areas to entire cities, and potentially more. The problem
raised by these environments is the underlying need for large-scale
virtual populations. Second, we want to handle environments pro-
cedurally generated online and in real-time. It is difficult for current
techniques to populate such environments, because their geometry
cannot be pre-processed - a typically compulsory stage in crowd
simulations. Third, we want to lower the relative cost of motion
synthesis and navigation simulation, with respect to the whole VE
resource needs, with no visible impact on the resulting motion qual-
ity.

Contributions. Our contribution consists of four points. First,
we propose a technique that pre-computes simulation tasks, stores
the resulting motion trajectories, and reuses them on the fly. Ob-
viously, such pre-computations allow us to drastically decrease the
online resources needed to animate virtual populations. We break
classical crowd simulation limitations on the environment dimen-
sions: instead of pre-computing a global simulation dedicated to the
whole environment, we independently pre-compute the simulation
of small areas, called crowd patches. To create virtual populations,

the crowd patches are interconnected to infinity from the spectator’s
point of view. We also break limitations on the usual durations of
pre-computed motions. By adapting our local simulation technique,
we provide periodic trajectories that can be replayed seamlessly and
endlessly in loops over time. As a second contribution, we propose
a user-guided design technique to control the environment content
in an easy and efficient way. Our technique is based on a set of
patch templates, having specific constraints on the patch content,
e.g., the type of obstacles in the patch, the human trajectories there,
etc. A large variety of different patches can be generated out of
a same template, and then be assembled according to designers’
directives. Our third contribution is the ability to populate any en-
vironment, whether it is already provided, or procedurally modeled
in real time: patches can be pre-computed to populate the empty ar-
eas of an existing virtual environment, or generated online with the
scene model. In the latter case, some of the patches will also con-
tain large obstacles such as the buildings of a virtual city. Finally,
our fourth contribution is to offer major improvements on the dif-
ficult trade-off between simulation quality, memory consumption,
and performances. Concerning the quality of the crowd simulation,
since it is pre-computed, fine-grained offline techniques for motion
synthesis and simulation can be used. Secondly, since the result-
ing trajectories are periodic, the memory consumption is no longer
directly related to motion duration: potentially infinite motions are
achievable from a limited set of patches. Finally, run-time opera-
tions are limited to motion replay, resulting in high performances.

Overview This paper introduces the crowd patches approach,
whose objective is to populate an environment from a set of blocks
containing pre-computed motions for virtual humans. By constrain-
ing motion trajectories both in space and time at the limits of each
block, we can connect them to build large environments with nu-
merous humans. In Section 2, we first present previous work on
real-time crowd simulation and rendering. In Section 3.1, we intro-
duce our elementary block structure, the crowd patch, that may con-
tain static or dynamic objects. Virtual humans composing our pop-
ulation are able to move from patch to patch. As a result, trajectory
continuity must be temporally and geometrically ensured between
patches. This is the role of patterns, introduced in Section 3.2. We
show how to compute patches from patterns in Section 4: the most
difficult point is to compute periodic motions while respecting con-
tinuity conditions on patch borders. The content of patches must fit
the designers’ requirements on the VE’s content; we thus introduce
patch templates in Section 5.1, with key-ideas for patching environ-
ments. Templates allow us to define the expected content of patches
with respect to their location in the environment. They also provide
control on the population motion and its distribution in different ar-
eas. We demonstrate our approach in Section 6 with two examples.
Finally, we conclude with a discussion on our approach limitations,
and future work directions in Section 7.

2 Related Work

Interactive inhabited virtual worlds received much attention these
last ten years. Their creation requires several issues addressed: ren-
dering the environment and virtual population, controlling and de-
signing content, simulating virtual humans’ behaviors and naviga-
tion, and animating them. Solutions to these issues are limited by
the need for interactivity: online real-time techniques are required.

Rendering large VEs is possible by organizing scene graphs for ef-
ficient culling, or by applying level-of-detail strategies [Hamill and
O’Sullivan 2003]. Rendering crowds is also feasible by exploiting
a level-of-detail approach: according to its distance to the camera,
a human appearance can range from a detailed 3D model to 2D
pre-computed images [Tecchia et al. 2002; Dobbyn et al. 2005].

Rendering humans with pre-computed 2D images is highly restric-
tive as the range of possible motions is limited to the image content;
generally, behaviors are limited to navigation and humans perform
locomotion only. This partly explains why interactive environments
made of humans exhibiting rich and varied behaviors [Shao and
Terzopoulos 2005] have a limited population size.

