Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Polar Codes: Characterization of Exponent, Bounds, and Constructions
 
research article

Polar Codes: Characterization of Exponent, Bounds, and Constructions

Korada, Satish Babu
•
Sasoglu, Eren
•
Urbanke, Rudiger  
2010
IEEE Transactions on Information Theory

Polar codes were recently introduced by Arikan. They achieve the capacity of arbitrary symmetric binary-input discrete memoryless channels under a low complexity successive cancellation decoding strategy. The original polar code construction is closely related to the recursive construction of Reed-Muller codes and is based on the $2 \times 2$ matrix $[ 1 ; 0 ;1;1]$. It was shown by Arikan and Telatar that this construction achieves an error exponent of $\frac12$, i.e., that for sufficiently large blocklengths the error probability decays exponentially in the square root of the length. It was already mentioned by Arikan that in principle larger matrices can be used to construct polar codes. A fundamental question then is to see whether there exist matrices with exponent exceeding $\frac12$. We first show that any $\ell \times \ell$ matrix none of whose column permutations is upper triangular polarizes symmetric channels. We then characterize the exponent of a given square matrix and derive upper and lower bounds on achievable exponents. Using these bounds we show that there are no matrices of size less than $15$ with exponents exceeding $\frac12$. Further, we give a general construction based on BCH codes which for large $n$ achieves exponents arbitrarily close to $1$ and which exceeds $\frac12$ for size $16$.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

exponent.pdf

Access type

openaccess

Size

280.32 KB

Format

Adobe PDF

Checksum (MD5)

42c4fab64b10bb31445ab708469c52f8

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés