
SCHEDULING OF DATAFLOW MODELS WITHIN THE RECONFIGURABLE VIDEO
CODING FRAMEWORK

Jani Boutellier1, Veeranjaneyulu Sadhanala2, Christophe Lucarz3, Philip Brisk4, Marco Mattavelli3

1 Machine Vision Group, University of Oulu, Finland
2 Department of Computer Science and Engineering, IIT Bombay, India

3 Microelectronic Systems Laboratory (GR-LSM), 4 Processor Architecture Laboratory,
École Polytechnique Fédérale de Lausanne, Switzerland

ABSTRACT

The upcoming Reconfigurable Video Coding (RVC)
standard from MPEG (ISO/IEC SC29WG11) defines a
library of coding tools to specify existing or new
compressed video formats and decoders. The coding tool
library has been written in a dataflow/actor-oriented
language named CAL. Each coding tool can be represented
with an extended finite state machine and the dependencies
between the tools are described as dataflow graphs. This
paper proposes an approach to derive a multiprocessor
execution schedule for RVC systems that are comprised of
CAL actors. In addition to proposing a scheduling approach
for RVC, an extension to the well-known permutation flow
shop scheduling problem that enables rapid run-time
scheduling of RVC tasks is introduced.

Index Terms— Scheduling, parallel processing, digital
signal processors

1. INTRODUCTION

The effort of designing the Reconfigurable Video Coding
(RVC) standard [1] is motivated by the intent to describe
existing video coding standards with a set of common
atomic building blocks (e.g., IDCT). Under RVC, existing
video coding standards are described as specific
configurations of these atomic blocks. This greatly
simplifies the task of designing future multi-standard video
decoding applications and devices by allowing software and
hardware reuse across video standards.

The RVC coding tools are specified in a dataflow/actor
object-oriented language named CAL [2] that describes the
atomic blocks in a modular way. Abstract, high-level
models require a systematic implementation methodology
and tools to realize into practical systems. Design flows are
generally composed of several phases: specification, design
space exploration (DSE) and implementation.

The implementation phase needs two components: the
implementation code (generally C and VHDL) and a
schedule. Code generators are under development in the

RVC framework [5, 6]. A fundamental step to efficiently
complete the implementation phase supported by the code
generators is the schedule, i.e. the sequence in which CAL
actors fire.

This paper introduces the model of computation used in
RVC, which is strongly based on the CAL language model.
The RVC scheduling shown in this paper consists of static
(offline) and dynamic (runtime) components. The static
schedules are computed at compile-time and are collected in
a repository for use by the runtime system, which selects
entries from the repository and appends them to the ongoing
schedule. The result is similar to a permutation flow shop
schedule (PFSS) [3].

2. RELATED WORK

2.1. The Reconfigurable Video Coding framework

The Open Dataflow environment [4] supports the
specification, simulation and debugging of CAL models,
such as RVC. From CAL models, hardware and software
code generators convert CAL actors into implementation
languages such as VHDL, Verilog and C [5, 6]. The
hardware code generator [5] has the capability to compile
networks of actors; the C code generator produces CAL
code within atomic blocks, but lacks capability to compile a
network of actors. In particular, the C code generator lacks a
scheduler that determines the order in which actors fire. A
schedule is required to complete the design flow from
specification to implementation. At present, there is no
multiprocessor scheduling mechanism that can meet the
needs of the CAL implementation of the RVC standard.

The Syndex tool [7] maps synchronous data flow (SDF)
graphs onto multiprocessor architectures. CAL,
unfortunately, is an asynchronous model. This paper shows
that the RVC model can be transformed from its
asynchronous representation in CAL to a synchronous
model accepted by Syndex, enabling multiprocessor
scheduling.

182978-1-4244-2924-0/08/$25.00 ©2008 IEEE SiPS 2008

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 05:07 from IEEE Xplore. Restrictions apply.

Fig. 1. Overview of our approach.

2.2. Scheduling of similar systems

CAL models are too general to be scheduled efficiently;
even straightforward scheduling is intractable. Each CAL
actor is represented as an extended finite state machine
(EFSM) that contains variables and guard conditions that
enable or disable possible state transitions. The relationships
between actors are expressed with dataflow graphs (DFGs).
Actors communicate by firing tokens along the edges of the
dataflow graph. The state transition and token(s) fired by
each actor is a function of the current state and the tokens
that arrive at its input.

