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A Computable Fourier Condition Generating
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Abstract—We propose a Fourier analytical condition linking
alias-free sampling with the Fourier transform of the indicator
function defined on the given frequency support. Our discussions
center around how to develop practical computation algorithms
based on the proposed analytical condition. We address several is-
sues along this line, including the derivation of simple closed-form
expressions for the Fourier transforms of the indicator functions
defined on arbitrary polygonal and polyhedral domains; a com-
plete and nonredundant enumeration of all quantized sampling
lattices via the Hermite normal forms of integer matrices; and a
quantitative analysis of the approximation of the original infinite
Fourier condition by using finite computations. Combining these
results, we propose a computational testing procedure thatcan
efficiently search for the optimal alias-free sampling lattices for a
given polygonal or polyhedral shaped frequency domain. Several
examples are presented to show the potential of the proposed
algorithm in multidimensional filter bank design, as well as in
applications involving the design of efficient sampling patterns
for multidimensional bandlimited signals.

Index Terms—densest sampling, critical sampling, packing,
tiling, maximal decimation, optimal sampling, nonredundant
filter banks, Fourier transforms of indicator functions, Poisson
summation formula, divergence theorem.

I. I NTRODUCTION

The classical Whittaker-Shannon-Kotelnikov sampling the-
orem [1], [2] states that a one-dimensional bandlimited signal
can be exactly reconstructed from its uniform samples if the
sampling rate is beyond the Nyquist rate. The situation is
similar in multidimensional cases [3]. In general, the effect of
the uniform sampling process in the frequency domain is that
the spectrum of the original bandlimited signal gets replicated
over a lattice whose density is inversely proportional to the
sampling density. If the shifted copies of the spectrum do not
overlap with the baseband, then we have analias-free sam-
pling; consequently, the original signal can be reconstructed
from its sampled version by applying an ideal interpolation
filter whose passband is supported on the baseband.
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The search for alias-free sampling lattices for a given
frequency support, and in particular for those lattices achiev-
ing minimum sampling densities, is a fundamental issue in
various signal processing applications that involve the design
of efficient acquisition schemes for bandlimited signals. Some
examples include image and video processing [4], volume
sampling in computer graphics [5], Fourier imaging, and
the distributed sensing of various physical phenomena [6]–
[8]. As a special case of alias-free sampling, the concept of
critical sampling also plays an important role in the theory
and design of critically sampled (a.k.a. maximally decimated)
multidimensional filter banks [9]–[11].

The study of optimal sampling lattices is a classical problem
[3], [12]. Earlier efforts often focus on cases when the sig-
nals are bandlimited to spherical regions (the sphere packing
problem [13]), or to some particular regions relevant to certain
target applications (e.g.[7], [8]). It remains a challenging open
problem as to whether one can find a general and systematic
approach determining the optimal alias-free sampling lattices
for an arbitrary frequency support in multiple dimensions.On a
broader scale, alias-free sampling is mathematically equivalent
to the lattice packing of a given domain, for which lots of stud-
ies can be found in disciplines such as computational geometry
and operational research. So far, most practical algorithms
proposed for densest lattice packing (e.g.[14]–[16]) approach
the problem from a geometrical perspective. The primary tools
employed are the theories from Minkowski’s work [13], as
well as various geometrical intuitions and heuristics obtained
for particular domains in lower dimensions.

Instead of adopting the usual geometrical viewpoint, we
propose in this paper a Fourier analytical approach to the
problem of alias-free sampling (i.e. packing). Central to this
approach is a novel condition linking the alias-free sampling
with the Fourier transform of the indicator function defined
on the underlying frequency support (see Theorem 1). An
important feature of the proposed condition is that it opensthe
door to purely analytical and computational solutions to our
sampling lattice selection problem. Compared with geometry-
based methods, the proposed analytical approach can be
potentially advantageous in situations when the underlying
frequency regions have complicated nonconvex shapes, or in
higher dimensions, where it is increasingly difficult to invoke
geometrical intuitions.

A conceptually similar idea of using the indicator functions
to study lattice tiling was proposed by Kolountzakis and
Lagarias [17], [18]. Our work can be viewed as an extension
of this early mathematical work to the more general lattice
packing case, with specific engineering applications in signal
sampling. Our extensions, however, provide fundamental new
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results in the following directions.
First, the practical applicability of the proposed Fouriercon-

dition depends on whether one can easily calculate the Fourier
transforms of the indicator functions. Therefore, we study
the computation of these Fourier transforms in Section IV.
Using the divergence theorem, we derive simple closed-form
expressions for situations when the frequency support regions
are arbitrary polygonal and polyhedral domains in 2-D and 3-
D (see Propositions 3 and 4), either convex or nonconvex. The
proposed results can also be generalized to higher dimensional
cases involvingN -D polytopes.

Next, we discuss the quantization of sampling lattices in
Section V. To systematically investigate all possible sampling
geometries, we describe and employ the Hermite normal forms
[19], [20] for integer matrices, which provide a complete
characterization of quantized sampling lattices. We present
a new estimate for the total number of different quantized
lattices of a given density, which can be used to predict the
size of the search space.

We demonstrate the proposed techniques in two possible
signal processing applications. In Section VI, we present a
simple algorithm that can efficiently determine if a given
polytope-shaped frequency partitioning allows for critical sam-
pling. This algorithm can be useful in the design of mul-
tidimensional multirate systems, when one wants to check
whether a certain frequency partitioning can be implemented
by a critically sampled (i.e. nonredundant) filter bank. In
Section VII, we propose an algorithm that, when given a
polytope-shaped frequency domain, can search for the optimal
alias-free sampling lattices among all quantized latticesat a
given quantization scale. Several examples are given to show
the potential of the proposed algorithms. We conclude the
paper in Section VIII.

II. PRELIMINARIES

Notation: Throughout the paper,N represents the dimen-
sion of the signals. Bold face italic letters representN -by-N
matrices (upper case) andN -by-1 vectors (lower case). We
denote by

|M | def
= |detM |

the absolute value of the determinant of a matrixM . The
Fourier transform of a functionf(ω) defined onRN is defined
by

f̂(x) =

∫

RN

f(ω) e−2πj x·ω dω, (1)

where x, ω ∈ R
N are the vectors of spatial and frequency

variables, respectively.1 Calligraphic letters, such asD, repre-
sent bounded and open frequency domains inR

N , with m(D)
denoting the Lebesgue measure (i.e. volume) ofD. Given a
nonsingular matrixM and a vectorτ , we useM(D + τ )
to represent the set of points of the formM (ω + τ ) for
ω ∈ D. Finally, we denote by1D(ω) the indicator function

1Strictly speaking, to obtain the spatial domain functionbf(x) from the
frequency domain functionf(w), one should apply theinverse Fourier
transform in (1). We choose to use theforward Fourier transform here, mainly
for notational conveniences in later parts of this paper. Mathematically, the
two choices are equivalent up to a sign change.

of the domainD, i.e., 1D(ω) = 1 if ω ∈ D and1D(ω) = 0
otherwise.

A. Multidimensional Sampling on Lattices

In multidimensional multirate signal processing, the sam-
pling operations are usually defined on lattices, each of which
can be generated by anN × N nonsingular matrixM as

ΛM
def
= {Mn : n ∈ Z

N}. (2)

We denote byΛ∗
M the corresponding reciprocal lattice (a.k.a.

polar lattice), defined as

Λ∗
M

def
= {M−T ℓ : ℓ ∈ Z

N} (3)

In the rest of the paper, when it is clear from the context what
the generating matrix is, we will drop the subscripts inΛM

andΛ∗
M , and useΛ andΛ∗ for simplicity.

For anM -fold sampling, the input continuous signalf(x)
and the output discrete signals[n] are related bys[n] =
f(Mn). Supposef(x) is bandlimited, and its frequency
region of support is a bounded open setD ⊂ R

N . Then the
discrete-time Fourier transform of the sampless[n], defined
asS(ω) =

∑
n∈ZN s[n] e−2πj ω·n, is supported in [9]–[11]

S = MT

(
⋃

k∈Λ∗

(D + k)

)
. (4)

In words, the frequency supportS of the discrete samples can
be obtained by first taking the union of the basebandD and
all of its shifted copies (i.e. aliasing components), and then
applying a linear mappingMT .

B. Alias-Free Sampling and Critical Sampling

For appropriately chosen sampling lattices, the aliasing
components in (4) do not overlap with the baseband frequency
support D. In this important case, we can fully recover
the original continuous signalf(x) by applying an ideal
interpolation filter spectrally supported onD to the discrete
sampless[n].

