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Abstract— This paper presents the comparison of two design
methodologies applied to the design of a co-processor dedicated
to image processing. The first methodology is the classical devel-
opment based on specifying the architecture by directly writing
a HDL model using VHDL or Verilog. The second methodology
is based on specifying the architecture by using a high level
dataflow language followed then by direct synthesis to HDL. The
priciple of developing a dataflow description consists on defining
a network of autonomous entities called actors, which can
communicate only by sending and receiving data tokens. Each
entity in the process of consuming and generating data tokens
performs completely independent and concurrent processing. A
heterogeneous platform composed by a SW processor and the
designed HW co-processor is used to compare the results of
the designs obtained by the two different methodologies. The
comparison of the results shows that the implementations based
on the dataflow methodology, not only can be completed with
an important reduction of design and development time, but
also enable efficient re-design iterations capable of achieving
performances, which are comparable in efficiency to design
obtained by hand written HDL.

I. INTRODUCTION

Since the 70’s, the design of digital systems has known a
continuous evolution. The technology used to realize silicon
has been continually improving and thus the number of
transistors available for digital design on the same silicon
area has been increased. On the same line the complexity
of algorithms and of circuits has followed a similar trend.
Nowadays, the circuits complexity available on a chip has
also generated another phenomenon. Several processing units
such as processors, FPGAs and DSPs are available on the
same heterogeneous platform. Nowadays, one of the major
challenges is how to exploit all the processing resources avail-
able on such platforms for implementing complex applications,
but using only limited developments and design resources. In
other words, design productivity and efficient usage of the
platform processing resources are the fundamental challenges
of current and next generation designs. VHDL was introduced
20 years ago to simplify the design of the logic circuits by
raising the abstraction layer avoiding the designer to work at
the gate level. The dataflow methodology described in this
paper, is based on CAL language[1] and on the synthesis
of HDL directly from the dataflow model abstraction layer.
Its introduction has exactly the same objective: raise the

abstraction layer of a design. Thus, the designer should not
have to care about most of the low level implementation issues
present in VHDL or Verilog, but rather focus on higher level
architectural issues such as how efficiently dataflow trough
the different architecture components and how to partition
and map the algorithm/processing elements on the different
components of actual heterogeneous platforms. The aim of this
work is to show how CAL design methodology can lead to
efficient hardware designs within a shorter development time
and lower design resource usage than classical HDL methods.
In doing so, the paper introduces the essential concepts and
elements of the new dataflow methodology based on writing
networks of CAL actors [1], [2], [3] and compares the results
of a design case using the new approach and the classical
development at VHDL level.
A heterogeneous platform composed by a SW processor and
a HW co-processor is used for the comparison. An image
processing application partitioned into the SW and HW com-
ponents is designed using CAL and finally compared to the
implementation obtained by a classical HDL approach [4] [5]
[6]. The main novelty of the approach is the possibility of spec-
ifying both SW and HW components, using the same language
CAL, and then to generate automatically VHDL or Verilog
at RTL level. Different versions of CAL models have been
developed in order to explore the achievable performances of
the automatic HDL generation tool.
The paper is organized as follows. Section II presents the
dataflow concept and the ”modus operandi” of the CAL
language. Then, the heterogeneous platform (i.e. the smart
camera) and the co-processor unit are presented in details in
section III. The CAL dataflow model of the co-processor is
presented in section IV. The implementation results of the
different versions of the CAL dataflow models and the com-
parison with the hand written version in HDL are presented in
section V. Finally, conclusions and future works are reported
in section VI.

II. MODELING DATAFLOW SYSTEMS USING CAL

There are many applications that fit well the semantics of
dataflow systems. An example is multimedia systems with
flowing streams of data within processing blocks. Developing
true dataflow models of such systems using general purpose



programming languages or hardware description languages is
possible. However, the genericity of concepts and operators
of these languages make the description of the models more
complicated. This implies that the models are harder and
more time-consuming to create and manipulate. It may be
better if they were modelled directly using a specific dataflow
language.

A. CAL language

CAL Actor Language is a language based on the Actor
model of computation for dataflow systems. It provides many
natural concepts to facilitate modeling of those systems [1].
A dataflow model expressed in CAL is composed by a set of
independent ”actors” and their connection structure. It makes a
network of actors. An actor is a stand alone entity which has its
own internal state represented by a set of state variables and it
performs computations by firing actions. It has a set of input
and output ports through which it communicates with other
actors by passing data tokens. An actor must have, at least, one
action to do computations. Actions execute (or fire) based on
the internal state of the actor and depending on the availability
and values of tokens at the input ports. An action may consume
tokens from inputs, may change the internal state of the actor,
and may produce tokens at the outputs. Action execution is
modeled as an atomic component which means that no other
action, of the same actor, can execute while an action is
executing or interrupting any executing action. CAL provides
scheduling concepts to control the executions order of actions
inside an actor. CAL actors can be combined into a network
of actors to build larger systems called network of actors. This
is achieved by connecting the input and output ports of actors
together to define the communication structure of the model
(Figure 1). These communication channels are constituted by
FIFOs, which in the CAL computation model have infinite
size. Using CAL, designers can only focus on the model-
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Fig. 1. A dataflow network with actors connected by FIFO channels.

ing of the dataflow system (actors and their communication
topology) and do not need to care much about the low level
of details to implemente the communication between actors
(i.e. message passing protocols, queues, ...). The underlying
computation model, simulation and synthesis system take care
of all communication driven issues. However, it also provides
to the designer the control over communication parameters
such as length of queues and types of exchanged data. In this
paper, we focus only on the issues related to the development

of a CAL model of HW accelerators and on the results of the
implementations.

B. Workflow for CAL-based designs

One of the current challenges of designing embedded sys-
tems composed by mixed SW and HW components is the
difficulty and the design efforts needed for specifying, model-
ing and implementing complex signal processing systems on a
heterogeneous platform. CAL addresses this issue by unifying
the hardware and software design and implementation process
in a single flow. In a CAL-based design flow, the whole system
is modeled and implemented in CAL. After that, designers can
decide on HW/SW partitioning for the final implementation. A
subset of the model can be used to generate synthetizable HDL
code. The generated code can also be combined with existing
HDL designs. Software can be generated in a similar manner
based on the partitioning decision[3]. In such workflow, the
partitioning between hardware and software can be easily
modified since the same source is used for generating both
parts. Figure 2 shows the complete CAL design flow for the
implementation of a smart camera platform. It is composed of
a general-purpose processor for running SW modules and a
FPGA platform including specialized hardware.
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Fig. 2. Graphic representation on how partitions of the CAL dataflow models
can be mapped on a heterogeneous SW and HW platform using synthesis
tools.

III. SMART CAMERA PLATFORM

In this work, the test platform is a ”smart camera” based on
an embedded HW/SW co-processor designed and developed
in a previous work [4]. Cameras with embedded co-processors
enable the implementation of more powerful processing due



to the high degree of flexibility and to the clear task separation
between the different units. The efficiency and the processing
tasks have been tested and validated implementing a real
application. This application is the detection and decoding of
bar codes in a postal sorting application [5], described in more
details hereafter. The whole co-processor has been specified
and designed manually in VHDL. The high level of perfor-
mance of the co-processor have been obtained exploiting the
potential parallelism at the different stages of the processing.
The communication and task controllers are rather complex
due to the large variety of implemented functionalities. There-
fore, obtaining an efficient model for direct HW synthesis
by means of a high level dataflow description represents a
real challenge. The system infrastructure of the SW and HW
platform is presented below. The platform is composed of an
embedded frame-grabber and is equipped, at different levels,
of a processing unit for the image captured by the sensor.
Figure 3 illustrates the main architectural components of the
smart camera with embedded co-processor (Xilinx FPGAs)
and processor (Nexperia). Two FPGAs are used to acquire and
pre-process the image coming from the camera sensor. The
main processor is in charge of the high-level processing tasks.
The co-processor deals with the acquisition, pre-processing
tasks specific to the application, and the lower-level tasks.
These latter are characterized by processing regularity and a
high level of parallelism. Figure 3 illustrates the main archi-
tectural components of the smart camera with the embedded
co-processing stage.
In this section, the platform communication infrastructure is
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Fig. 3. Simplified smart camera description.

