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ABSTRACT

This paper deals with the problem of efficiently comput-
ing the optical flow of image sequences acquired by omnidi-
rectional (nearly full field of view) cameras. We formulate
the problem in the natural spherical geometry associated with
these devices and extend a recent TV-L1 variational formula-
tion for computing the optical flow [1]. The discretization of
differential operators occurring in this formulation turns out
to be an extremely sensitive point, in particular for the TV
part of our algorithm. We show that these difficulties can be
very efficiently overcome using a graph-based formulation of
TV denoising, which we solve by introducing a graph version
of Chambolle’s algorithm [2]. A slight modification of the
original framework allows us to solve the depth from motion
problem using the same techniques. In both cases, our graph-
based algorithms provide computationally efficient solutions
and significantly outperform naive implementations based on
direct discretization of the operators, or on neglecting the in-
fluence of geometry.
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1. INTRODUCTION

Optical flow estimation is a traditional but key problem in vi-
sion systems, and it has attracted considerable attention since
the seminal work of Horn and Schunck [3] (see for exam-
ple [4] for a survey). The main objective of optical flow es-
timation methods is to compute a flow field that represents
the motion in consecutive image frames. The main assump-
tion in such problems is the brightness consistency, i.e., pixel
intensity values do not change during motion between suc-
cessive frames. However, optical flow estimation is a highly
ill-posed inverse problem. Using pure image intensity-based
constraints generally results in an under-determined system
of equations, from which only normal flow can be computed.
In order to solve this problem some kind of regularization is
needed to obtain displacement fields that are physically mean-
ingful. Some regularized variational formulations, more par-
ticularly those based on sparsity constraints, have been proved
very effective. In [1]], Zach et al. provide a real time optical
flow algorithm with striking performance. They suggest to

use a TV norm constraint to regularize the optical flow field
and the L' norm to penalize deviations from the brightness
consistency assumption, therefore handling outliers in a more
graceful way than with the more traditional L? data fidelity
term.

Even if most vision systems considered in optical flow es-
timation approaches are traditional planar cameras, omnidi-
rectional imagers, such as catadioptric cameras, have recently
sparked tremendous interest. Because of their (nearly) full
field of view, these sensors are particularly attractive for ap-
plications like video surveillance and mobile robotics. Data
captured by such devices, however, suffer from rather com-
plex geometrical distortion (see for example). Cur-
rent optical flow algorithms assume planar sensors (or equiv-
alently small field of view) and cannot be adapted seamlessly
to the particular geometry in omnidirectional images. It has
been shown that processing omnidirectional images in their
natural spherical geometry clearly leads to a more precise es-
timation of the optical flow, albeit at the price of increased
computational complexity (see for example [J5} 6] and refer-
ences therein). For instance, the authors in [6] propose an op-
tical flow variational formulation on Riemaniann manifolds:
their approach is based on the minimization of a quadratic
cost functional, following the classical approaches of [3, [7],
but it is not very efficient from a computational point of view.

In this paper, we show that it is possible to extend very
efficient variational approaches, while naturally handling the
geometry of omnidirectional images. We propose an algo-
rithm for TV — L' optical flow estimation on the 2-sphere,
where the images are modeled as weighted graphs. The con-
nections in the graph are given by the topology of the mani-
fold and their weights by their geodesic distances. Our graph-
based solutions are both very fast and precise, due to the ef-
ficient representation of the sensor geometry. Experimental
results with both synthetic spherical images and natural im-
ages from a catadioptric sensor confirm the validity of our
approach. To the best of our knowledge, this is the first time
that graph-based techniques are applied to solve the optical
flow estimation problem on a manifold. As a matter of fact
the algorithm is general enough to be applied to other tasks,
and we also illustrate its performance in a depth map estima-
tion problem.