Definition 1: We say a frequency supportD allows analias-
free M -fold sampling, if different shifted copies ofD in (4)
are disjoint,i.e.,

D ∩ (D + k) = ∅ for all k ∈ Λ∗ \ {0} . (5)

Furthermore, we sayD can becritically sampledby M , if
in addition to the alias-free condition in (5), the union of the
shifted copies also covers the entire spectrum,i.e.,

⋃

k∈Λ∗

(D + k) = R
N , up to a set of measure zero.2 (6)

The density of a sampling latticeΛM is defined asρM =
1/|M |, which is the number of samples retained per unit
volume. Note that for a given frequency supportD, there exist
infinitely many lattices that can achieve alias-free sampling for
D; thus, it is possible to reduce the sampling density, while still
remain alias-free, through a judicious choice of the sampling

2This technicality is due to the assumption that the frequency region of
supportD is an open set.
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geometry. We call those alias-free sampling lattices achieving
minimum sampling density the optimal sampling lattices. Our
main focus in this paper is to propose a Fourier analytical
condition and a corresponding computational procedure that
can systematically search for the optimal sampling lattices for
a givenD.

Before proceeding, we make some further remarks on the
scope of this paper. First, we restrict our attention to the
scenario in which the continuous signals are sampled on a
single lattice. Consequently, the minimum sampling rate we
pursue is the Nyquist rate, which is achieved by those lattices
that can pack the frequency supportD in the tightest way.
We note that it is possible to go below the Nyquist rate if we
can sample the continuous signals with multiple channels and
on multiple lattices (see,e.g., [21], [22]). This more general
sampling setup is left for future work. Second, in various
Fourier imaging modalities (such as MRI), the measurements
we obtain are samples of the Fourier transform of some
object. The goal, therefore, is to reconstruct the spatial domain
function from its Fourier samples, which is the exact dual of
the sampling setup considered in this paper. Therefore, if the
spatial support of the object is known, our results on optimal
sampling lattices can be directly applied to this problem.

III. A LIAS-FREE SAMPLING USING FOURIER TECHNIQUES

In this section, we study the problems of alias-free sampling
and critical sampling with Fourier techniques. The key obser-
vation is a link between the alias-free sampling condition and
the Fourier transform of the indicator function1D(ω) defined
on the frequency supportD.

A. A Fourier Analytical Condition for Alias-Free Sampling

As the first step to linking the alias-free sampling problem
with Fourier analysis, we consider the autocorrelation function

RD(ω) =

∫
1D(τ ) 1D(τ − ω) dτ ,

and define
AD,M

def
=

∑

k∈Λ∗\{0}
RD(k). (7)

SinceRD(ω) measures the volume of intersection betweenD
and D + ω, i.e., RD(ω) = m(D ∩ (D + ω)), the quantity
AD,M defined above can be interpreted as the total volume of
overlapping regions between the original baseband supportD
and all its aliasing components in (4).

Lemma 1:A frequency regionD allows anM -fold alias-
free samplingif and only if AD,M = 0.

Proof: By construction,RD(ω) ≥ 0 for all ω; thus
AD,M = 0 if and only if the volume of intersectionRD(k) =
0 for all k ∈ Λ∗ \ {0}, which is the same as having the alias-
free condition given in (5).

Theorem 1:A frequency regionD allows anM -fold alias-
free samplingif and only if

|M |
∑

n∈Λ

|1̂D(n)|2 = m(D), (8)

where1̂D(x) is the Fourier transform of1D(ω).

Proof: From the definition ofRD(ω), its Fourier trans-
form is R̂D(x) = |1̂D(x)|2. Applying the Poisson summation
formula (see Appendix A for a justification for the pointwise
equality), we have

∑

k∈Λ∗

RD(k) = |M |
∑

n∈Λ

R̂D(n) = |M |
∑

n∈Λ

|1̂D(n)|2.

The overlapping termAD,M defined in (7) can then be
calculated as

AD,M =
∑

k∈Λ∗

RD(k) − RD(0)

= |M |
∑

n∈Λ

|1̂D(n)|2 − m(D),
(9)

where in reaching the second equality we have also used the
fact thatRD(0) = m(D). By applying Lemma 1, we are done.

Remark:The “only if” direction of Theorem 1 can also
be formally established as the consequence of a standard
condition for orthogonal functions (see, for example, [23,p.
132]), which states that a set of functions{f(ω − k)}k∈Λ∗

are mutually orthogonal inL2(RN ) if and only if

|M |
∑

n∈Λ

|f̂(x + n)|2 = ‖f‖2
L2 for almost everyx. (10)

The alias-free sampling condition defined in (5) means that
{1D(ω − k)}k∈Λ∗ constitutes an orthogonal set of functions
in L2(RN ). Therefore, by applying the characterization (10)
to 1D(ω), we get the formula (8) of Theorem 1. A catch in
this derivation though is that (10) holds only foralmostevery
x, whereas in Theorem 1 we want to be able to evaluate the
sum at a specific pointx = 0. We justify the validity of the
pointwise equality in Appendix A.

From Theorem 1, we can obtain an equivalent testing
condition for alias-free sampling as described below.

Proposition 1: A frequency regionD allows an M -fold
alias-free samplingif and only if

|M |
∑

n∈Λ,‖n‖∞≤r

|1̂D(n)|2 ≤ m(D), for all r > 0, (11)

where‖n‖∞ def
= max(|n1|, . . . , |nN |) is the infinity norm.

Proof: The necessity of (11) follows immediately from
Theorem 1. For the sufficiency, assume (11) holds. Then the
left hand side of (8) is less than or equal to the right hand
side (just by lettingr → +∞). On the other hand, because by
constructionAD,M is always nonnegative, we can obtain from
(9) that |M | ∑n∈Λ|1̂D(n)|2 ≥ m(D), and thus the equality
holds in (8). It then follows from Theorem 1 thatD allows
for an M -fold alias-free sampling.

Compared with theinfinite sum in Theorem 1, the new
condition in Proposition 1 is often more useful for practical
computational procedures. This is because, for any given
r > 0, the condition (11) only involves afinite sum of
|1̂D(x)|2, which can be easily computed and serves as a
necessary condition for alias-free sampling. We will come
back to this point in more details in Sections VI and VII.

As an immediate application of Proposition 1, we can get
the following well-known lower bound on sampling density,
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which is usually proved by geometrical arguments in the
literature.

Corollary 1 (Lower bound on sampling density):If D al-
lows anM -fold alias-free sampling, then the sampling density
ρM satisfies

ρM =
1

|M | ≥ m(D). (12)

Proof: From (11), we have

m(D)

|M | ≥ |1̂D(0)|2 =

(∫

RN

1D(ω) dω

)2

= m(D)2,

and hence (12).

B. A Fourier Analytical Condition for Critical Sampling

Here we focus on the special case of critical sampling, and
begin by mentioning, without proof, a standard result:

Lemma 2:A frequency supportD can be critically sampled
by a sampling matrixM if and only if M is an alias-free
sampling matrix forD with sampling density1/|M | = m(D).

Combining Theorem 1 and Lemma 2, we can obtain a
simpler set of conditions for the special case of critical
sampling as follows.

Proposition 2: A frequency supportD can be critically
sampled by a matrixM if and only if

1̂D(0) = m(D) =
1

|M | and

1̂D(n) = 0 for all n ∈ Λ \ {0}.
(13)

Proof: Suppose (13) holds. Then it follows that
∑

n∈Λ

|1̂D(n)|2 = |1̂D(0)|2 =
m(D)

|M | ,

and hence from Theorem 1,M is an alias-free sampling
matrix for D. Meanwhile, sincem(D) = 1

|M | , we can apply
Lemma 2 to conclude thatD is critically sampled byM . By
reversing the above line of reasoning, we can also show the
necessity of (13).

Remark:The result of Proposition 2 is previously known
in various disciplines. In approximation theory, the condition
(13) is often called the interpolation property, which is satisfied
by the Fourier transform of the indicator function defined on
any fundamental cell of a lattice (see, for example, [12], [24]).
The usefulness of this condition in the context of lattice tiling
was first pointed out by Kolountzakis and Lagarias [17] and
applied to investigate the tiling of various high dimensional
shapes [18].

Example 1:Figure 1(a) shows the ideal frequency partition-
ing of a three-level directional filter bank [25], [26], which
divides the 2-D discrete spectrum[− 1

2 , 1
2 ]2 into 8 wedge-

shaped subbands. How do we verify that each subband can be
critically sampled, but without using geometry (i.e. drawing
figures)? According to Proposition 2, for each subbandD, we
just need to calculatê1D(x), and try to find a matrixM such
that (13) holds. For instance, consider the subband marked as
the dark region in Figure 1(a). We can work out an expression
for 1̂D(x) as follows

1̂D(x) =
1 − cos(πx2 − πx1

2 )

π2x1(2x2 − x1)
− 1 − cos(πx2 − πx1)

2π2x1(x2 − x1)
. (14)

0
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Fig. 1. (a) The ideal frequency partitioning of a three-level directional filter
bank. (b) The values ofb1D(x) evaluated at integer points, withD being the
dark region shown in (a). Black dots represent zero values and white dots
represent nonzero values.