described showing that when building a CAL dataflow model it
is not necessary to redefine the implementation of the existing
hard-wired communication interfaces and busses.

A. The communication between the different platform compo-
nents

The communication infrastructure in data dominated sys-
tems is an essential part in the development of an embedded
system. The design choices aim at obtaining the largest
achievable bandwidth between the four components of the
platform. In developing the CAL dataflow model, ”Core” or

”drivers” already written by the component vendors (Xilinx
and Nexperia in this case) have been used. In this way,
a reduction of the development time and resources were
achieved. The components of the communication infrastructure
are:

• Sensor => acquisition FPGA,
• Acquisition FPGA => pre-processing FPGA,
• Acquisition FPGA => processor,
• Pre-processor FPGA => processor.

The communication between the sensor and the acquisition
part is specific for each image sensor. Consequently, the
interface must be built accordingly. The connection between
the acquisition part and the processing part is standard and
independent from the sensor. In the described design case,
the connection between the co-processor and the processor
is implemented with a standard PCI bus. Hence, the co-
processor is independent from the processor and could be
used as embedded IP with any PCI system. The co-processor
architecture can achieve full data rate transfer on the PCI
bus. The communication between the two FPGAs is either
a PCI communication (same bus and the processor master
this communication channel) or a RocketI/O connection (serial
high-speed connection specific to Xilinx component).
In FPGAs, all communications are built with the Core Gen-
erator tool of Xilinx, which yields optimized designs. In the
processor, a driver is included in the dedicated component
library. Thus, it is not necessary to redefine and to implement
again these parts of each component in the CAL model.
For such reasons, only the core architecture of the co-processor
FPGA is addressed in this design case study. For performance
reasons, the pixels of the image from the sensor are transferred
in words of 32 bits.

B. Co-processor description

The Co-processor is composed of four components as
indicated in Figure 4. These components are:

• The interface with the configuration memory
• The co-processor manager
• The external memory controller
• The processing modules
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Fig. 4. High level architecture of the co-processor.

The interface connects the configuration memory and the co-
processor manager. The configuration defines: the image size,
the processing tasks and the start address in the external



memory where the results of the image processing are stored.
The co-processor manager deals with the whole system by
controlling all the components. The memory manager accesses
the external memory to acquire an image according to the pro-
cessing. The processing module performs the actual processing
according to the desired configuration.
The processing modules that have been developed by writing
VHDL are:

• Median filter 3x3,
• Transpose,
• Adaptive local binarization,
• High pass filter 11x1,
• Dilation 31x1,
• Sub sample by 4 in width and by 4 in height.

C. Bar code reading application

The postal sorting is a real-world example chosen to
show the processing possibilities and the achieved level of
parallelism of the system. The goal of this application is to
detect and decode bar codes on letters, as shown in Figure 5,
to enable automatic sorting at different stages of the logistic
postal letter handling. This application is a good example of
usage of all the processing possibilities of this heterogeneous
platform. Some processing tasks are implemented by the
co-processor and the others by the processor.
This section describes how the bar code is decoded. Different

Fig. 5. Application of the reading of a bar code.