At the global level, autonomous navigation can be seen as a path
planning problem, which can be solved with different techniques.
Cell-automaton methods model environments as 2D-grids [Loscos
et al. 2003]. A pedestrian’s global motion results from succes-
sive local motions from cell to cell, guided by probabilistic rules.
These techniques are frequently used for evacuation simulations:
indeed, from the statistical point-of-view, realistic results such as
evacuation time, are obtained. However, such approaches fail in
synthesizing high-quality smooth locomotion trajectories, due to
discretization. It is also possible to decompose navigable parts
of environments in other ways, e.g., by using circles with vary-
ing radius [Pettré et al. 2006] or with triangulation [Lamarche and
Donikian 2004]. In the case of large and complex environments,
a hierarchical representation preserves fast path search times [Shao
and Terzopoulos 2005; Paris et al. 2006]. In [Sud et al. 2007], au-
thors prefer using Voronoı̈ diagrams to solve path planning queries
and agent-to-agent neighboring queries. Both cell-decomposition
and Voronoı̈ diagram-based techniques have demonstrated their
ability to interactively handle large crowds. Path planning enables
the user to have control over the population by distributing destina-
tion points to individuals composing the crowd.

At the local level, locomotion is controlled by steering methods.
Solving interactions between pedestrians and avoiding any collision
have a great impact on the motion realism. Such interactions can be
solved using a set of rules [Reynolds 1987]. Helbing and colleagues
make an analogy to Physics in their social forces model [2005] to
represent relations between interacting pedestrians: people’s accel-
erations result from a set of attractive (goal, friend, family) and
repulsive (obstacles, danger, other people) forces. Pelechano later
improved the model to avoid artifacts such as oscillations in trajec-
tories [2005]. Treuille and colleagues [2006] made an analogy with
potential fields: people move against the gradient resulting from a
static field (goal) and a dynamic field (other people). In [van den
Berg et al. 2008], the velocity obstacle concept from robotics is
adapted to solve human interactions. Steering with level-of-detail
is possible to allow large-scale populations [Yersin et al. 2008]. Re-
cently, solving interactions from examples was achieved [Lerner
et al.], [Lee et al. 2007]. However, the obtained performances are
too low for applications such as interactive virtual worlds.

In conclusion, different techniques - that are efficient enough to fit
interactivity requirements - are available to provide motion and ac-
tion autonomy to a virtual population: action decision results from
behavioral simulation, or is defined directly at design. Global nav-
igation is possible from path planning; individuals are then steered
locally in order to avoid each-other. However, several limitations
remain. First, it is difficult to mix various behaviors with real-time
rendering techniques. Second, online generated worlds cannot be
handled, because path planning is based on specific pre-computed
data structures: environment size and complexity are limited, and a
fixed, known in advance geometry is required. Finally, steering hu-
man locomotion is increasingly time-consuming with the number
of interactions to solve. With our approach, we first want to gener-
ate and animate virtual populations of yet unreached sizes for very
large environments, out of the reach of classical crowd simulation
techniques. Secondly, we want to address online generated worlds,
with no a priori knowledge on their geometry. Finally, we want to
help designers control the composition and behavior of virtual pop-
ulations. Our solution is inspired from [Lee et al. 2006]: motion
patches are building blocks annotated with motions. A virtual hu-

man can traverse or act in a block by using (replaying) one of the
available motions. Motions are connected between different blocks
by sharing common limit conditions. Blocks can be assembled to
create new environments. One limitation of this approach is that
no interaction between several characters evolving in a same patch
is possible. We extend the concept of motion patches by creating
blocks where several humans can move and interact simultaneously.
The issue then grows from a geometrical problem to a geometrical
and temporal one. A virtual population is created by assembling
such blocks. As interactions are solved once for each block, and fur-
ther reused during simulation, we save precious computation time.
Assembling and disassembling blocks can be achieved at run-time,
breaking the limitations on environment size: the virtual population
is only generated in front of the spectator’s point of view.

3 Principles and definitions

Our objective is to populate virtual environments by composing
small pieces of precomputed animations. Such pieces, called crowd
patches, can contain moving pedestrians, animals, or objects. In-
side a patch, animations are computed so that they are cyclic over
a constant period, and can be seamlessly repeated. This allows an-
imated content to appear in endless motion. Animated objects may
cross the limits of a patch and move to a neighbor patch. The tra-
jectories of such objects must then meet common limit conditions
to allow going from one patch to another adjacent one. These limit
conditions are defined using the concept of patterns. In the follow-
ing Sections, we define more precisely patches and patterns.

3.1 Patches

Figure 2: Two square patches. (Left) An endogenous point per-
forms a periodic animation in the patch: its start and end positions
τ(0) and τ(π) are the same. (Right) An exogenous point performs
a periodic motion, even if its trajectory leaves the patch at time t1
to reappear at t2 on the other side of the patch.

Patches are geometrical areas with convex polygonal shapes. They
may contain static and dynamic objects. Static objects are sim-
ple obstacles which geometry is fully contained inside the patch.
Larger obstacles, such as buildings, are handled differently (see
Section 5.3). Dynamic objects are animated: they are moving in
time according to a trajectory τ(t). As previously introduced, we
want all dynamic objects to have a periodic motion in order to be
seamlessly repeated in time. We note π this period and we define
the patch periodicity condition for each dynamic object:

τ(0) = τ(π) (1)

Two categories of dynamic objects may be distinguished: endoge-
nous and exogenous objects. The trajectory of endogenous objects
remains inside the geometrical limits of the patch for the whole
period π. An example of endogenous object is displayed in Fig-
ure 2 (left). The point’s trajectory is fully contained in the patch

and respects the periodicity condition (1). If the animation is looped
with a period π, the point appears to be moving endlessly inside the
patch. Note that static objects can be considered as endogenous
objects, with no animation.