Evaluating 1̂D(x) at integer pointsn = (n1, n2) for
0 ≤ n1 ≤ 12 and|n2| ≤ 6, we show the results in Figure 1(b),
where each dot represents an integer point, and black dots
indicate those locations wherê1D(n1, n2) = 0. We can
observe that the zero set (black dots) contains, as a subset,
{Mn : 0 ≤ n1 ≤ 3, |n2| ≤ 3} \ {0}, whereM = diag(4, 2)
is a diagonal matrix whose determinant is equal to1/m(D).
Substitutingx1 = 4n1, x2 = 2n2 into (14), we can verify that
1̂D(Mn) = 1̂D(4n1, 2n2) = 0 for all integer vectorsn 6= 0.
Therefore, the condition (13) in Proposition 2 is satisfied,and
henceD can indeed be critically sampled byM .

We can see from the above example that Proposition 2
provides a purely computational way to determine if a given
frequency support allows for critical sampling, and if yes,
what the sampling matrices are. However, to develop practical
computational algorithms based on this result (as well as on
Proposition 1 for alias-free sampling), we must overcome three
issues as listed below.

1) As a prerequisite to using the Fourier conditions in (11)
and (13), we must know the expression for1̂D(x). This
can be a cumbersome task if we need to do the derivation
by hand for each givenD. We address this problem
in the next section by presenting simple closed-form
expressions for̂1D(x) whenD are arbitrary polygonal
and polyhedral domains.

2) To systematically and efficiently search for the optimal
sampling lattices, we study in Section V acomplete
andnonredundantenumeration of all possible sampling
geometries.

3) In practical implementations, we can only compute the
values of 1̂D(x) at a finite number of lattice points,
whereas the Fourier conditions in (11) and (13) in-
volve an infinite number of points. We present in Sec-
tion VII-B a quantitative analysis on the effect of the
approximation due to finite computation, for the case
of 2-D polygonal domains. The result of the analysis
is useful in determining how many points we need to
compute to achieve a given precision.

IV. T HE FOURIER TRANSFORMS OFINDICATOR

FUNCTIONS

A. The Divergence Theorem

We consider the computation of̂1D(x) in this section.
Suppose the domainD has a piecewise smooth boundary, and
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let F (ω) = (F1(ω), F2(ω), . . . , FN (ω)) be a continuously
differentiable vector field defined onD. The divergence theo-
rem states that∫

D
div F (ω) dω =

∫

∂D
F (ω) · nω dS(ω), (15)

wherediv F (ω)
def
=
∑N

i=1
∂Fi(ω)

∂ωi
is the divergence ofF (ω),

and∂D is the boundary ofD oriented by outward unit normal
vectorsnω.

In this work, we choose the vector-valued function to be
F x(ω) = j x

2π‖x‖2 e−2πj x·ω, wherex 6= 0 is a fixed vector
parameter. We compute

div F x(ω) =

N∑

i=1

∂

∂ωi

(
j xi

2π‖x‖2
e−2πj

P

k xkωk

)

= e−2πj x·ω
N∑

i=1

x2
i

‖x‖2
= e−2πj x·ω,

which is exactly the exponential term used in the Fourier
transform. The divergence theorem (15) then leads to a formula
of Randol [27], namely that

1̂D(x)
def
=

∫

D
e−2πj x·ω dω =

∫

D
div F x(ω) dω

=
j

2π‖x‖2

∫

∂D
e−2πj x·ω (x · nω) dS(ω), (16)

for all x 6= 0. In other words, we can simplify the computation
of 1̂D(x) from an integration on the entire volumeD to one
on the boundary surface∂D.

B. Fourier Transforms of Indicator Functions on Polygonal
Domains

In various practical applications, the domains of frequency
supports of the underlying signals can often be modeled as, or
at least approximated by, polygons in 2-D, polyhedra in 3-D,
and in general, polytopes inN -D. For these types of domain,
the boundary∂D assumes a particularly simple shape (e.g.the
boundary of a polygon is just a finite union of line segments);
consequently, we can work out the integral in (16) and obtain
closed-form expressions for̂1D(x). To see this, we start with
the following proposition for the 2-D polygonal case. A similar
result was first given in [28].

Proposition 3: SupposeD is a polygon with K sides,
whose vertices, when traced clockwise, arep1, p2, . . . , pK .

Also, let pK+1
def
= p1. Then1̂D(0) = m(D); and forx 6= 0,

1̂D(x) =
j

2π‖x‖2

K∑

k=1

dk (x · nk)

sinc
(
x · (pk+1 − pk)

)
e−2πj x·ck ,

(17)

wheresinc(x)
def
= sin(πx)/(πx) is the normalized sinc func-

tion; dk = ‖pk+1 − pk‖ is the length,nk is the outward unit
normal vector, andck = (pk + pk+1)/2 is the center, of the
kth side.

Proof: When x = 0, we have 1̂D(0) =∫
1D(ω) e−2πj 0·ω dω = m(D). In what follows, we

consider the case whenx 6= 0. The boundary∂D consists

of K line segments, denoted byB1, B2, . . . , BK . We let
tk = (pk+1 − pk)/dk be the unit tangent vector ofBk. We
apply (16) to get

1̂D(x) =
j

2π‖x‖2

K∑

k=1

(x · nk)

∫

Bk

e−2πj x·ω dS(ω)

=
j

2π‖x‖2

K∑

k=1

(x · nk)

∫ dk/2

−dk/2

e−2πj x·(ck+tkv) dv

=
j

2π‖x‖2

K∑

k=1

(x · nk)
sin(πdk x · tk)

π x · tk
e−2πj x·ck ,

which is equivalent to (17) after replacingtk with its corre-
sponding expression.

Many applications deal with real-valued signals, for which
the domains of frequency supports are always symmetric with
respect to the origin. We can easily verify the following
corollary, which employs the symmetry of the domain and
calculateŝ1D(x) using only half of the vertices.

Corollary 2: Suppose the domainD is a disjoint union of
a polygonD1 and its symmetric copy(−D1), i.e., D = D1 ∪
−D1 andD1∩−D1 = ∅. Meanwhile, supposeD1 hasK sides
whose vertices are as in Proposition 3. Then for allx 6= 0,

1̂D(x) =
1

π‖x‖2

K∑

k=1

dk (x · nk)

sinc
(
x · (pk+1 − pk)

)
sin
(
πx · (pk+1 + pk)

)
,

(18)

wheredk andnk are the length and outward unit normal vector
of the kth side, respectively.

Example 2:Let D be the wedge-shaped frequency support
shown in Figure 2. It is a centrally symmetric domain, whose
upper half is a triangle with verticesp1 = (− 1

2 , 1
2 )T , p2 =

(− 1
4 , 1

2 )T , andp3 at the origin. In Example 1, we have shown
an expression for̂1D(x) derived by hand. Here, we achieve the
same goal by applying Corollary 2. From the coordinates of
the vertices, we can calculate the length and unit normal vector
on each of the three sides asd1 = 1

4 , d2 =
√

5
4 , d3 =

√
2

2 ;
and n1 = (0, 1)T , n2 = ( 2√

5
, 1√

5
)T , n3 = (−

√
2

2 ,−
√

2
2 )T .

Inserting these parameters into (18) leads to

π‖x‖2
1̂D(x) =

x2

4
sin

π(4x2 − 3x1)

4
sinc

x1

4

+
2x1 + x2

4
sin

π(2x2 − x1)

4
sinc

2x2 − x1

4

+
x1 + x2

2
sin

π(x1 − x2)

2
sinc

x1 − x2

2
.

(19)

After some manipulation, we can verify that (19) is equivalent
to the expression given in (14).

C. Higher Dimensional Cases: Polyhedron and Polytope Do-
mains

We can generalize the previous results to higher dimensional
cases when the domainD is a polyhedron in 3-D or a polytope
in N -D. For example, whenD is a polyhedron, its boundary
is a finite union of 2-D polygons, the integration on which has
been solved by Proposition 3. Thus, by combining (16) and
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p1 p2

p3 = 0

n1

n2

n3

Fig. 2. A centrally symmetric frequency domainD, whose vertices are
p1 = (− 1

2
, 1

2
)T , p2 = (− 1

4
, 1

2
)T , andp3 = 0.

(17) in Proposition 3, we can get the following result, whose
proof is omitted.