processing steps are necessary to complete the process. In
sequence, a bar code is detected by applying: a transposition,
a high pass filter, a dilation, a sub-sampling, a ”blobbing”
and finally a decoding on the area where the bar code has
been detected. The first processing stage is a transposition.
The transposition rotates the image acquired line by line
vertically of 90 degrees. As described in [6], a transposition
is necessary because the other processing stages are specific
to a horizontal reading. The first processing is a high pass
filter. The high pass filter deletes the background and raises
the white bar code. The resulting image is stored into the
memory, but two others processing tasks are built into
the FPGA co-processor. The two pre-detection tasks are the
dilation and the sub-sampling. The first step dilates the bars of
the bar code to build white areas. This step is necessary later
to correctly identify the bar code location within the image.
The second step reduces the image size without changing
its content relevance. Then, the small image obtained is
sent to the processor using less bandwidth on the PCI bus.
These four tasks are all executed by the co-processor. The
”blobbing” executed by the processor consists in locating the
two or three largest ”white” areas in the small image which
provide the location of the bar codes. A command is sent

to the co-processor to send only the regions determined by
the blobbing. These regions are taken into the image without
background stored previously into the memory. In order to
decode the bar code, the processor executes several 1-D FFT
on lines oriented in different directions. In reality, only the
part delimited by the rectangular region is read as illustrated
in Figure 5.

IV. CO-PROCESSOR DATAFLOW MODEL

In this work, we want to compare the implementation of a
subset of the smart camera platform in VHDL with its equiva-
lent implementation in CAL. Two versions of the coprocessor
implemented in CAL are used for the comparison. The first
design is a exact transposition of the VHDL architecture into
a CAL dataflow architecture. The comparison of this design
with the VHDL version provides the information on how the
CAL toolset is efficient in generating HDL code from a given
dataflow architecture. In the second design, the coprocessor is
a complete redesign of new architecture at CAL abstraction
layer providing the same functionality of the VHDL model and
the original design. Such new design exploits the properties of
the CAL to HDL compiler toolset to reduce the on-chip area
of the original design. Developing a CAL design by successive
architectural refinements can be performed much more quickly
compared to modifying a HDL design.

A. CAL co-processor design of the handwritten HDL archi-
tecture

This section describes the architecture of the original co-
processor design (illustrated in Figure 6) and how it has
been transposed into the CAL dataflow model. As shown in
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Fig. 6. CAL Dataflow HDL architecture of the co-processor.

the picture, ”Acquisition Processing”, ”Configuration Memory
Manager”, ”Processing Task Controller”, ”Processing” and
”External Memory Manager” are architectural components
that have been fully specified in CAL.
Processing tasks have been created to support the described



application. Such processing tasks written in CAL are : High
Pass Filter, Dilation, and Transpose. Their implementations in
CAL respect the same architecture of the original design with
just minor modifications to I/O ports. These actors are not
explained hereafter.
The dataflow description of the co-processor is reported in
Figure 6. The Acquisition Processing actor receives its config-
uration by the processor via the PCI bus. Then, it produces two
addresses which are used to retrieve data in the configuration
memory. When it receives data 1 and data 2 coming from
the configuration memory, it produces addresses to store the
image into the external memory. data 1 is the image size
and data 2 contains the information about the localization of
the read/write operation in the external memory (addresses).
When the acquired image is completely saved in the SRAM,
the Processing Tasks Controller actor receives its configuration
data sets. Like the Acquisition Processing actor, it fetches data
3, data 4 and data 5 into the configuration memory. Then,
it sends the list of the selected tasks to the actor processing
and their associated configurations. Afterwards, the Processing
Tasks Controller actor waits for the updated configurations
produced by ”Processing” actors. If number of processing
tasks are realized, the resulting image is sent via the PCI bus.
The Configuration Memory Manager and External Memory
Manager actors are only used to switch the data or the
addresses towards the right actors.
The subsections below explains in details behavior of the
different actors illustrated in Figure 6.