As a partial solution to the scheduling problem,
literature suggests that EFSMs can be transformed into
regular FSMs, with the cost of a possible state-space
explosion [8]. It is then possible to model the system as a
combination of dataflow circuits that have actors containing
state machines. There are several modeling methods [9, 10,
11] for such problems.

3. THE RVC MODEL

Figure 2 shows a high-level view of the RVC
implementation of the MPEG-4 Simple Profile decoder.
Figure 1 provides an overview of our approach. The first
three steps of our approach deal with the RVC model, and
are described in Sections 3.1, 3.2, and 3.3; the other steps,
described in Section 4, comprise the scheduling mechanism.

3.1. Processing and configuration actions

In the RVC model, the actions of EFSMs are separated into
two classes: processing (P-actions) and configuration (C-
actions).

A P-action: (1) does not change the state of the EFSM
(although, it may modify variables), or (2) can not be
reached from the initial state without passing through an
action that does not change the EFSM state; all other actions
are C-actions. The RVC model imposes one further
restriction at the actor interface level: if an actor has an
input or an output that has a variable token rate, then all of
its internal actions are C-actions.

The actor “add” is used to illustrate the difference
between these two classes of actions. “add” combines the
predicted image data with the coded prediction error. The
inputs and outputs of the actions contained in “add” are
listed in Table 1, and Figure 3 shows its EFSM. The guard
column in the table describes the condition, which must be
satisfied so that the state transition can take place; the body
column describes the consequences of the state transition
affecting only the actor.

The self-loop actions in the EFSM in Figure 3 are tex,
mot, and comb; they are processing actions. The three done
actions are also processing actions, since they cannot be
reached from the cmd state without passing through tex,
mot, or comb. The remaining actions are of the
configuration type.

Fig. 2. High level view of the RVC MPEG-4 Simple Profile decoder in the RVC framework.

183

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 05:07 from IEEE Xplore. Restrictions apply.

Also Figure 2 depicts the result of our action
classifications, but on a higher level. The actors that have
thin outlines only contain configuration actions, whereas the
rest of the actors contain both configuration and processing
actors. Respectively, signals that are marked in bold are data
signals that have no configuration properties and are only
used by processing actors.

Table 1. Actions of the “add” actor.
Action: input =>output Guard Body

newVop: btype ==> NULL btype==NEWVOP NULL
texture: btype ==> NULL btype == INTRA NULL
motion: btype ==> NULL btype!= ACCODED NULL
other: btype ==> NULL NULL NULL
done: NULL ==> NULL count==64 count=0
tex: TEX ==> VID NULL count++
mot: MOT ==> VID NULL count++
comb: MOT, TEX ==> VID NULL count++

3.2. EFSM unrolling

In the RVC model, the EFSMs can be unrolled into a
collection of SDFs that are connected by virtual switching
actions, as shown in Figure 4. The unrolling is done so that
each iteration variable value has its own action instance. In
the RVC model of MPEG-4 Simple Profile, this does not
lead to unreasonably large graphs, since the iterations of one
action are at limited to at most 81.

In Figure 4, the leftmost element is a virtual fork action
that shows the different paths of execution that can originate
from the initial state. Each transition from cmd starts with a
configuration action; afterwards, each path of execution,
with the exception of the newVop path, continues with data
processing.

All of the actors in the MPEG-4 Simple Profile do not
map trivially into our model. One exception can be found

within the hierarchical “IDCT2D” functional unit that
contains several actors inside. One of them is named “Clip”
and it does clipping of integer values. The problem with the
implementation of this actor is that depending on the value
of the integer that has to be clipped, a different action is
chosen. It was trivial to modify the “Clip” –actor to an
implementation which has the same functionality, but within
one single action. Generally, such data-dependent actors can
not be handled well by static scheduling methods. The
“Inverse Scan” actor had to be left outside the static
schedule, because of its data-dependent nature.

There are also actors that do not contain a state machine
in the CAL code. In this case, an artificial state machine
structure is created to make these actors suitable for further
processing.

3.3. Parameter-specific system-level graphs

The unrolled RVC model actor-specific graphs contain
virtual switches that interconnect multiple SDF fragments,
as can be seen in Figure 4. The data processing actions in
Figure 4 have the same interfaces as the actions in the CAL
code and Figure 2. These interfaces must be connected to
the respective interfaces of other actors to create a large
SDF processing graph that encompass the whole system.