Proposition 4: SupposeD is a polyhedron withK facets.
The kth facet is an Lk-sided polygon, whose vertices,
when traced clockwise, are denoted bypk

1 , pk
2 , . . . , pk

Lk
. Then

1̂D(0) = m(D); and forx 6= 0,

1̂D(x) =
−1

‖2πx‖2

K∑

k=1

x · nk

‖x‖2 − |x · nk|2
Lk∑

ℓ=1

(x · vk
ℓ )

sinc
(
x · (pk

ℓ+1 − pk
ℓ )
)

e−2πj x·ck
ℓ ,

(20)

wherenk is the outward unit normal vector of thekth facet,
vk

ℓ = nk×(pk
ℓ+1−pk

ℓ ), andck
ℓ = (pk

ℓ +pk
ℓ+1)/2 is the center

of the ℓth side on thekth facet.
Remark:In general, the boundary facets of anN -D polytope

are just a finite union of(N − 1)-D polytopes; hence, one
can calculatê1D(x) on arbitraryN -D polytope domains by
recursively applying (16) and the previous results for the
(N−1)-D case. Due to space limitations, we omit here further
details of this generalization.

V. ENUMERATION OF QUANTIZED SAMPLING LATTICES

Another important ingredient of the proposed Fourier con-
ditions in Section III is the sampling lattice. In this section, we
discuss the characterization and enumeration of all (quantized)
sampling lattices, and the results will be used to define the
search space of the computational procedures proposed in the
following sections.

A. Quantization of Lattices

In principle, the sampling lattices can be generated by any
nonsingular matrixM with real-valuedentries. In this paper,
however, we focus our attention to matrices of the following
form:

M =
P

q
, (21)

where P is an integer-valuedmatrix, and q ≥ 1 is a
pre-determined quantization scale. In other words, we have
quantized the entries ofM to bepi,j/q, with pi,j ∈ Z.

Notice that, by setting the quantization scaleq = 1,
the above model includes discrete signal processing as a
special case, where we only use integer sampling lattices. For
continuous signal processing, the quantization in (21) is still
a reasonable simplification, since any real-valued sampling

matrix can be well-approximated by the quantized matrices in
(21) whenq is large enough. Meanwhile, due to constraints in
hardware precision, the sampling locations in practical systems
are often quantized anyway. As we will see in the discussions
below, the main advantage of considering this quantized model
is to reduce the search space of sampling lattices to a finite
set.

B. The Hermite Normal Form and Characterization of Lattices

Given a frequency supportD, we know from Corollary 1
that all suitable matricesM for alias-free sampling ofD must
have|M | ≤ 1/m(D). Correspondingly, the integer matrixP
in (21) must satisfy

|P | ∈
{

1, 2, 3, . . . ,

⌊
qN

m(D)

⌋}
, (22)

where⌊α⌋ is the largest integer less than or equal to a real
number α. Similarly, for critical sampling, we know from
Proposition 2 that

|P | =
qN

m(D)
. (23)

Although infinitely many integer matrices satisfy (22) or (23),
we only need to check a finite number of them, as there
exist only a finite number ofgeometrically distinctlattices
generated by these matrices [20]. To see this, the first step of
our discussions is the following well-known result (see,e.g.,
[4]):

Proposition 5: A frequency supportD allows anM1-fold
alias-free sampling, if and only if it allows anM 2-fold alias-
free sampling, whereM2 = M1 U and U is an arbitrary
unimodular matrix (i.e. an integer matrix with|U | = 1). The
same is true for critical sampling.

The above statements can be easily verified by noting
that the matricesM1 and M 1U always generate the same
sampling lattices. To apply this result, we define the following
binary relation between two matrices: we sayM 1 ∼ M 2 if
M2 = M1 U for some unimodular matrixU . We can verify
that M 1 ∼ M 2 is an equivalence relation, and therefore, the
corresponding equivalence classes form a partition of the set of
all matrices whose determinants have the same absolute value.
Proposition 5 implies that, for each equivalence class, we just
need to pick a representative matrix from that class, and check
if it forms an alias-free sampling (or critical sampling). The
result then carries over to all members in that equivalence
class. The following theorem [19], [20] provides a convenient
class of representative matrices.

Theorem 2 (Hermite normal form):For every matrix of the
form M1 = P /q with P being an integer matrix, there is a
uniquematrix M2 = H/q, such thatM1 ∼ M2 and that
H = [hi,j ]1≤i,j≤N is an integer matrix having the Hermite
normal form, which means

1) H is upper triangular;
2) hN,N > 0 and0 ≤ hi,j < hi,i for 1 ≤ i < j ≤ N .

It follows from Theorem 2 that we only need to consider
sampling matrices of the formM = H/q, whereH is a
Hermite normal matrix. Such matrices provide a complete and
nonredundant enumeration of all possible sampling lattices at a
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quantization levelq. The following procedure, first introduced
to the sampling literature by Cortelazzo and Manduchi [20],
can be used to list the generating matrices of all quantized
sampling lattices (i.e. sublattices of1q Z

N ) at a given density.
Procedure 1 (Enumeration of Hermite normal matrices):

Let the determinantδ be a positive integer.

1) Form a setV =
{
(d1, d2, . . . , dN ) :

∏N
n=1 dn = δ

}
,

wheredn(1 ≤ n ≤ N) are positive integers. Note that
V is always a finite set.

2) For each vector(d1, d2, . . . , dN ) from V , put the corre-
sponding elementsd1, d2, . . . , dN at the main diagonal
of an N -by-N matrix. Select the off-diagonal elements
of the matrix according to the rule thathi,j = 0 for
1 ≤ j < i ≤ N and0 ≤ hi,j < hi,i for 1 ≤ i < j ≤ N .
There are

∏N
i=1 dN−i

i different choices.

For example, whenN = 2 and the determinant is equal to
3, there are a total of four such Hermite normal matrices:
(

1 0
0 3

)
,

(
3 0
0 1

)
,

(
3 1
0 1

)
, and

(
3 2
0 1

)
.

C. Size of the Search Space

In the following sections, we will discuss algorithms that
examine all possible Hermite normal matrices satisfying (22)
and test each of them for alias-free sampling or critical
sampling. It is therefore important to estimate the size of the
search space, which depends on the number of distinct Hermite
normal matrices. In what follows, we useHN (δ) to denote
the total number ofN -by-N Hermite normal matrices with
determinant equal to a positive integerδ.

In 2-D, H2(δ) equals the “divisor function” ofδ (often
written as σ(δ) [29]), which is defined as the sum of all
positive divisors ofδ. To see this, we observe that all 2-by-

2 Hermite matrices have the form

(
a c
0 b

)
, wherea, b are

positive integers withab = δ and0 ≤ c < a. That is, botha
and b are divisors ofδ. Given the divisora, we determineb
from b = m/a, and observe that the number of choices forc
equals exactlya. Summing over all possible divisorsa gives
the total number of Hermite matrices as

∑
a|δ a = σ(δ). For

largeδ, it can be shown that the growth rate ofσ(δ) (i.e. the
total number of 2-by-2 Hermite matrices of determinantδ) is
asymptotic toeγ δ ln ln δ [29], whereγ ≈ 0.577 is the Euler
constant.

For the generalN -D case, we obtain the following estimates
on the total number of Hermite normal matrices, whose proof
is given in Appendix B.

Proposition 6: For N ≥ 2, we have

1 ≤ HN (δ)

δN−1
< 22 δ0.001. (24)

Remark:The termδ0.001 grows very slowly — it is less than
100.1 ≈ 1.259 for δ < 10100 — and can thus be treated as a
small constant from a practical point of view. Consequently,
the estimates in (24) imply thatHN (δ) is essentially equal
to Cδ δN−1 for some bounded quantityCδ. Meanwhile, the
constant factor22 and the exponent0.001 in (24) are not the
only choices. The exponent can be chosen arbitrarily close

to 0; however the corresponding constant must necessarily be
increased towards infinity.

Proposition 6 can be used to predict the size of the search
space of sampling matrices. LetFN (q) denote the total number
of Hermite normal matrices satisfying (22); then it follows
from (24) that

FN (q) ≈ O
(

1 + 2N−1 + 3N−1 + . . . +

(
qN

m(D)

)N−1
)

= O
(
qN2

)
. (25)

We can see thatFN (q) grows rapidly as the quantization
scale q increases. However, since the search for optimal
sampling lattices is usually a design optimization problem
that needs to be carried out only once for each frequency
support shape,FN (q) can still be a feasible number for off-line
computation, especially when we work in lower dimensions
(N = 2, 3) and choose reasonably sized quantization scales.
Moreover, as we will see later, not all candidate sampling
matrices in the search space require the same amount of effort
to check for their suitability for alias-free sampling. In fact, the
majority of the candidate sampling matrices can be eliminated
fairly quickly with only a small amount of computation. We
leave the details to Section VII.

VI. A PPLICATIONS IN NONREDUNDANT FILTER BANKS

We dedicate the remaining part of this paper to two appli-
cations of the proposed theoretical results. In this section we
focus on the special case of critical sampling, and describeits
application in the design of multidimensional critically sam-
pled filter banks. We then deal with the more general problem
of identifying optimal sampling lattices in Section VII.