1) ”Acquisition processing” actor: The actor ”Acquisition
Processing” is illustrated in Figure 7. Its function is to interpret
the configuration sent by the processor via the PCI bus. These
configuration data sets are stored temporarily into the Config.
Memory. Configuration data are the size of the image and its
place into the physical memory. In details, the ”Acquisition
Task Convertor” actor selects the right configuration data in
the Config. memory thanks to the ”Data Requester” actors.
The ”memory start convertor” and ”Picture Size Convertor”
actors send the following tokens to the ”Address Generator”
actor : Height, Width, Start Address and Memory Bank. This
latter actor generates also addresses used to store the image
into the external memory.
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Fig. 7. Dataflow model of the ”Acquisition Processing”.

2) ”Processing tasks controller” actor: The configuration
of the processing which is sent by the processor is obtained
with the same principle than the previous actor. These config-
urations are: size of the resulting image, place in the physical
memory of the result, list and number of processing tasks.
The four ”Processing Tasks Manager” actors manage correctly
the Height, Width, Address Start and Memory Bank parameters
in function of the number of processing tasks. These actors
communicate with the actor ”Processing”, described hereafter,
via wires ”underway” and ”new”. ”underway” is the current
value of each parameter and ”new” the new parameters sent
by ”Processing” actors. Once processing tasks are finished,
the final step is to send a resulting image to the processor.
This last step is processed by the ”Processing Manager” and
”Address Generator” with the last configuration values.

Processing
Tasks

Convertor
PCI

Data
Requester

Picture
Size

Convertor

Memory
Start

Convertor

Data
Requester

Processing
Tasks

Manager

Processing
Tasks

Manager

Processing
Tasks

Manager

Finish (A)

Finish (B)

Processing
Tasks

Convertor

Data
Requester

Processing
Manager

Address
Generator

A
B

C

D

Address

Data

Address

Data

Address

Data

width

height

29th bit

7th bit

Nb tasks

Tasks

underway

underway

underway

underwayaddress start
memory bank

width

height

addr.s.

mem.b. address

new

new

new

new

Finish (C)

Finish (D)

Processing
Tasks

Manager

Fig. 8. Dataflow model of the ”Processing Tasks Controller”.

3) ”Processing” network: ”Processing” is a network of
actors that performs various processing tasks on the images
(Figure 9). As explained above, this network receives the
current parameters into ”Processing Manager” actors. Only
one ”Processing manager” actor reacts in function of the
selected processing tasks. After, the right ”Processing” actor
(or network) receives the parameters and execute its task.
When the processing is finished, parameters are updated and
sent to the ”Processing Task Controller”. Each processing
operation in this network (denoted by ”Processing N”) can be
a single actor or a network of actors. In this design there are
three processing operations: Transpose, High pass filter, and
Dilation. These operation are partitioned into multiple actors
which allow to perform actions in parallel.

4) ”External Memory Manager” and ”Configuration Mem-
ory Manager” actors: The ”External Memory Manager” actor
implements two functionality: read and write. The write func-
tion generates the addresses and the data. The read function
generates the addresses and the data according to addresses
shunting. The actor ”Address Convertor” provides the infor-
mation if the address is in read mode or in write mode. The
”Configuration Memory Manager” actor implements a similar



Processing
Manager Processing 1

Processing
Manager Processing 2

Processing
Manager Processing N

Tasks

Configurations

New Configurations

New Configurations

New Configurations

M
E
M
O
R
Y

A
C
C
E
S
S

Fig. 9. Dataflow model of the ”Processing”.

Write
Manager

Address
convertor

DataData A

Address
Data B

Address Z
Addr

Manager

Data
Manager

Address Y

Address B

Address A

Address

Data Y

Data Z
Data

Address

R/W
Read Manager

Fig. 10. Dataflow model of the ”memory manager”.

functionality which is the read part of the ”memory manager”
actor.