At the system level, there will be one and only one
configuration graph whose topology changes during
execution. For each combination of system parameter
(switch) values, there will be a unique data processing graph
on the system level, called a subgraph. For the sake of
brevity, we shall call the parameter value combination a
setting from here on. To model and schedule the complete
system, the total number of settings must remain small:
otherwise, the number of subgraphs in the system will
explode. The MPEG-4 Simple Profile system that is handled

Fig. 4. Combination of SDF graphs derived from “add“. Fig. 3. The EFSM of the “add” actor.

184

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 05:07 from IEEE Xplore. Restrictions apply.

here as an example, produces 4 different subgraphs.
To construct the subgraphs, the processing actions of

all actors are grouped according to their corresponding
settings; e.g. if the system has 4 settings, each actor must
contribute 4 (possibly empty) SDFs. It is possible for two or
more isomorphic (identical) SDFs to correspond to different
settings.

The SDFs corresponding to each setting are connected
through their interfaces. For example, in Figure 4, the
control path starting with the texture action has 64 interfaces
of type [tex]: the corresponding interface can be found
inside the actor “IDCT” depicted in Figure 2. Actions of
Figure 4 have also an output named [vid] that is not
connected to any other graph, but serves as the output of the
whole system.

Figure 5 shows a system-wide subgraph that contains
all the actions and their dependencies.

4. SCHEDULING

Scheduling for the RVC model is divided into three parts.
First, actions are assigned to processors. Second, offline
schedules are computed at compile-time. An offline
schedule is a data processing schedule that exists for each
setting. At runtime, an online scheduling and dispatching
mechanism executes the configuration actors and selects a
schedule for data processing.

The runtime system consists of a set of homogeneous or
heterogeneous processors. For now, we assume that the set
of processors in the system is fixed (i.e. we do not account
for the possibility of a processor failing or the addition of
extra processors during runtime).

4.1. Assignment of processors to actions

The first step is to assign each action from each actor to one
of the processors in the system. Each action is mapped to

exactly one processor; each processor may be responsible
for any number of actions. Although it is not mandatory, it
is generally advisable to map all instances of one processing
action to the same processor. This is not problematic
because all the instances of the same processing action are
dependent on their preceding instance, i.e. it is impossible to
execute multiple instances of the same action in parallel.

4.2. Offline scheduling

Offline scheduling must consider the execution time of each
action, which is either assumed to be deterministic, or is the
worst-case execution time. This ensures that inter-processor
communication, which is determined offline, meets its
deadlines.

Configuration actions are executed without explicit
scheduling since their number is small and their control
flow varies at runtime; the processing graphs, in contrast,
are scheduled offline using self-timed scheduling [12],
which easily meets our requirements. Self-timed scheduling
is convenient because it allows the user to impose inter-
processor communication costs and resource sharing, which
may be required for some systems.

Self-timed scheduling always produces a static
schedule, which can then be invoked at runtime. This is
particularly beneficial for MPSoCs, since communication
between processors is hard-coded, and thereby eliminates
the need for synchronization between processors during
data processing.

4.3. Online scheduling

The first step of online scheduling is to execute the
configuration actions that are assumed to represent a small
proportion of the total action count. Thus, the speed at
which their schedules are computed online is more
important than the quality of the schedules produced (details

Fig 5. A subgraph corresponding to one specific setting.

185

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 05:07 from IEEE Xplore. Restrictions apply.

are omitted).
The execution of the configuration actions resolves the

system setting; based on setting, the corresponding offline
processing schedule is selected and dispatched. The new
schedule is appended to any previously-dispatched
processing schedules that are currently executing; their
schedules must not overlap because preemption is not
allowed. This model is similar to permutation flow shop
scheduling (PFSS) [3], which can be implemented
efficiently on a CPU at runtime [13].

4.4. Extended permutation flow shop scheduling

Flow shop scheduling is a specific type of multiprocessor
scheduling that has very elegant theoretical properties that
make it practical for applications such as RVC. We are
given N jobs to schedule on M machines. Each job consists
of M tasks, and the jth task in the job must be scheduled on
machine j. A job can issue its jth task to machine j if the (j-
1)st task is complete and machine j is free. Each task is
assumed to have a predetermined constant processing time.
By definition, each job must have M tasks, one for each
machine. However, by setting the execution time of a task to
zero, the effect is the same as if that task would not exist.
This is called machine skipping in literature.