2. VARIATIONAL OPTICAL FLOW

Variational methods are among the most successful ap-
proaches to calculate the optical flow between two consec-
utive image frames Iy and ;. For simplicity let us assume
that I and I; are defined on a two dimensional manifold M
embedded in R3. We use the notation x = (z*, 22) for a local
system of coordinates and y = (y!,?,4%) for a cartesian
system of coordinates. If Vg and G are respectively the
gradient operator and the metric tensor on the manifold M,
then the following holds:

VIi(y) = G 'Vl (x). (D

Under the brightness consistency assumption, we have I(y)—
I(y + u) = 0, where u is the displacement field between
the frames. We can linearize the brightness consistency con-
straint around y as:

L(y) = (VL(y))"u = Io(y) = 0. @
Using (I)) we obtain the following data constraint equation:
I (x) + (um, VmIi(x)) — Ip(x) = 0, 3)

where uy is the optical flow on the manifold and the scalar
product is computed in the tangent plane via

(ung, Vnlh (%)) = (G Va1 (x)) Tupg. 4)

A general variational formulation of the optical flow prob-
lem consists in finding uyp; that minimizes the following func-
tional:

J= / (ung, Vi) 422+ A / oI, I, ) 42, (5)
Q Q

where u} refers to the coordinate i in upg. We can identify
two distinct terms: 1 is the regularization term containing the
prior on the flow field up, p is the data fidelity function. A
particular formulation with a total variation regularization and
a robust L' norm for the data fidelity term has been shown
to efficiently preserve discontinuities in the flow field and
increase robustness against illumination changes, occlusions
and noise, see [1]]. In this case, both terms of Eq. (E]) reads:

d(ung, V) = O(Viuyg) = > IG™ V], (6)

plum) = I (x) + (um, Vi (x)) — In(x). @)

Unfortunately the resulting functional J is not strictly
convex and poses severe computational difficulties. Follow-
ing [l], we propose a convex relaxation and we rewrite the
functional as:

) 1
J = / Y(Vmupy) + %\uM — v\2 + Ap(v)dQ,  (8)
Q

where v is an auxiliary variable that should be as close as
possible to ups. The minimization must now be performed
with respect to both the variables upg, v and the solution can
be then obtained by an iterative two step procedure:

1. For uyp fixed, solve:
1
min{/ |uM—V|2+)\p(v)dQ}. )
v Q 29
2. For v fixed, solve:

min {/ Y(Vnuhg) + i|uM - v|2dQ} . (10
um | Jo 20
The minimization in the first step is straightforward since the
functional does not depend on the derivatives of v, and the
solution can be found pointwise (see Section [3). The mini-
mization in Eq. corresponds to the total variation image
denoising model, for which Chambolle proposed an efficient
fixed point algorithm [2]:

vt = ul; — Odivp;
nt1 _ Py +7V(divp} — upy/0)
: 1+ 7|V (divpl — ul,/0)|

Note that in this equation, with an abuse of notation, V is a
generic discrete differential operator while div is its adjoint
operator: div = —V*. The success of this algorithm depends
strongly on a stable discretization of the gradient operator
Vi on the manifold, which is not always straightforward. In
spherical coordinates, a simple discretization obtained from
finite differences reads:

Vol (0,0 = L) = 100 01)
L f<6ia¢’+1) - f(917¢7)

i€ {1,2},

ie{1,2}.(11)

Vs f(0:,0;) =

It contains a (sin#)~! term that induces very high values
around the poles (i.e. § ~ 0 and § ~ ) and can cause nu-
merical instability. In the next section, we propose to define
discrete differential operators on weighted graphs (i.e. dis-
crete manifold) as a general way to deal with geometry in
a coordinate-free fashion and obtain a stable solution to the
variational problem.

3. GRAPH BASED FRAMEWORK

We represent our manifold (i.e., the imaging surface) as a
weighted graph where the vertices represent image pixels and
edges define connections between pixels (i.e., the topology of
the surface). A weighted graph I' = (V, E, w) consists of a
set of vertices V, a set of vertices pairs £ C V x V, and
a weight function w : E — R satisfying w(u,v) > 0 and
w(u,v) = w(v,u) V(u,v) € E. We define our differential
operators over I" as in [8]:

Gradient: (V" f)(u,v) = \/w(u,v) (\;% - \;%)
w(u,v)

Divergence: (div” F)(u) = Z d(v)

u~v

(F(v,u) = F(u,v))
(13)



where d : V +— R is the degree function defined as: d(v) =
> uen W(w,v). The weight w(u,v) is typically defined as
a decreasing function of the geodesic distance between the
vertices u and v.