A. Frequency Partitioning of Critically Sampled Filter Banks

Consider a general multidimensional filter bank, where each
channel contains a subband filter and a sampling operator. As
an important step in filter bank design, we need to specify
the ideal passband support of each subband filter, all of which
form a partitioning of the frequency spectrum. For example,
as shown in Figure 1(a), a 2-D directional filter bank partitions
the spectrum into wedge-shaped subbands.

Not every possible frequency partitioning can be used for
filter bank implementation though. In particular, if we want
to have a nonredundant filter bank, then the ideal passband
support of each subband filter must be critically sampled by
the sampling matrix in that channel. Consequently, whenever
given a possible frequency partitioning, we must first perform
a “reality check” of seeing whether the above condition is met,
before proceeding to actual filter design.3

The critical sampling condition is commonly verified ge-
ometrically (i.e. by drawing figures). Although intuitive and
straightforward, this geometrical approach becomes cumber-
some when the shape of the passband support is complicated,

3In practice, suitable passband supports must also satisfy some additional
“permissibility” conditions [30], which take into accountthe nonideal fre-
quency responses of realistic filters. These further conditions are beyond the
scope of this paper.
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012
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4

5

5

4
ω1

ω2

(a)

0

0

1

1

ω1

ω2

(b)

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

3,3 2,3 1,3 0,3

3,2 2,2 1,2 0,2

2,1 1,1 0,1

3,0 2,0 1,0 0,03,1

ω3

ω1

ω2

(c)

Fig. 3. The ideal frequency partitioning of several filter banks. (a) An alter-
native directional filter bank which decomposes the frequency cell (− 1

2
, 1

2
]2

into 6 subbands. (b) A directional multiresolution frequency partitioning. (c)
A 3-D directional frequency decomposition with pyramid-shaped passband
supports.

or when we work in 3-D and higher dimensional cases where
it is difficult to invoke geometrical intuition. Applying the
result of Proposition 2 and generalizing the ideas presented
in Example 1, we propose in the following a computational
procedure, which can systematically check and determine the
critical sampling matrices of a given polytope region. Notice
that the algorithm only searches among integer matrices,
since the filter banks considered here operate on discrete-time
signals.

Procedure 2 (Critical Sampling):Let D be a given
polytope-shaped frequency support region.

1) Calculateδ = 1/m(D). From (13), any matrixM that
can critically-sampleD must satisfy|M | = δ. If δ is
not an integer, then stop the procedure, since in this case
it is impossible forD to be critically sampled by any
integer matrix.

2) According to the specification ofD, construct the ex-
plicit formula for 1̂D(x) by using the results in Sec-
tion IV.

3) Apply Procedure 1 to construct a list of all Hermite
normal matrices with determinant equal toδ.

4) For every matrixM in the above list, test the following
condition

1̂D(Mn) = 0 for all n ∈ Z
N \ {0} with ‖n‖∞ ≤ r,

(26)
wherer is a large positive integer.

5) Present all the matrices in the list that satisfy (26). If
there is no such matrix, thenD cannot be critically
sampled by any integer matrix.

To be clear, the expression (26) is a necessary condition
for D to be critically sampled byM . It is not sufficient
since we only check for integer points within a finite radius
r, and so in principle, even ifM satisfies (26) for all
‖n‖∞ ≤ r, it might happen that̂1D(Mn) 6= 0 for some
n with ‖n‖∞ > r. However, by choosingr sufficiently
large, we can gain confidence in the validity of the original
infinite condition (13) as required in Proposition 2. We leave
the quantitative analysis of this approximation due to finite
computation to Section VII. In the following examples, we
chooser = 10000, and assume that the issue of numerical
precision in evaluating the equality (26) is negligible.

Example 3:Figure 3(a) presents an alternative way to de-
compose the frequency spectrum into directional subbands:

instead of having8 wedge-shaped subbands as in Figure 1(a),
this new directional filter bank (DFB) generates6 subbands.
Applying the algorithm in Procedure 2, we can easily verify
that this new frequency decomposition can also be critically
sampled. The corresponding sampling matrices, denoted by
Mk for the kth subband, are

M0 = M1 = M 2 =

(
6 3
0 1

)

and

M 3 = M4 = M5 =

(
2 1
0 3

)
.

Example 4:We show in Figure 3(b) a directional and
multiresolution decomposition of the 2-D frequency spectrum
[31], [32]. Applying Procedure 2 confirms that such a fre-
quency partitioning can be critically sampled as well. The
sampling matrices for two representative subbands (marked
as dark regions in the figure) are

M0 =

(
4 0
0 4

)
andM 1 =

(
8 4
0 4

)
.

Example 5:Figure 3(c) shows an extension of the original
2-D DFB to the 3-D case [33], where the ideal passbands of the
component filters are rectangular-based pyramids radiating out
from the origin at different orientations and tiling the entire
frequency space. Unlike the original 2-D DFB, which is a
nonredundant filter bank, the 3-D DFB constructed in [33] is
an oversampled filter bank. A natural question then becomes:
can the 3-D frequency partitioning shown in Figure 3(c)
be critically sampled,i.e., allow for a nonredundant filter
bank implementation? Applying Procedure 2, we find that the
answer is negative; in other words, redundancy is unavoidable
for a 3-D DFB.

B. Critical Sampling of General Cone-Shaped Frequency Re-
gions in Higher Dimensions

The result in Example 5 can be generalized to higher
dimensions, and to cases where the subbands take different
directional shapes. As an application of the Fourier condition
in Proposition 2, we show here a much more general statement:
it is impossible to implement any cone-shaped frequency
partitioning by a nonredundant filter bank, except for the 2-D
case. Though this result seems to be expected [34] in the filter
bank community, to our knowledge, the following is the first
rigorous proof in the literature.

Since we will be discussing generalN -D cases, it is neces-
sary to introduce some algebraic notations. We consider ideal
subband supports of the following “truncated-cone” shape:

D = {(ω1, . . . , ωN ) : a ≤ |ωN | ≤ b, (ω1, . . . , ωN−1) ∈ ωN B}.
(27)

Geometrically,D takes the form of a two-sided cone inRN ,
truncated by hyperplanes|ωN | = a and |ωN | = b, where
0 ≤ a < b. The “base” regionB in (27) is the intersection
between the cone and the hyperplaneωN = 1.

The formulation in (27) is flexible enough to characterize,
up to a rotation, any directional subband shown in Figure 3.
For example, to describe subband-0 in Figure 3(a), we can
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set a = 0, b = 1
2 , and let the baseB = [−1,− 1

3 ]; by
choosinga = 1

8 , b = 1
4 , andB = [− 1

3 , 1
3 ], we obtain subband-

1 in Figure 3(b); similarly, the 3-D pyramid-shaped subband
(1, 1) in Figure 3(c) can be presented bya = 0, b = 1

2 , and
B = [− 1

2 , 0]2. However, the class of frequency shapes that
can be described by (27) is far beyond those mentioned above,
since the formulation (27) allows for arbitrary configuration of
the cross sections heightsa andb (not necessarily the dyadic
decomposition as in Figure 3(b)) and arbitrary shape for the
baseB (not necessarily lines or squares).

Lemma 3: If a frequency supportD can be critically sam-
pled by anintegermatrix M , then

1̂D(|M |n) = 0, for all n ∈ Z
N \ {0}. (28)

Proof: We just need to show that, for any integer matrix
M , the vector |M |n belongs to the latticeΛ generated
by M . Once we have established this claim, then (28) be-
comes a natural consequence of (13) in Proposition 2. By
definition, verifying |M |n ∈ Λ is equivalent to checking
that m = M−1(|M |n) is an integer vector. By writing
M−1 = adj(M )/|M |, where adj(M ) is the adjugate matrix
of M , we getm = adj(M )n. Since both adj(M ) and n

are integer-valued,m is indeed an integer vector.
Theorem 3:For arbitrary choice of0 ≤ a < b and the base

shapeB, the frequency domain supportD given in (27) cannot
be critically sampled by any integer matrix, except for the 2-D
case.

Proof: We have already established the positive result
for 2-D in Examples 1, 3, and 4, where several 2-D cone-
shaped regions have been shown to allow for critical sampling.
Next, we show the negative result in higher dimensional cases
by using contradiction. Suppose forN ≥ 3, and for some
particular choices of0 ≤ a < b and B, the corresponding
frequency regionD in (27) can be critically sampled by an
integer matrixM . It follows from (28) in Lemma 3 that

1̂D(0, . . . , 0, |M |n) = 0, for all n ∈ Z \ {0}. (29)

From the definition ofD, we have

1̂D(0, . . . , 0, x)

=

∫

a≤|ωN |≤b

dωN

(
e−2πj x ωN

∫

ωNB
1 dω1 . . . dωN−1

)

=

∫

a≤|ω|≤b

e−2πj x ω m(ω B) dω

=

∫

a≤|ω|≤b

e−2πj x ω |ω|N−1m(B)

= 2 m(B)

∫ b

a

ωN−1 cos(2πxω) dω.