Exogenous objects have a trajectory τ(t) that goes out of the patch
borders at some time, and thus, does not meet the periodicity condi-
tion (1). In order to enforce this condition, we impose the presence
of another instance of the same exogenous object whose trajectory
is τ ′(t) (Figure 2 (right)). As the two objects are of the same type,
i.e., they have an identical kinematics model, their trajectories can
be directly compared. Different cases are then to be distinguished:

• trajectory τ(t) is defined for t : 0→ T with 0 < T < π: we
impose the patch to contain another instance of the exogenous
object with a trajectory τ ′(t) defined for t : T ′ → π with
0 < T ′ < π, and with condition τ(0) = τ ′(π).

• trajectory τ(t) is defined for t : T → π with 0 < T < π: we
impose the patch to contain another instance of the exogenous
object with a trajectory τ ′(t) defined for t : 0 → T ′ with
0 < T ′ < π, and with condition τ ′(0) = τ(π)

• trajectory τ(t) is defined for t : T1 → T2 with 0 < T1 <
T2 < π. Then, condition (1) is implicitly respected, and no
other instance of the exogenous object is required.

In Figure 2 (right), the point trajectory τ(t) is defined inside the
patch for t : 0 → t1 < π. This trajectory is associated to another
instance of a moving point τ ′(t) so that τ ′(π) = τ(0). Note that
t1 6= t2 and no order relationship is required: the two instances of
the moving point can be simultaneously outside or inside the patch.

3.2 Patterns

Figure 3: Two square patches whose patterns have mirrored con-
ditions and thus, can be connected: the point following the green
trajectory can pass from the right patch to the left one seamlessly,
while the point with the red trajectory moves from left to right.

In Section 3.1, we defined exogenous objects: their trajectory exits
the geometrical limits of a patch. The role of patterns is to reg-
ister the limit conditions of exogenous object trajectories to allow
the connection of patches. A pattern is defined for each face of a
polygonal patch. As a result, patterns fully delimit patches. They
are two-dimensional: a space dimension with length l, and a time
dimension with duration (period) π. Patterns identify limit condi-
tions for exogenous object trajectories. These conditions are either
an input point I , or an output point O, at a specific position on the
patch p ∈ [0, l], and at given time t ∈ [0, π]. Thus, a pattern is fully
defined from its dimension l, its duration π and a set of inputs and
outputs: P = {l, π, Ii[pi, ti], 0j [pj , tj]}.

We build environments and their population by assembling patches.
Thus, two adjacent patches have at least one common face. They
also share identical limit conditions for exogenous objects’ trajec-
tories. Indeed, when an exogenous object goes from one patch

to an adjacent one, it first follows the trajectory contained by the
first patch, and then switches to the one described by the sec-
ond patch. These two trajectories have to be at least continuous
C0 to ensure a seamless transition from the first patch to the sec-
ond one. The patterns between the two adjacent patches allow to
share these limit conditions. Let us consider the case of two ad-
jacent patches with one common face as illustrated in Figure 3:
the two patches each contain two exogenous objects going through
their common face. The common face is delimited by pattern P1

for the first patch on the left, and by pattern P2 for the second
patch on the right. we have: P1 = {π, l, I[p1, t1], 0[p2, t2]} and
P2 = {π′, l′, I[p′2, t′2], 0[p′1, t

′
1]}. In order to satisfy C0 continuity

for endogenous objects trajectories we must ensure:

π = π′, l = l′, p1 = p′1, t1 = t′1, p2 = p′2, t2 = t′2 (2)

We then say that P1 is the mirror pattern of P2. As a summary,
mirrored patterns have the same duration, length, and number of
mirrored inputs and outputs.

4 Creating Patches

Figure 4: Computation of exogenous trajectories in a square patch.
(Top) the patterns composing the patch have 2 input and 2 output
points. The patch also contains 1 endogenous pre-defined trajec-
tory. (Bottom-left) input and output points from different patterns
are randomly connected. The green trajectory is infeasible; it goes
back in time. (Bottom-center) The green trajectory is split into 2
trajectories at position pw: 2 pedestrians will use it over one pe-
riod. (Bottom-right) The exogenous trajectories are updated with a
particle-based method to avoid collisions between objects.

In this section, we describe the process for creating one patch. The
following section is then dedicated to the construction of environ-
ments by assembling patches. The proposed method has 3 succes-
sive steps: first, create the patch geometry and define exogenous
trajectories’ limit conditions by assembling patterns, second, insert
static and endogenous objects, and finally, automatically compute
exogenous trajectories. For an easy understanding, we provide the
example of a simple square patch, illustrated in Figure 4.