Permutation flow shop scheduling (PFSS) is a more
restricted version of flow shop scheduling. Here, task j must
be performed for job n-1, before it can be performed for job
n. Usually the goal in solving the PFSS problem is to find a
permutation of jobs which minimizes the makespan (total
schedule length in time units). We also assume that this is
the objective.

Figure 6 shows the Gantt-chart of a PFSS problem
instance consisting of 3 jobs, 3 machines, and 3 tasks per
job. Each task within a job executes on a separate machine
and no-wait timetabling [3] ensures that the next task within
the same job starts immediately upon completion of the
previous task in the same job. The inter-job distance is the
overlap in time between two sequential jobs, and is shown
for jobs B and C in Figure 6.

Previous research [13] suggests that a particularly
efficient implementation of online no-wait PFSS can be
made possible by pre-computing the inter-job distances at
compile-time and storing them into a look-up table D; this
pre-computed information helps the online system
efficiently compute a PFSS and dispatch jobs.

The scheduling method applied here is called extended
permutation flow shop scheduling (EPFSS). It originates
from a computationally efficient implementation of PFSS
and has the ability to represent a larger set of scheduling
problems. EPFSS extends PFSS in two respects.

The first extension to PFSS is to enable dependencies
between tasks by modifying the look-up table D. For
example, the inter-job distance could be increased so that

C1 is forced to start only after B2 finishes. No-wait PFSS
cannot represent these types of dependencies.

The second extension disables dependencies between
tasks. In addition to the inter-job distance look-up table D
this requires a job data look-up table J, which is used to
record the characteristics of all job types. We assume that
this table J also contains a value of inter-task distance,
which tells the distance between tasks within the same job.
In the no-wait timetabling definition this is fixed to zero. In
EPFSS we extend this to allow nonnegative inter-task
distances. This violates the definition of PFSS, since it is
assumed that consecutive tasks are dependent on one
another. EPFSS can remove this limitation, if desired.

EPFSS models the scheduling problem for the RVC
model because the pre-computed subgraph schedules are
precisely of the EPFSS type. The dependencies between
subgraph actions executed on different processors are
dependent on each other in a fine-grained manner that can
not be expressed as a traditional flow shop problem. Figure
7 shows an example of a schedule that can be generated by
EPFSS when the second PFSS extension of disabling
dependencies is applied. The tasks within one job start with
some fixed delay after each other. This delay can be
specified arbitrarily in the job data look-up table J. Note that
EPFFS scheduling is not a way to improve the makespan of
the results: it is a PFSS variation that can model situations
which are beyond the expressive power of PFSS. By
looking at Figures 6 and 7, one can see that the depicted
EPFSS schedule is shorter than the PFSS schedule. This is
true, but the figures depict different problems, so the
comparison of the makespans is meaningless.

Fig. 6. A conventional PFSS schedule.

Fig. 7. An EPFSS schedule.

186

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 05:07 from IEEE Xplore. Restrictions apply.

5. EXPERIMENTS

The transformation and offline scheduling steps described in
Sections 3 and 4 have been implemented to a great extent in
Java and formulated as an OpenDF [4] plugin. In the earlier
phases of the transformations, the EFSMs are represented
with classes provided by the JGraphT package [15] and
during the later stages the SDF graphs are represented with
classes from the SDF4J package [16]. All of these steps are
performed in the same OpenDF environment as the code
generators [5,6] use, which enables smooth interoperability.
However, the practical work to enable the use of these
schedules for code generation has not yet been started.
 The online scheduling method has been implemented in
the C language and there is also a yet unpublished hardware
implementation of it. However, the online scheduling
approach has not yet been incorporated to the OpenDF
environment.

6. DISCUSSION

The RVC model and its scheduling mechanism, described in
Sections 3 and 4, are not applicable to certain types of
systems, for example, those that support control actions
between data processing actions. The conditions outlined in
Section 3.1 imply an algorithm to determine whether a CAL
model application meets the same standards as the RVC
model; if so, they are compatible with the transformation
and scheduling mechanisms described in Sections 3.2, 3.3,
and 4.