Using the above formula and after a change of variable, we
can rewrite (29) as

∫ 2π|M |b
2π|M|a ωN−1 cos(n ω) dω = 0, for all

n ∈ Z\{0}, which is impossible whenN ≥ 3 by Appendix C.

VII. F INDING OPTIMAL ALIAS-FREE SAMPLING

LATTICES

A. Algorithm

In this section, we extend Procedure 2 in the previous
section for critical sampling to the more general case of

identifying optimal alias-free sampling lattices for a given
frequency support. Based on the Fourier condition presented
in Proposition 1, we propose the following algorithm.

Procedure 3 (Optimal alias-free sampling lattices):Let D
be a polytope-shaped frequency support region, andq a fixed
quantization scale.

1) Since all suitable sampling lattices must satisfy (22),
we start with the largest possible determinant,i.e., set
δ =

⌊
qN/m(D)

⌋
.

2) Use Procedure 1 to construct a list of all Hermite normal
matrices with determinant equal toδ.

3) For every Hermite normal matrixH in the above list,
let M = H/q and do the following:

a) Run a sequence of tests

|M |
∑

n∈ZN ,‖n‖∞≤r

|1̂D(Mn)|2 ≤ m(D), (30)

where the integer-valued radiusr increases from1
to rmax. Note thatrmax represents the maximum
search radius, whose value will be determined in
Section VII-B.

b) If condition (30) holds for allr up to rmax, then
record the current matrixM as a suitable sampling
matrix; otherwise, proceed to the next Hermite
normal matrix as soon as we reach a radiusr at
which (30) fails.

4) If there exist previously recorded suitable sampling ma-
trices, present all these matrices and stop the procedure.
Otherwise, setδ ⇐ δ − 1.

5) If δ ≥ 1, then return to Step 2); otherwise, stop the
procedure, in which case the frequency regionD does
not allow alias-free sampling by any quantized matrices
at the given quantization scaleq.

In practical implementations, the computational efficiency
of the above algorithm can be improved in the following
two ways. First, since1D(ω) is a real-valued function, we
have|1̂D(x)| = |1̂D(−x)|. Using this symmetry, we can save
about half of the computations in checking the conditions in
(30). Second, we can see that most of the running time of
the above algorithm is spent on evaluating|1̂D(Mn)|2 for
various choices ofM andn. Therefore, to reduce repetitive
computations, we can pre-calculate and save the values of
|1̂D(n/q)|2 for all integer vectorsn within a given radiusr0

at the beginning of the algorithm. The radiusr0 is determined
by the amount of available computer memory. Later in the
algorithm, only whenMn goes outside of the pre-calculated
range, do we need to compute|1̂D(Mn)|2; otherwise we can
just directly pull out the corresponding values from the saved
array.

B. The Precision of the Approximation due to Finite Compu-
tation

In the above procedure, we can only check condition (30)
for a finite number of radiir, ranging from1 to rmax. In
contrast, the original condition (11) in Proposition 1 requires
r to go to infinity. Therefore, our algorithm is only evaluating a
necessary condition for alias-free sampling. Intuitively, though,
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by using a largerrmax, we should gain more confidence in the
validity of the original infinite condition (11).

To quantify this intuition, we recall that the termAD,M

defined in (7) represents the total volume of overlapping
regions betweenD and all its aliasing components. From (9),
we can write

AD,M =



|M |
∑

n∈ZN ,‖n‖∞≤r

|1̂D(Mn)|2 − m(D)





+ |M |
∑

n∈ZN ,‖n‖∞>r

|1̂D(Mn)|2 (31)

= A1(r) + A2(r), (32)

whereA1(r) and A2(r) represent the first and second terms
in the right side of (31), respectively.

When the frequency domainD is a 2-D polygon, the
following proposition provides an upper bound for the second
termA2(r). Note that the techniques used in the proof can be
generalized and lead to similar results for cases whenD is an
N -D polytope (e.g.a polyhedron). We omit this generalization
due to space limitations.

Proposition 7: Let D be a polygon withK sides, whose
vertices, when traced clockwise, arep1, p2, . . ., pK . Also, let
pK+1

def
= p1. For any nonsingular matrixM and radiusr ≥ 1,

we have

A2(r) = |M |
∑

n∈Z2,‖n‖∞>r

|1̂D(Mn)|2

<
3K(1 + 1√

2 r
)2

4π2(r − 1
2 )

K∑

k=1

dk(M )

|M |
(
1 + π dk(M)/

√
2
)2

,

(33)

wheredk(M)
def
= ‖MT (pk+1 − pk)‖ is the length of thekth

side of the warped polygonMTD.
Proof: See Appendix D.

When r is sufficiently large, the inequality
in (33) can be well approximated byA2(r) <

c(D, M )/r, where the constant c(D, M )
def
=

3K
4π2

∑K
k=1 dk(M )

(
1 + π dk(M )/

√
2
)2

/|M |. Now for
any sampling matrixM that satisfies (30) for radii up to
rmax, we haveA1(rmax) ≤ 0, and hence it follows from (32)
that

AD,M ≤ c(D, M)

rmax
. (34)

By increasing the maximum search radiusrmax, we can reduce
the area of overlapping so that

AD,M ≤ ε m(D) for an arbitraryε > 0. (35)

The numberε can be used to control the desired precision
of our algorithm. After fixingε, we should choose4 rmax =
c(D, M )/(ε m(D)). In this case, although we can only test a
necessary condition for alias-free sampling in Procedure 3, the
amount of aliasingAD,M of the obtained matrices can always
be kept within the desired precision range.

4By doing this, we will have different maximum search radiusrmax for
different M, asc(D, M) is a function ofM.

A potential problem in choosing a smallε to achieve high
precision is that, sincermax is inversely proportional toε,
the amount of computations might be dramatically increased.
Fortunately, this scenario will not happen, as most candidate
sampling matrices can be quickly eliminated well before the
radiusr in (30) reachesrmax. To see this, we rewrite (32) as

A1(r) = AD,M − A2(r) ≥ AD,M − c(D, M )

r
.

For a matrix that does cause aliasing, we haveAD,M > 0; in
this case,A1(r) > 0 (i.e. the condition (30) fails) as soon as

r > rc
def
= c(D, M )/AD,M .

As shown in the following numerical experiments, for the
majority of the sampling matrices, the corresponding cut-off
radiusrc is typically much smaller than the required maximum
search radiusrmax.

C. Examples

We test the proposed algorithm in Procedure 3 on a set
of four different frequency support regions shown in Fig-
ures 4(a)–(d), including two convex polygonsD1 (a 28-sided
regular polygon, approximating a circle) andD2, and two
nonconvex polygonsD3 andD4. For each region, we apply
the algorithm to search for the corresponding optimal sampling
lattices. In our experiment, we choose the quantization scale
to be q = 50, and set the precision thresholdε in (35) to be
0.005.

Figures 4(e)–(h) demonstrate the densest frequency pack-
ings achieved by our algorithm. We measure the quality of
the results in terms of the sampling efficiency, defined as

efficiency
def
= |M |m(D) × 100%,

where M is the obtained sampling matrix. Note that a
sampling efficiency of100% corresponds to the case of
critical sampling. The highest sampling efficiencies achieved
for D1,D2,D3, and D4 are 90.66%, 92.24%, 89.94%, and
86.81%, respectively. Note that the obtained sampling density
for D1 (90.66%) is fairly close toπ/

√
12 ≈ 90.69%, which is

known to be the highest packing density of circles, achieved
by a hexagonal (“honeycomb”) arrangement.

The algorithm is implemented in C++, and the running time
ranges from69 seconds (forD2) to 355 seconds (forD3)
on a computer with a2.2 GHz CPU. We observe that the
algorithm spends only a small fraction of the total running
time to eliminate all unsuitable matrices and reach the optimal
sampling lattices. Afterwards, however, the remaining majority
of the running time is actually spent on verifying that the
obtained matrices indeed provide alias-free sampling within
the given precision range. To explain this interesting fact,
we recall that the proposed algorithm checks condition (30)
against a large number of sampling matrices (with decreasing
densities), until it finds the first sampling matrix for which
(30) holds for all radii up tormax. Let Nm denote the total
number of sampling matrices checked by the algorithm. For
every matrix eliminated in the process, there is a corresponding
cut-off radiusr at which (30) fails. We denote byP (r) the
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TABLE I
SOME KEY STATISTICS GATHERED IN THE EXPERIMENT.