4.1 Patterns Assembly

Our method for creating patches first starts by defining their shape.
From the definitions of Section 3, one understands that patches are
delimited by patterns: each face of the convex polygonal shape of

patches is defined by one pattern. As a result, patches are created
by assembling patterns. Two conditions have to be respected when
assembling patterns to create a patch. First, all patterns must have
a common period π which will be the patch’s period too. Second,
the sum of inputs defined by the set of patterns composing the patch
must match the number of outputs. Indeed, each exogenous object
entering the patch must, sooner or later, leave it. Obviously, if this
condition is not ensured, it is impossible to respect condition (1).

An example of patch assembly from 4 patterns is displayed in Fig-
ure 4: all patterns have the same duration π and length l, and are set
to delimit a square patch. Note that patterns do not require to have
the same length; patches may be composed by any number of pat-
terns, 3 at least, with no theoretical maximum. These 4 patterns also
define 4 limit conditions: 2 inputs of exogenous objects I1[t2, p2]
and I2[t4, p4], as well as 2 outputs O1[t1, p1] and 02[t3, p3].

4.2 Static Objects and Endogenous trajectories

The second step is either to define ourselves, or get the online in-
formation on all the static and endogenous objects contained in the
patch. Static objects have their geometry fully contained in the
patch. Endogenous objects are animated and have a cyclic motion
with period π. In the example of Figure 4 (top), we see that one
endogenous object is defined for the patch, with a red trajectory.

In the case of a patch built in a virtual shopping street, static obsta-
cles are trash cans, trees, public benches, streetlights, signboards,
etc. Endogenous objects can be humans talking, sitting, watching
shop windows, etc. They can also represent animated objects or an-
imals, such as a merry-go-round, or dogs. Note that once defined,
static and endogenous objects are no longer modified. We respec-
tively consider them as static and moving obstacles in the next step,
which consists in automatically computing exogenous trajectories.

4.3 Exogenous trajectories: case of walking humans

Computing trajectories of exogenous objects is more complex than
previous steps: the limit conditions of patterns must be ensured, and
collision avoidance with static objects, endogenous objects (whose
animations are now fixed), and other exogenous objects, must be
achieved. We propose a method to automatically compute exoge-
nous trajectories of walking humans. We consider the evolution of
their global position only; a trajectory is thus modeled as a moving
2D point. Computing exogenous trajectories for walking humans is
done in 3 steps. Each step is illustrated in the bottom of Figure 4.

Initialization of Trajectories. We initialize exogenous trajecto-
ries by connecting each input to an output, as defined by patterns.
We thus obtain initial limit conditions for the trajectories, and count
as many trajectories as the total number of inputs (or outputs) de-
fined for the patch. Inputs and outputs are connected at random,
with the sole constraint that we avoid connecting inputs and out-
puts of the same pattern. This way, walking humans pass through
the pattern rather than head back. At first, linear trajectories are
computed between a connected input I[pi, ti] and output O[po, to].
We obtain for each connected pair:

τ(t) = pi + ~pipo.
t

to − ti
(3)

In the example of Figure 4 (left), 2 exogenous linear trajectories are
defined: τ1 : I[p2, t2] → O[p3, t3] in blue, and τ2 : I[p4, t4] →
O[p1, t1] in green.

Velocity Adaptation. Inputs and outputs being arbitrarily con-
nected, the resulting trajectories may be infeasible for walking hu-

mans: the average speed ṽ =‖ ~pipo ‖ .(to− ti)−1 along the trajec-
tory may be too high, or even negative, if ti > to, which would be
non-sense. The key-idea to address this issue is to split the trajec-
tory τ into two trajectories τ ′ and τ ′′ passing by a new way-point
pw as follows:

pw = pi + (~pipo.
π − ti

to + π − ti
) (4)

τ

{
τ ′ : [pi, ti]→ [pw, π]
τ ′′ : [pw, 0]→ [po, to]

(5)

In other words, instead of having one pedestrian joining the con-
sidered input and output points, we obtain two humans: one going
from the input point to pw, while the second one heads from pw

towards the output point. These two humans have an identical posi-
tion pw at different times: at t = π for the first human, and at t = 0
for the second one, thus ensuring condition (1). The new average
speeds of pedestrians are respectively ṽ′ =‖ ~pipw ‖ .(π − ti)−1

and ṽ′′ =‖ ~pwpo ‖ .(to)−1. If these speeds are still too high for hu-
mans, the process can be reiterated until they fall into an acceptable
range (typically [0, 2]m.s−1). In the example of Figure 4 (center),
τ2 is defined with t2 > t3 and is split into two trajectories.

Collision Avoidance. Trajectories may result in collisions be-
tween objects, static or dynamic. We consider static and endoge-
nous objects unmodifiable, and refine exogenous object motions to
avoid collisions. To reach this goal, we use a particle-based method
that, at each time step, steers exogenous objects from a set of forces:

• objects track an attraction point moving along their initial lin-
ear trajectory τ(t)

• objects are repulsed by all other objects in their vicinity.

• in order to avoid dead-lock situations, attractive and repulsive
forces are balanced: the farther an object is from its attraction
point and the closer t is to to, the more paramount attraction
forces are, as compared to repulsive ones.