Now that discrete operators are settled, we can give the
complete algorithm to solve the problem described in Sec-
tion[2] The solution of the first step of the algorithm (Eq. @)
can be obtained by the following thresholding scheme:

MG 'V ifp(um) < —A0|G™'VmI1]?
v=um+<{ NG 'VmL  ifp(um) > MG VM
u -1 . —
— 2L iffp(un)| < M|GT VL.

(14)
The second step is performed by substituting the definitions of
the operators in Eq. (T3) in the iterative algorithm described
in Eq. (T1). Note that similar approaches for TV denoising
on graphs have been proposed in [9} in the framework of
non-local regularization.

4. EXPERIMENTAL RESULTS

Fig. 1. Synthetic spherical sequence.

We tested our algorithm on both synthetic and natural
video sequences. The synthetic sequence represented in [Fig-]
[ure T]is a spherical rendering from a 3D model of the interior
of a living room. A sphere is conveniently represented in a
spherical coordinates system using the zenith angle 6 € [0, 7]
and the azimuth ¢ € [0, 2n[. In the image plane, vertical coor-
dinates correspond to 6 and horizontal to ¢, such that the top
of the image correspond to the north pole and the bottom to
the south pole. In the sequences the spherical camera under-
goes rigid translational motion, and for all of them we have,
of course, ground truths.

We compare the performance of the proposed algorithm,
called GrH-TVLI1, with the one of a similar algorithm, called
Planar-TVLI, which uses planar differential operators. Or,
in other words, we consider the images in as pla-
nar images. The optical flow estimation results are shown in
Figure 2t Planar-TVLI misbehaves near the poles (top and
bottom of the image) where the spherical equiangular grid
presents the highest distortion. We also provide comparisons

with the ground truth information in Table 1, which confirms
that GrH-TVLI is by far more accurate than Planar-TVLI.

(b) Planar-TVL1
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(c¢) GrH-TVL1

Fig. 2. Optical flow estimation for the synthetic sequence:
vector representation (left), module of the optic flow field

(right).

Error Module (SSE) | Angle (AAE)
Planar-TVLI 9.5354 0.2839
GrH-TVLI 2.02 0.1509

Table 1. Comparison. Sum of Square Error (SSE) for module
and average angular error (AAE) with respect to ground truth.

The second video sequence has been captured with a cata-
dioptric sensor and represents an object moving in a simple

scene (see [Figure 3). The catadioptric images are first pro-
jected on a sphere before optical flow estimation with GrH-



TVLI. The results are visually illustrated in [Figure 4] where
we see that the optical flow estimation permits to drastically
reduce the residual energy after motion compensation.

Fig. 3. Catadioptric sequence

Fig. 4. Optical flow estimation from catadioptric images.
From Top to bottom: image after projection on the sphere;
frame difference Iy — Ij; optical flow field (module); image
residual I; (x 4+ u) — I, after motion compensation.

Finally, we illustrate the genericity of our graph-based al-
gorithm, and present its application to a depth map estima-
tion problem. We adapt our algorithm by simply rewriting
the functional (Eq. (8)) as a function of D(¢, ), which is the
inverse of the depth map:

J = /|G’1VMD)|+%(D—Z)2
Q
+ )\lfl(X)+D<t,VM11>—Io(X))|dQ7 (15)

where t is the projection of the true 3D motion field on the

spherical surface of the camera and Z is again an auxiliary
variable. The depth estimation results illustrated in [Figure 3|
demonstrate that our graph-based method is able to efficiently
solve the difficult problem of depth map estimation.

Estimated Depth Map

Ground Truth

Fig. 5. Depth map estimation in the synthetic sequence.

5. CONCLUSIONS

We presented a graph-based TV-L! variational framework on
Riemaniann manifolds. We applied the proposed approach
to optical flow and depth estimation problems. Experimental
results on both synthetic and natural omnidirectional images
demonstrated the efficiency of the proposed method.
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