B. Redesign of the coprocessor

Beside the transposition of the architecture written from
VHDL in CAL, described in the previous sections a new
architecture has been completely redesigned directly in CAL
with no more correspondences with the original VHDL refer-
ence architecture (Figure 11). Groups of actors that operate
sequentially and do not benefit much from parallelism are
merged into a larger actor. Such actors have almost the same
functionality of all actors of the transposed architecture. In the
new design, actors ”Acquisition Processing”, ”Configuration
Memory Manager”, and ”Processing Task Controller” are
merged into a single actor, ”Controller”. This actor deals with
commands sent via the PCI bus, reads and interprets configu-
ration data stored in the configuration memory and controls the
processing actors. It initiates appropriate processing operations
and collects and stores results of processing. The actor ”Mem-
ory Controller” provides the interface to the SRAM memory
and arbitrates access requests made by various sources. A
processing network includes three processing operations: High
Pass Filter, Dilation, and Transpose. As above, each of these
networks are redesigned by merging some of their actors into
larger actors and thus the number of actors in each network is
reduced compared to the original transposed design described

above. However, each processing operation implements the
same functionality and it is equivalent to the original design.
One objective of the new data flow redesign, where actors
are merged into larger actors is to achieve better tradeoffs
between area and throughput. Such possibility is achievable at
the level of the CAL design. Since each actor when converted
to HDL has an area overhead for reset circuitry, internal finite-
state-machine, input and output token queues and circuitry
for the communication channels, a non negligible resource
overhead is required when too many actors are instantiated.
If such actors do not usually work in parallel there is no
throughput penalty in merging them and saving silicon area.
This usually holds when dealing with many small actors with
a small number of actions. On the other hand, due to the
fact that actions of an actor cannot be executed in parallel,
it must be considered that throughput could decrease as the
number of actions in an actor increases. This suggests that for
those parts of the system that mostly work in sequence and
do present little or no parallelism, it is better to use a fewer
number of actors to save resources. For parts with a relevant
amount of parallelism is it better to use a higher number of
actors to achieve higher throughput. The fact that such trade-
offs can be developed at CAL level using a compact high level
representation, constitutes a very attractive feature of CAL
based design.
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V. RESULTS AND PERFORMANCES COMPARISON

In this section, the results of the synthesis in HDL and RTL
of the models of the architecture developed in CAL dataflow
language are reported and compared with the hand written
model.

A. Results of dataflow language

When the dataflow model has been developed, it is simu-
lated using the Opendataflow simulator [7] to check for the
correct functionality. Its equivalent HDL code is generated
using the tool described in [2] and then it is synthesized. The
results of the synthesis is reported in Tables I and II for the
original and revised design. Several variant configurations for
the coprocessor have been tested to explore the performance



of the conversion tool and the appropriateness of the modeling
methodology. Initially, a version of the co-processor without
image processing functions is reported. This includes only
functionality required for scheduling and dataflow controls
which are highly adapted to CAL framework. As a result, both
design have better area performance than the VHDL design
while both preserve the same processing throughput.
In the redesigned coprocessor, the hardware overhead is re-
duced compared to the original design. This is due to the lower
number of actors in the CAL model, since each actor instanti-
ation implies overheads in the synthesized hardware (i.e. fifos
and handshake protocols for each data token connection).
In terms of frequency and processing time, the maximum
achievable frequencies for the original and the revised design
are 90 MHz and 100 MHz respectively. The processing time
at these frequencies for a test image of 1712 × 180 is about
0.85 ms and 0.77 ms. Both designs present a processing time
of 1.54 ms at 50 MHz which is the working frequency for the
example application.
Other scenarios experimented in this work include the usage of
the processing network. In one case it includes only the high
pass filter and in the other it includes the complete processing
tasks (high pass filter, transpose, and dilation). Processing
tasks introduce additional delay and as result the throughput
is reduced compared to the scenario with no processing. The
same considerations can be seen with the whole processing
used in the design case application. For the original design
the clock frequency is the same for the three scenarios. The
revised design has higher clock frequency in the two first
scenarios and has a frequency equal to the original design
for the scenario with full processing. Nevertheless, all clock
frequencies are completely in accord with the specification
of the application. Processing delays for the original design
are 3.57 ms at 50 MHz and 1.92 ms at 90 MHz and for the
revised design are 7.30 ms at 50 MHz and 4.06 ms at 90 MHz.
Throughput comparison between the two designs shows that
both achieve the same performance in the first comparison
scenario, but the original design performs better in scenarios
with processing tasks included. The reason is that in the first
scenario all tasks are performed sequentially and we do not
benefit from having actors working in parallel. For processing
operations, the potential parallelism is high so the original
design which presents a large number of actors working in
parallel yields a higher throughput at the cost of larger area.