Particle-based simulations may result in jerky motions. We thus
smooth the resulting trajectories before storing them. In Fig-
ure 4 (right), we show the trajectories obtained after the collision
avoidance and smoothing steps. Note that any method could be
used to update exogenous trajectories. Especially if patches are
pre-computed, it is possible to use more fine-grained approaches to
solve collisions. We here employ a particle-based approach for its
simplicity and rapidity.

In conclusion, we described a technique for computing patches.
The patch is first geometrically defined by assembling a set of pat-
terns, which also provide a set of input and output points for ex-
ogenous objects. Then, static and endogenous objects are added
to the patch. Finally, exogenous object trajectories are computed
for walking humans, so that they respect limit conditions imposed
by patterns, while avoiding object collisions. We describe in the
following section how to assemble patches to create virtual worlds.

5 Creating Worlds

5.1 Assembly of Patches

We distinguish two major ways of using crowd patches for creating
and/or populating virtual environments: a bottom-up, or a top-down
technique.

The bottom-up approach starts from an empty scene. A first patch
is created, and then, iteratively, new adjacent patches are progres-
sively added. This process is illustrated in Figure 5 (top). Patterns

Figure 5: Creating Worlds using (top) a bottom-up technique, e.g.,
procedural generation, or (bottom) a top-down approach, starting
from a geometrical model of the environment.

of a newly created patch that are adjacent to the previously inserted
patches are constrained: they are directly defined by mirroring pat-
terns of the already existing patches. Then, the patch polygon is
closed by other patterns, so that they satisfy the patch assembly
conditions stated in Section 4. Note how patch assembly progres-
sively grows in an eccentric manner.

A top-down approach starts from a geometrical model of the en-
vironment. The obstacle-free parts of the environment are decom-
posed into polygonal cells that are used as a blueprint for creating
patches. This technique perfectly fits the case of virtual cities where
large buildings are already present, and streets have to be populated
by patches. Computational Geometry provides many techniques to
decompose a surface into elementary cells: some provide exact de-
composition, e.g., triangulation, whereas others are approximated,
e.g., using 2D grids. It is possible to use any of them as long as
convex cells are obtained. We provide an example of a hand-made
decomposition in Figure 5 (bottom).

Both techniques can be used to define the geometrical shapes of
patterns. It is possible for both of them to pre-compute all patches
in order to create or populate a given environment. It is also pos-
sible to generate patches on-the-fly, from the spectator’s point of
view: only visible parts are patched. The next step is to define the
patches’ content, which is dependent on the desired appearance of
a given area, and is thus a design problem. Sections 5.2 and 5.3
introduce patch templates and pattern types, allowing designers to
have control over the environment content.

5.2 Patch Templates

The content of a patch is dependent on its precise location in the en-
vironment, and on the considered environment itself. Let us take the
example of a shopping pedestrian zone. The corresponding patches
should then contain static obstacles such as benches, trees or flow-
erpots. Endogenous objects can be people standing in front of shop
windows, talking together, sitting on benches, while exogenous ob-
jects are simply walking humans.

Designers want to have a certain control over the environment con-
tent, but accurately defining the objects in each patch is too time
consuming. A solution is then to automatically generate patches
from given templates. A patch template groups patches meeting a
set of constraints on their objects and patterns. In order to asso-
ciate geographic zones with desired templates, designers provide a
template map. The map defines which template to use at any point
of the environment. We can also address the specific case of en-
vironments that are modeled on-line in real-time, using procedural
methods. However, they need adaptation to generate the template
map in parallel with the geometry.

When a patch of a given template is created, some static and en-
dogenous objects are randomly selected among the allowed set to
compose its content. Designers also need to control the flow of
walking humans going through patches, which implicitly defines
the overall distribution of people in an environment. This is possi-
ble by constraining the pattern types to use.

5.3 Pattern Types

Controlling walking humans in our method is achieved by defining
specific pattern types. These types allow to choose the specific dis-
tribution of input and output points in space, or time. We give here
some examples of usage for specific distributions.

Empty Patterns. Environments are likely to contain large obsta-
cles, such as buildings (as seen in Figure 5 (bottom)). In order
to avoid collisions between exogenous walking humans and these
obstacles, patterns delimiting them are empty of inputs or outputs.
Indeed, a patch with an output at an obstacle border would result in
an irremediable collision, whilst an input would result in a sudden
apparition of a human through the wall.

One-way Patterns. One-way patterns are exclusively composed
of inputs or outputs. When correctly combined in a patch, they
allow to simulate, for example, one-way flows of walking humans.

Specific I/O Space Distribution. It is possible to limit the
range of input and output positions in space on a given pattern. This
allows to simulate the presence of a narrow passage, such as a door,
between two patches for instance, or to simulate crowded streets of
walking humans forming lanes.

Specific I/O Time Distribution. Users may want pedestrians
to enter or exit patches irregularly in time. For instance, at zebra
crossings, pedestrians leave sidewalks when the walk sign is green,
and have to reach the opposite sidewalk before the light switches to
red. Such temporal conditions can be respected by constraining the
patterns’ inputs and outputs in time instead of randomly selecting
them within the period π.