Frequency Region Nm rmax P (1) P (2) P (3) P (4) P (5)
P

10

r=1
P (r)

D1 11652660 2807 94.79% 3.28% 0.91% 0.38% 0.20% 99.88%
D2 7642267 2512 96.30% 2.68% 0.59% 0.20% 0.09% 99.97%
D3 35911314 5666 96.34% 2.99% 0.36% 0.14% 0.06% 99.98%
D4 25302982 4231 91.75% 6.41% 1.02% 0.33% 0.19% 99.93%
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Fig. 4. Top two rows: Four frequency support regions used in our experiment.
Bottom two rows: The tightest frequency packing obtained bythe proposed
algorithm. The basebands (drawn in thick lines) are shown together with their
aliasing copies (drawn in thin lines).

relative percentage (with respect toNm) of those matrices
whose cut-off radius is equal tor (r = 1, 2, 3, . . .).

Table I summarizes the values ofNm, rmax, andP (r) (r =
1...5) for the four frequency shapes tested in our experiment.
We can see that, although bothNm and rmax can be quite
large, the majority of the tested matrices can be eliminatedby
using a fairly small radius. In the case ofD2, 96.30% of the
tested matrices can be eliminated by using onlyr = 1, and
99.97% of the matrices can be eliminated by a radius up to

10. Note that the smaller the cut-off radius is, the less time it
takes the algorithm to verify condition (30). Forr = 1 (the
most likely case as seen from Table I), the algorithm simply
needs to compute the values of|1̂D(Mn)|2 at four points5 to
eliminate a matrix.

D. Fourier Analytical versus Geometrical Approach: A Brief
Comment

The proposed algorithm described in Procedure 3 differs
from the standard geometrical approach to finding optimal
alias-free sampling lattices. The latter often builds uponthe
following argument [13]: one can verify that the alias-free
sampling condition in (5) is equivalent to requiring

Λ∗ ∩ (D −D) = {0} , (36)

whereD−D def
= {ω−τ : for all ω, τ ∈ D} is the Minkowski

sum ofD and−D. WhenD is a polytope, the corresponding
Minkowski sumD − D is also a polytope, whose bounding
hyperplanes can be calculated from those ofD [35]. If we
further assumeD−D is convex (and hence can be specified by
a set of linear inequalities), then for each candidate sampling
matrix M , the condition (36) can be readily checked by
evaluating a system of linear inequalities for a finite number
of points in Λ∗. The task becomes more difficult, however,
when D − D is nonconvex, in which case one has to first
decompose it into a union of convex subregions. As a potential
advantage, the proposed Fourier analytical approach is purely
computational, and in particular, does not depend on the
convexity of the domainD.

In terms of computational efficiency, the experiments in
Section VII-C suggest that the proposed algorithm can be very
efficient in eliminating most of the candidate sampling lattices
(by only evaluating the Fourier transforms at four points),
but needs to spend more time testing those lattices that are
close to being alias-free. Consequently, the Fourier analytical
approach is likely to be faster than the geometrical approach
for most of the candidate lattices, but will be slower than
the latter in the remaining cases. It is therefore promising,
from a computational point of view, to develop a “hybrid”
algorithm—utilizing both the proposed Fourier condition and
the geometrical condition in (36)—for finding optimal sam-
pling lattices.

VIII. C ONCLUSIONS ANDFUTURE WORK

The main contribution of this paper is the Fourier analytical
condition presented in Theorem 1. By linking the alias-free

5These points aren = (1, 0), (1, 1), (0, 1), (−1, 1). The remaining points
can be inferred by symmetry since|b1D(Mn)| = |b1D(−Mn)|.
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sampling of a given frequency support region with the Fourier
transform of the indicator function, this simple but powerful
result provides a versatile computational tool in the search for
optimal sampling lattices.

The indicator function plays a pivotal role in this work;
however, it is not the only choice. In fact, we can verify thatthe
Fourier condition in Theorem 1 still holds if we replace1D(ω)
with any square-integrable functionf(ω) that is positive and
supported onD, and correspondingly, replacem(D) with
‖f(ω)‖2

L2 . This generalization leads to many possible lines of
research. For example, it is possible to improve computational
efficiency by using a functionf(ω) that has smooth transition
at the boundary ofD, since the smoothness will translate
into faster decay (compared with|1̂D(x)|) in the spatial
domain. Second, the spectral contents of practical signalsare
unlikely to be uniformly distributed on the frequency support
D. Therefore, an interesting class of research would choose a
functionf(ω) that is adapted to the power spectral density of
the signals. This would potentially allow us to have a more
sensible criterion in choosing the optimal sampling lattices.

APPENDIX

A. The Poisson Summation Formula

The Poisson summation formula (PSF) or “lattice sampling
formula” relates the infinite summation of a function over
a lattice with a summation of the Fourier transform of that
function over the dual lattice. In this paper, we need the
following incarnation of the PSF.

Theorem 4:Suppose functionsf(ω), g(ω) ∈ L2(RN ) are
supported on a bounded domainD, i.e., suppf(ω) ⊂ D and

suppg(ω) ⊂ D, and let R(ω)
def
=
∫

RN f(τ ) g(τ − ω)∗ dτ .
Then for all nonsingular matricesM ,

∑

k∈Λ∗

R(k) = |M |
∑

n∈Λ

f̂(n) ĝ(n)∗, (37)

whereΛ = {Mm : m ∈ Z
N} andΛ∗ = {M−T ℓ : ℓ ∈ Z

N}.
Remark:A difficulty in directly applying the PSF to show

(37) is that the standard versions of the PSF (such as given
in [36, pp. 250-257]) require the Fourier transform to decay
sufficiently fast. In particular, for our case we would need

|f̂(x)ĝ(x)| ≤ A(1 + ‖x‖)−N−ε (38)

for someA > 0 and ε > 0. The condition (38) need not
be satisfied in multidimensional cases (N ≥ 2) in our work,
because we takef(ω) = g(ω) = 1D(ω) and the discontinuity
of this indicator function can lead to slow decay of its Fourier
transform.

We provide a direct proof of Theorem 4 that circumvents
the assumption (38).

Proof: First assumeM is the identity matrix. Denote by
C0 the unit cube[− 1

2 , 1
2 ]N . We may supposef is supported

in a cube of the formℓ + C0 for some integer vectorℓ ∈ Z
N ,

because the originalf can be written as a finite linear com-
bination of functions supported in such cubes (notingf has
bounded support and thatf appears linearly in the definition

of R). Similarly we may assumeg is supported in a cube
m + C0 for somem ∈ Z

N . Hence
∑

k∈ZN

R(k) =

∫

ℓ+C0

f(τ ) g(τ − ℓ + m)∗ dτ ,

since the support cubes off(τ ) and g(τ − k) are disjoint
except whenk = ℓ − m. Now changing variable withτ 7→
τ + ℓ yields:

∑

k∈ZN

R(k) =

∫

C0

f(τ + ℓ) g(τ + m)∗ dτ . (39)

Applying the Plancherel theorem for Fourier series, we have
∫

C0

f(τ + ℓ) g(τ + m)∗ dτ =
∑

n∈ZN

cn(f) c∗n(g), (40)

where the Fourier coefficients on the right-hand side are
cn(f)

def
=
∫
C0

f(τ + ℓ)e−2πj n·τ dτ = f̂(n), and similarly
cn(g) = ĝ(n). Substituting these identities into (40) gives
that ∑

k∈ZN

R(k) =
∑

n∈ZN

f̂(n) ĝ(n)∗ (41)

as desired.
So far we have proved (37) for the case whenM is

an identity matrix. For generalM , we define f̃(ω) =
|M |−1/2f(M−T ω) and g̃(ω) = |M |−1/2g(M−T ω). Ap-
plying (41) to f̃ and g̃ then proves the general case of the
theorem, after some straightforward calculations.

B. The Number of Hermite Normal Matrices with a Given
Determinant

We first state the following result about the total number of
Hermite normal matrices, whose proof can be found in [19,
pp.19-21].

Lemma 4:Let HN (δ) be the number ofN -by-N Hermite
normal matrices with determinantδ. If δ = µ ν, for coprime
µ and ν, then HN (µ ν) = HN (µ) HN (ν). Furthermore, if
δ = πk, π a prime, then

HN (πk) =

N−1∏

i=1

πk+i − 1

πi − 1
. (42)

Note that we can factorize any integerδ ≥ 2 into δ =∏J
j=1 π

kj

j , whereπ1, π2, . . . , πJ are distinct prime factors and
the exponentsk1, k2, . . . , kJ are positive integers. Applying
the above result, we haveHN (δ) =

∏J
j=1 HN (π

kj

j ), where
each term can be calculated by (42). We can see that the
formula for the exact value ofHN (δ) depends on the prime
factorization of δ. It is therefore often simpler and more
convenient to use the estimates given in Proposition 6. To
prove that proposition, we establish its lower bound and upper
bounds in the following two propositions.