B. Performances comparison

Table I, Table II and Table III reports the results of the two
methodologies in terms of number of occupied slices, slice
number of Flip Flops, number of four input LUTs, frequency
and throughput. In these tables, the size of files that describe
the same elements in VHDL and CAL is also reported.
Table I reports the results of the co-processors implemented
in CAL. Table II reports the results of hand written VHDL
as described in [6]. It has to be be noticed that the PCI core
interface is not taken into account by the results reported in
the tables. The results show that all along the development of

the dataflow CAL model the hardware resources used in the
FPGAs are also lower or nearly the same in the revised design
than the one necessary by the handwritten VHDL design.
A second interesting point is that the code size of CAL is
by far smaller than the code size of VHDL with a factor
ranging from 3 up to 10. However, even if such factors are
already an excellent result, it can be noticed that supplying
CAL with a library of basic functions similar to what in
VHDL are Concatenation(),Bitselect() and similar low level
library functions, such compactness factor can largely further
improve. Moreover, CAL code is better structured and results
are much easier to understand and analyze than an equivalent
VHDL or Verilog design.
In terms of maximum achievable frequency, the hand written
architecture remains better and consequently the achievable
data throughput at the maximum frequency is higher. However,
considering that the application requires processing at 50 MHz,
when the two architecture work at the same frequency the
throughput for the given application example is the same for
both the original design and the revised design. However, in
terms of HW resources, the revised design achieves better
results compared to the original design and the handwritten
design. Another important point is the reduction of the devel-
opment time in CAL by a factor of about four compared to
the hand written coding. Thus, with these results it is easy to
say that the development time in dataflow is much faster than
the one of a standard HDL development language.
Figure 12 summarizes the main components of a design:
platform resource usage, design productivity and performance.
For this application example size area is reduced in one of the
case (redesigned CAL), the development time is considerably
reduced by at least a factor four and the processing/data
throughput is approximately the same for both methodologies.
Moreover, the code size written for the same application is
reduced by a factor of 3.
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Area 1.20 0.87
Throughput 1.00 0.49
Development 0.25 0.25
Code size 0.36 0.37

VHDL Hand written

1.00

0.25
0.36

0.49

0.25
0.37

1.20

0.87

Area Throughput Development time Code size

CAL Dataflow HDL architecture

New CAL Dataflow architecture

VHDL Handwritten

Fig. 12. Comparison to VHDL reference design.

VI. CONCLUSION & FUTURE WORKS

In this paper two design methodologies, a classical approach
with handwritten HDL and a CAL dataflow development, are
compared. The performance of dataflow approach and the per-
formance of the conversion from CAL to HDL are evaluated.
The results reported in section V are very promising. Beside a
slight reduction of the maximum achievable frequency, other
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design results are improved, particularly in terms of HW
resources for the revised design and throughput for the original
design. Moreover, development time and code size in both
CAL model examples are reduced of a relevant factor, enabling
interesting redesign iteration options.
Several improvements could be further applied to the method-
ology tested so far. The first is certainly to include a library
of basic low level function to ease CAL code writing and
considerably reduce the size of the code. The second is to
continue the improvement and the optimization of the HDL
generation tool as well as implementing extensions of the
OpenDF framework functionality.
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