In conclusion, we have introduced the concepts of patch templates
and pattern types. A template provides control over the environ-
ment content by inserting various objects, static or moving, accord-
ing to the designers’ will. Pattern types gives control on the flows
of walking humans. Templates and types are user-defined. In Sec-
tion 6, we put these concepts into practice and present our results.

6 Applications and Results

In this Section, we illustrate the concept of crowd patches with two
applications. First, we procedurally generate a potentially infinite
pedestrian street, populated with a bottom-up approach. Second,
we use a pre-computed city environment complemented with a tem-
plate map to populate it. Finally, we analyze the performances ob-
tained for the patch generation and the online simulation.

6.1 Applications

Bottom-Up Approach. The main advantage of a bottom-up ap-
proach is that environments are procedurally generated at run-time
and can grow in unexpected ways. We illustrate this approach here
with a simple example: a potentially infinite pedestrian street, pro-
cedurally generated at run-time with a rule-based algorithm. The

infinite deployment of this street is demonstrated in the companion
video and in Figure 1 (left).

To use crowd patches in a bottom-up approach, several steps have
to be followed in a pre-process. First of all, we design a library of
static obstacles: streetlights, trash cans, trees, city maps, benches,
etc. These static objects are illustrated in Figure 6 (left). Secondly,
endogenous objects, like humans talking together, playing children,
or seated people, are created (Figure 6 (center)). In a third step,
the required pattern types are identified: an endless street requires
among others, empty patterns for building borders, and specific I/O
space distributions to simulate lane formations in highly crowded
portions of the street. For each identified pattern type, we then
generate various patterns. Note that the set of patterns does not
need to be exhaustive; if a pattern is missing, it can be generated at
run-time. However, the smaller the number of patches/patterns to
generate online, the faster the simulation. Various pattern examples
are illustrated on the right of Figure 6. Similarly to pattern types,
patch templates are identified according to the sort of environment
to generate online. A first non-exhaustive set of patches for each
template is created too, using the pattern library. Some of these
patches are shown in the bottom of Figure 6. Finally, to further vary
the patch content, we also define an additional set of grounds, or
textures that can be applied on a patch: cobblestones, grass, asphalt,
etc. The resulting variety is visible in the video and Figure 1.

At run-time, patches are introduced in the scene wherever the cam-
era is looking. Specific patches are first looked for in the existing
library. If no patch matches the requirements, it is generated on-
the-fly. If the patch generation requires a specific pattern that has
not yet been created, it is also created online. A second important
step at run-time is to update each pedestrian on its trajectory. When
a human reaches a patch border, we seamlessly make it move to
the neighbor patch. To efficiently achieve this, each trajectory pos-
sesses a parameter pointing to the neighbor trajectory that should
be followed next.

Figure 6: To build a lively pedestrian street, we use (left) static
obst., (center) endogenous obst., and (right) specific patterns. (Bot-
tom) From these sets, we first define several patch templates. Fi-
nally, each template is instantiated to result in a variety of patches.

Top-down approach. A major advantage of pre-defined environ-
ments is the possibility to pre-compute many elements and dedi-
cate the resources spared in this way for run-time rendering and
animation of pedestrians. Our second example, illustrated in Fig-
ure 1 (right) and in the companion video, is a large city whose ge-
ometry has been previously designed, along with a template map to
assist the populating process.

In such a case, the whole set of patches can be computed offline.
Based on the template map, each patch is consecutively generated,
along with the required patterns. Note that in the case of a city, we
typically require patterns of all types to simulate streets, building
entries, public places, etc. Once the full map has been computed,
the run-time execution can start. Since everything is pre-computed,
the user can move in the whole city and observe the pedestrians
evolving everywhere. At each time step, the remaining work is
reduced to pedestrians’ animation, navigation, and rendering. We
further detail the achieved performances in the next Section.

6.2 Results

The performance tests and the video have all been performed on a
desktop PC with a dual core 2.4GHz, 2GB of RAM, and an Nvidia
Geforce 8800 GTX. We have instantiated 6 different human tem-
plates, rendered with a level-of-detail approach, ranging from about
6,000 to 1,000 triangles. They are animated with a motion cap-
ture database. Shadows are computed on the environment and the
humans. In our implementation, the computation of a patch takes
approximately 60ms. This number fits perfectly to real-time pro-
cedurally generated environments, given that a first non-exhaustive
library of patches has been pre-computed.