Proposition 8: HN (1) = 1, andHN (δ) ≥ δN−1
δ−1 for δ ≥ 2,

where the equality is achieved whenδ is a prime number.
Proof: For δ ≥ 2 and a givenk, 1 ≤ k ≤ N , we consider

the following class of integer matricesH = [hi,j ], whose
entries are all zeros except for those on the diagonal line,
wherehk,k = δ andhi,i = 1 for i 6= k, and those on thekth



LU et al.: A FOURIER CONDITION FOR ALIAS-FREE SAMPLING LATTICES 13

row, where0 ≤ hk,j < δ for k < j ≤ N . By construction,
we can easily verify that these matrices are all in the Hermite
normal form (as specified in Theorem 2) and with determinant
δ. Meanwhile, there are a total ofδN−k of such matrices. By
varying k from 1 to N , we getHN (δ) ≥ δN−1 + δN−2 +

. . . + δ + 1 = δN−1
δ−1 . Furthermore, whenδ is prime, putting

δ in one of the diagonal elements and1 in all other diagonal
elements is the only way for the determinant of a Hermite
normal matrix to equalδ. Therefore, the equality is achieved
in this case.

Proposition 9: As an upper bound, we haveHN (δ) <
22 δN−1+0.001.

Proof: For a prime numberπ, we have from (42) that

HN (πk) <

N−1∏

i=1

πk+i

πi − 1
= (πk)N−1

N−1∏

i=1

1

1 − π−i

< (πk)N−1C(π),

(43)

whereC(π)
def
=
∏∞

i=1(1 − π−i)−1. We can easily verify that
C(π) > 1 for all π, and that it is a decreasing function ofπ,
i.e., C(π1) > C(π2) for π1 < π2.

For any integerδ ≥ 2, we factorize it intoδ =
∏J

j=1 π
kj

j ,
whereπ1, π2, . . . , πJ are distinct prime factors. It follows from
Lemma 4 and inequality (43) that

HN (δ) =

J∏

j=1

HN (π
kj

j ) <

J∏

j=1

(π
kj

j )N−1
J∏

j=1

C(πj)

= δN−1
J∏

j=1

C(πj). (44)

Next, we just need to show
∏J

j=1 C(πj) < 22 δ0.001.
For a given positive integern, we define a setA consisting

of all prime factors{πj} of δ that are less thann, i.e., A
def
=

{πj : 1 ≤ j ≤ J andπj < n}. Similarly, let B = {πj : 1 ≤
j ≤ J andπj ≥ n}. We can then write

J∏

j=1

C(πj) =
∏

π∈A

C(π)
∏

π∈B

C(π). (45)

In the above expression, wheneverA or B is empty, the
corresponding product on that set is understood to equal1.
Let P represent the set of all prime numbers. It then follows
from the definition ofA that

∏

π∈A

C(π) ≤
∏

π∈P, π<n

C(π). (46)

Denote by|B| the cardinality ofB. If |B| > 0, then for all
π ∈ B, we haveπ ≥ n and henceC(π) ≤ C(n). Meanwhile,
sinceδ ≥ ∏π∈B π ≥ n|B|, we have|B| ≤ logn δ. It follows
that

∏

π∈B

C(π) ≤ C(n)|B| ≤ C(n)lognδ = δ lognC(n). (47)

Substituting (46) and (47) into (45), we obtain∏J
j=1 C(πj) ≤ δ lognC(n)

∏
π∈P, π<n C(π). We have the

freedom in choosingn. For example, whenn = 192, the
exponent becomeslog192C(192) ≈ 9.98 × 10−4 < 0.001;
the constant factor becomes

∏
π∈P, π<n C(π) ≈ 21.7 < 22.

Substituting these numbers into (44) yields the desired result.

C. A Lemma Used in the Proof of Theorem 3

Lemma 5:For arbitrarily chosen0 ≤ a < b and c > 1,
there must exist somen ∈ Z\{0} such that

∫ b

a tc cos(nt) dt 6=
0.

Proof: We show this by contradiction. Suppose there is a
particular set of parameters0 ≤ a < b andc > 1 for which

∫ b

a

tc cos(nt) dt = 0, for all n ∈ Z \ {0}. (48)

Defining the functionf(t) = tc 1[a,b](t), we can rewrite the
above equality as

0 =

∫ ∞

−∞
f(t) cos(nt) dt

=
∑

k∈Z

∫ π+2πk

−π+2πk

f(t) cos(nt) dt

=

∫ π

−π

∑

k∈Z

f(t + 2πk) cos(n(t + 2πk)) dt

=

∫ π

−π

g(t) cos(nt) dt, n ∈ Z \ {0}, (49)

where g(t)
def
=
∑

k∈Z f(t + 2πk). Actually, since f(t) is
compactly supported, the sum generatingg(t) contains only a
finite number of nonzero terms. The equality (49) means that
all the even Fourier coefficients (except for the DC term) of
g(t) are zero, which implies thatg(t) is an odd function plus
some constant.

For c > 1, the functionf(t) is strictly convex on[a, b];
periodizing the endpoints of[a, b] gives an “exceptional” set

E
def
= (a + 2πZ)∪ (b + 2πZ), and sog(t) is strictly convexon

each subinterval of[−π, π] \E. However, from the symmetry
of g(t) (i.e. an odd function plus some constant),g(t) will be
strictly concaveon the reflected (w.r.t. the origin) versions of
these intervals. This is a contradiction, and hence the initial
assumption (48) does not hold.

D. Proof of Proposition 7

We start by proving (33) for the special case whenM is the
identity matrix. Using the formula (17) of̂1D(x), and writing
θk = π(pk+1 − pk), we get

|1̂D(x)| ≤ 1

2π‖x‖
K∑

k=1

dk |sinc(x · θk/π)|

<
1

2π‖x‖

K∑

k=1

dk

√
1.5√

1 + (x · θk)2
,

where the second inequality is due to the fact that|sinc(x)| =
|sin(πx)/(πx)| <

√
1.5/(1 + π2x2). Applying the Cauchy-

Schwarz inequality(
∑K

k=1 1·xk)2 ≤ K
∑K

k=1 x2
k to the above
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expression yields

|1̂D(x)|2 <
3K

8π2‖x‖2

K∑

k=1

d2
k

1 + (x · θk)2

=
3K

8π2

K∑

k=1

d2
k Gθk

(x), (50)

whereGθ(x)
def
= ‖x‖−2(1 + (x · θ)2)−1.

Next, we derive an upper bound for the infinite sum of
Gθ(x). For arbitrary‖u‖ ≤

√
2

2 < r < ‖n‖∞,

Gθ(n)

Gθ(n + u)
=

‖n + u‖2

‖n‖2

1 + (n · θ + u · θ)2

1 + (n · θ)2

≤
(

1 +
‖u‖
‖n‖

)2

(1 + |u · θ|)2

≤ (1 +
1√
2 r

)2(1 + ‖θ‖/
√

2)2
def
= Cθ. (51)

It then follows thatGθ(n) ≤ Cθ

∫
u∈[− 1

2
, 1

2
]2 Gθ(n +u) du =

Cθ

∫
n+[− 1

2
, 1
2
]2

Gθ(u) du, and therefore

∑

n∈Z2,‖n‖∞>r

Gθ(n)

≤ Cθ

∫

‖x‖>r− 1

2

Gθ(x) dx

= Cθ

∫ ∞

r− 1

2

ρ dρ

∫ π/2

0

4 dα

ρ2(1 + ‖θ‖2ρ2 cos2 α)
(52)

= Cθ

∫ ∞

r− 1

2

(
2π

ρ
√

1 + ‖θ‖2ρ2

)
dρ <

2πCθ

‖θ‖ (r − 1
2 )

, (53)

where (53) is obtained from (52) based on the following
identity: for any constantb

def
= ‖θ‖2ρ2,

d

dα
arctan

(
tan α√
1 + b

)
=

√
1 + b

1 + b cos2 α
, for 0 ≤ α <

π

2
.

Substituting (51) and (53) into (50), and using‖θk‖ = πdk,
we reach the inequality (33) for the case whenM is an
identity matrix. For generalM , we use the following change
of variables:1D(ω) = 1MT D(MT ω), and hencê1D(x) =
|M |−1

1̂MT D(M−1x). It follows that

|M |
∑

n∈Z2,‖n‖∞>r

|1̂D(Mn)|2

=
1

|M |
∑

n∈Z2,‖n‖∞>r

|1̂MT D(n)|2.

Applying the previous result tô1MT D(n) leads to (33).
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[11] M. Vetterli and J. Kovačević,Wavelets and Subband Coding. Engle-
wood Cliffs: Prentice Hall, 1995.
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