Future work may generalize the existing RVC model,
i.e. extend or otherwise change the classification rules of
actions as more complicated video coding algorithms
implemented using the RVC standard emerge. Another
potential extension of this work is the study of the RVC
model as an extension of a more formally established model
than CAL, such as parameterized SDF (PSDF) [14].

7. CONCLUSION

This paper describes a sequence of steps to schedule
Reconfigurable Video Coding models that are specified as
networks of CAL actors. The procedure is based on local
and global graph transformations followed by piecewise
static multiprocessor scheduling. At runtime, the piecewise
static schedules are selected based on the system
parameters, and appended to the ongoing processor
schedule by means of extended flow shop scheduling. A
further step of this work would be to formalize the steps of
the procedure and include them into an evolution of the
CAL2SW code generation tool.

8. REFERENCES

[1] C. Lucarz et al., “Reconfigurable Media Coding: A New
Specification Model for Multimedia Coders,” IEEE Workshop on
Signal Processing Systems, Shanghai, China: 2007, pp. 481-486.
[2] J. Eker and J.W. Janneck, “CAL Language Report,” Tech.
Memo UCB/ERL M03/48, UC Berkeley, 2003.
[3] S. French, “Sequencing and Scheduling: an Introduction to the
Mathematics of the Job-Shop,” Ellis Horwood Ltd, Chichester,
1982.
[4] Open DataFlow Sourceforge Project,
http://opendf.sourceforge.net/
[5] J. W. Janneck, I. D. Miller, D. B. Parlour, M. Mattavelli, C.
Lucarz, M. Wipliez, M. Raulet, and G. Roquier, “Translating
Dataflow Programs to Efficient Hardware: an MPEG-4 Simple
Profile Decoder Case Study,” in Design, Automation and Test in
Europe (DATE), Munich, Germany, 2008.
[6] M. Wipliez, G. Roquier, M. Raulet, J.-F. Nezan, and O.
Déforges, “Code generation for the MPEG reconfigurable video
coding framework: from CAL actions to C functions,” in IEEE
International Conference on Multimedia & Expo (ICME),
Hannover, Germany, 2008.
[7] M. Raulet, M. Babel, O. Déforges, J. Nezan, and Y. Sorel,
“Automatic coarse-grain partitioning and automatic code
generation for heterogeneous architectures,” in IEEE Workshop
on Signal Processing Systems, 2003, Pages 316 – 321.
[8] O. Henniger and P. Neumann, “Test case generation based on
formal specifications in Estelle,” in Proceedings of the IEEE
International Workshop on Factory Communication Systems,
1995. Pages: 135 - 141.
[9] J. T. Buck and R. Vaidyanathan, “Heterogeneous modeling and
simulation of embedded systems in El Greco,” in Proceedings of
the Eighth International Workshop Hardware/Software Codesign,
2000. Pages: 142 - 146.
[10] L. Thiele, K. Strehl, D. Ziegenbein, R. Ernst, and J. Teich,
“FunState-An internal representation for codesign,” in Proceedings
International Conference on Computer-Aided Design, 1999. Pages:
558 - 565.
[11] A. Girault, B. Lee, and E. A. Lee, “Hierarchical finite state
machines with multiple concurrency models,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
18(6), Pages 742 - 760, 1999.
[12] S. Sriram and S. S. Bhattacharyya. "Embedded
Multiprocessors: Scheduling and Synchronization." Marcel
Dekker, Inc., 2000.
[13] J. Boutellier, S. S. Bhattacharyya and O. Silven, "Low-
Overhead Run-Time Scheduling for Fine-Grained Acceleration of
Signal Processing Systems," Proceedings of the IEEE Workshop
on Signal Processing Systems, 2007. Pages: 457 - 462.
 [14] B. Bhattacharya and S. S. Bhattacharyya, “Parameterized
dataflow modeling for DSP systems,” IEEE Transactions on Signal
Processing, 49(10), Pages: 2408 - 2421, October 2001.
[15] JGraph Sourceforge Project,
http://sourceforge.net/projects/jgraph/
[16] SDF4J Sourceforge Project,
http://sourceforge.net/projects/sdf4j

187

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on January 28, 2009 at 05:07 from IEEE Xplore. Restrictions apply.