The infinite street environment has been built with one template
patch, and a total amount of 10 patterns only, of empty, space-
constrained, and random types. The patterns all have a period of
10s and an 8m length . The average number of visible patches
in front of the camera is 500, 75% of which are buildings with
2 entrances where people come in and out. The remaining visi-
ble patches represent the street and its crossings. There are ap-
proximately 750 visible walking humans at all times (exogenous
objects), 30 idle humans representing endogenous objects, and 80
static objects, such as benches, or streetlights. On average, we ob-
tain 30 frames per second, including the rendering of the humans
and the environment. The frame rate is relatively constant over the
whole progression on the street, since the number of patches and
humans which are computed and displayed remains the same. As
illustrated in the video, the result is impressively varied, given that
we have used 10 patterns only. In Table 1, we show the variation
of the frame rate for the simulation only (rendering is deactivated),
when the number of patches to update is modified.

of displayed # of displayed average
patches humans frame rate

1 1-5 275-285
45 67-93 140-155

103 144-206 135-140
206 372-420 130-135
411 586-634 110-120
810 1185-1240 95-105
1845 2596-2693 40-45
3772 3572-3725 30-35

Table 1: Frame rate evolution (without rendering) for a varying
number of patches to simulate.

The city environment was pre-computed with 20 different patterns
of a 10s period and an 8m length. All the types introduced in Sec-
tion 5.3 were represented. The template map that was used has
a size of 32x32 pixels, each representing one patch. We used 4
patch templates (city place, street, building entrance, public park).
Open spaces represent 25% of this map. We have simulated ap-
proximately 2,500 exogenous humans, 180 endogenous humans,
and 300 static objects at 20fps (including rendering). In this case,

the trajectories have all been pre-computed. The obtained frame
rate is thus limited by the rendering of the whole city and its citi-
zens, rather than the simulation itself, which only takes 5-10% of
the resources. With this second example, we confirm that a small
number of patterns can already bring a great variety of trajectories
to the environment.

7 Conclusion, Discussion and Future Works

We presented a method for populating large-scale interactive vir-
tual environments with walking and idle humans, as well as ani-
mated and static objects. The key-idea of our solution is to build
environments from a set of blocks, the crowd patches, that describe
periodic motion for a small local population, as well as other en-
vironment details. Periodicity in time allows endless replay. Our
solution provides an advantageous trade-off between memory us-
age, computation needs, and motion quality. Crowd patches allow
to handle large-scale environments and to densely populate them
with believable motions. Our method also provides a solution for
designing environments from sets of templates. Our approach has
some limitations. However, there are solutions to alleviate them, as
discussed in the following paragraphs.

Time Period. Patches and patterns have a user-defined period.
Contiguous patches need to have an identical period to be con-
nected. As a result, a limitation of our solution is the need for an
identical period for all interconnected patches. Changing the period
is easy when dealing with exogenous objects, as we proposed an
automatic technique for computing their periodic animation. How-
ever, endogenous objects may have hand-designed animation, mak-
ing the change of period duration more difficult.

Static Patches. Patches are created once at a given place: the
overall distribution of the population in the environment is thus
static in time. As a result, it is not possible to synthesize dynamic
events, such as a small demonstration of people going through the
environment. Also, due to the finality of the patches’ layout, no
goal-directed navigation can be achieved for a human instance: by
following a specific pedestrian, a spectator may observe some in-
coherent navigation (roaming or going nowhere). To solve these
limitations, an interesting direction for future work would be to al-
low dynamic changes of patterns and patches.

Variety in Space and Time. If users’ point of view remains static
for a long period of time, the animation periodicity may be detected.
It is possible to make the detection more difficult by generating a
variety of patches from identical patterns, instead of a unique in-
stance. This variety can be obtained by randomizing initial connec-
tions between inputs and outputs at the patch creation stage, whilst
endogenous and static objects remain. It is also possible to imag-
ine further variations when computing trajectories by modifying the
steering method parameters when solving interactions between peo-
ple. However, memory consumption is proportionally increased.
Generating a variety of patches for identical patterns appears to be
the most interesting direction for improving our approach.

Interactivity. As emphasized in the two previous paragraphs,
character motions are precomputed and fixed using crowd patches.
This prevents rich interactivity between the virtual population and
the user. We add subtle details, such as humans looking towards the
camera, that simulate interactivity. However, the pre-computed lo-
comotion trajectories do not account for the presence of spectators.
We propose two future directions to allow interaction between the
users and the virtual population. The first one would be to locally

edit locomotion trajectories in order to account for the presence of
spectators. However, patterns define strict limit conditions for these
trajectories. Managing editing and limit conditions would then need
special care. A second solution would be to consider that patches
are only used to simulate secondary characters, whereas interactive
digital actors would be added to this background population. Inter-
actions between digital actors and secondary characters would also
need careful management.

Improving Motion Quality. Exogenous trajectories for walking
humans are computed using a particle-based simulation. Such a
technique is advantageous, because it very efficiently computes tra-
jectories that remain reasonably believable. Recently, Kwon and
colleagues [2008] proposed a solution to edit the motion of groups.
To further improve our results quality, we could automate and use
such editing techniques to compute trajectories inside patches and
combine them with small group motions. As space and time edit-
ing is achievable with Kwon’s approach, group trajectories can be
adapted in order to meet limit conditions imposed by patterns.

In conclusion, crowd patches have several paramount advantages.
We ease the design process for virtual populations using a library of
patch templates. Secondly, we make it possible to use time consum-
ing animation techniques, as motions are pre-computed and stored.
In the case of environments and patches generated on-line in real-
time, our solution is more efficient than a complete crowd simu-
lation. Finally, we allow the handling of large-scale environments
and populations by drastically lowering the need for computation
resources dedicated to simulation. Another major advantage of our
approach is the ability to guarantee simulation content: trajecto-
ries are fully solved once patches are computed, and the resulting
animation is reproducible: risks of deadlock situations or other arti-
facts are eradicated, and the simulation can be subtly locally edited
(e.g., by replacing some patches) at some given places without any
impact on the remaining parts of the environment. Some drawbacks
relative to the repetition of precomputed motions have been pointed
out in the previous paragraphs. However, several tracks have been
proposed to alleviate these limitations.

Acknowledgements

The authors would like to thank Mireille Clavien for her excep-
tional designing work. Special thanks to Marc Christie for fruitful
discussions and valuable comments. Thanks to Helena Grillon and
Benoı̂t Le Callennec for proof-reading this paper. This research is
sponsored by the Swiss National Research Foundation.

References

DOBBYN, S., HAMILL, J., O’CONOR, K., AND O’SULLIVAN, C.
2005. Geopostors: A real-time geometry/impostor crowd ren-
dering system. In I3D’05: Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, 95–102.

HAMILL, J., AND O’SULLIVAN, C. 2003. Virtual Dublin a frame-
work for real-time urban simulation. Journal of WSCG 11, 1.

HELBING, D., BUZNA, L., JOHANSSON, A., AND WERNER, T.
2005. Self-organized pedestrian crowd dynamics: experiments,
simulations and design solutions. Transportation science, 1–24.

KWON, T., LEE, K. H., LEE, J., AND TAKAHASHI, S. 2008.
Group motion editing. In SIGGRAPH ’08: ACM SIGGRAPH
2008 papers, 1–8.

LAMARCHE, F., AND DONIKIAN, S. 2004. Crowds of virtual
humans : a new approach for real time navigation in complex and

structured environments. Eurographics’04: Computer Graphics
Forum 23, 3 (September), 509–518.

LEE, K. H., CHOI, M. G., AND LEE, J. 2006. Motion patches:
building blocks for virtual environments annotated with motion
data. In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, 898–
906.

LEE, K. H., CHOI, M. G., HONG, Q., AND LEE, J. 2007.
Group behavior from video: a data-driven approach to crowd
simulation. In SCA ’07: Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
109–118.

LERNER, A., CHRYSANTHOU, Y., AND LISCHINSKI, D. Crowds
by example. Eurographics’07: Computer Graphics Forum 26,
3.

LOSCOS, C., MARCHAL, D., AND MEYER, A. 2003. Intuitive
crowd behaviour in dense urban environments using local laws.
In TPCG ’03: Proceedings of the Theory and Practice of Com-
puter Graphics, 122.

PARIS, S., DONIKIAN, S., AND BONVALET, N. 2006. Envi-
ronmental abstraction and path planning techniques for realistic
crowd simulation. Computer Animation and Virtual Worlds 17,
325–335.

PELECHANO, N., O’BRIEN, K., SILVERMAN, B., AND BADLER,
N. 2005. Crowd simulation incorporating agent psychological
models, roles and communication. First International Workshop
on Crowd Simulation.

PETTRÉ, J., DE HERAS CIECHOMSKI, P., MAÏM, J., YERSIN,
B., LAUMOND, J.-P., AND THALMANN, D. 2006. Real-time
navigating crowds: scalable simulation and rendering: Research
articles. Computer Animation and Virtual Worlds 17, 34, 445–
455.

REYNOLDS, C. W. 1987. Flocks, herds, and schools: A distributed
behavioral model. In Computer Graphics (SIGGRAPH ’87 Pro-
ceedings), M. C. Stone, Ed., vol. 21, 25–34.

SHAO, W., AND TERZOPOULOS, D. 2005. Autonomous pedes-
trians. In SCA ’05: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, 19–
28.

SUD, A., ANDERSEN, E., CURTIS, S., LIN, M., AND MANOCHA,
D. 2007. Real-time path planning for virtual agents in dynamic
environments. Proceedings of IEEE VR, 91–98.

TECCHIA, F., LOSCOS, C., AND CHRYSANTHOU, Y. 2002.
Image-based crowd rendering. IEEE Computer Graphics and
Applications 22, 2, 36–43.

TREUILLE, A., COOPER, S., AND POPOVIC, Z. 2006. Continuum
crowds.

ULICNY, B., DE HERAS CIECHOMSKI, P., AND THALMANN, D.
2005. Crowdbrush: interactive authoring of real-time crowd
scenes. In ACM SIGGRAPH ’05: ACM SIGGRAPH 2005
Courses.

VAN DEN BERG, J., PATIL, S., SEWALL, J., MANOCHA, D., AND
LIN, M. 2008. Interactive navigation of individual agents in
crowded environments. Symposium on Interactive 3D Graphics
and Games (I3D).

YERSIN, B., MAÏM, J., AND THALMANN, D. 2008. Real-time
crowd motion planning: Scalable avoidance and group behavior.
The Visual Computer 24, 10, 859–870.

