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Abstract. Modern embedded devices (e.g. PDAs, mobile phones) are now incor-
porating Java as a very popular implementation language in their designs. These
new embedded systems include multiple complex applications (e.g. 3D rendering
applications) that are dynamically launched by the user, which can produce very
energy-hungry systems if they are not properly designed. Therefore, it is crucial
for new embedded devices a better understanding of the interactions between the
applications and the garbage collectors to reduce their energy consumption and
to extend their battery life. In this paper we present a complete study, from an
energy viewpoint, of the different state-of-the-art garbage collectors mechanisms
(e.g. mark-and-sweep, generational garbage collectors) for embedded systems.
Our results show that traditional solutions of garbage collectors for Java-based
systems do not seem to produce the lowest energy consumption solutions.

1 Introduction

Currently Java is becoming one of the most popular choices for embedded/portable
environments. In fact, it is suggested that Java-based systems as mobile phones, PDAs,
etc. will enlarge their current market from around 150 million devices in 2000 to more
than 700 millions at the end of 2005 [20]. One of the main reasons for this large growth
is that the use of Java in embedded systems allows developers to design new portable
services that can effectively run in almost all the available platforms without the use
of special cross-compilers to port them to different platforms, as happens with other
languages (e.g. C or C++). Nevertheless, the abstraction provided by Java creates an
additional major problem, which is the performance degradation of the system due to
the inclusion of an additional component, i.e. the Java Virtual Machine or JVM, to
interpret the native Java code and to execute it onto the present architecture.

In recent years, a very important research effort has been done for Java-based sys-
tems to improve performance up to the level required in new embedded devices. This
research has been mainly performed in the JVM. More specifically, it has focused on
optimizing the execution time spent in the automatic object reclamation or Garbage
Collector (GC) subsystem, which is one of the main sources of overall performance
degradation of the system.
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However, the increasing need for efficient systems (i.e. low-power) limits very sig-
nificantly the use of Java for new embedded devices since GCs are usually efficient
enough in performance, but very costly in energy and power. Thus, efficient (from the
energy viewpoint) automatic DM reclamation mechanisms and methodologies to define
them have to be proposed for a complete integration of Java in the design of forthcoming
very low-power embedded systems.

In this paper we present a detailed study of the energy consumed in current state-
of-the-art GCs (i.e. generational GCs, mark-and-sweep, etc.), which is the first step to
design custom energy-aware GCs for actual dynamic applications (e.g. multimedia) of
embedded devices. The remainder of this paper is organized in the following way. In
Section 2 we summarize some related work. In Section 3 we describe the experimental
setup used to investigate the energy consumption features of GCs and the representative
state-of-the-art GCs used in our study. In Section 4, we introduce our case studies and
present the experimental results attained. Finally, in Section 5 we draw our conclusions.

2 Related Work

Nowadays a very wide variety of well-known techniques for uniprocessor GCs (e.g.
reference counting, mark-sweep collection, copying garbage collector) are available in
a general-purpose context within the software community [11]. Recent research on GC
policies has mainly focused on performance [6]. Our work extends their research to the
context of energy consumption.

Eeckout et al. [8] investigate the microarchitectural implications of several virtual
machines including Jikes. In this work, each virtual machine has a different GC, so their
results are not consistent related to memory management. Similarly, Sweeney et al. [18]
conclude that GC increases the cache misses for both instruction and data. However,
they do not analyze the impact of different strategies in the total energy consumed in
the system as we do.

Chen et al. [7] focus in reducing the static energy consumption in a multibanked
main memory by tuning the collection frequency of a Mark&Sweep-based collector that
shuts off memory banks that do not hold live data. The reduction of leakage approach
is parallel to ours and can be used complementary.

Finally, a large body of research on memory optimizations and techniques exists for
static data in embedded systems (see e.g. [5, 14] for good tutorial overviews). All these
techniques are complementary to our work and are applicable in the part of the Java
code that accesses static data in the dynamic applications under study.

3 Experimental Setup

In this section we first describe the whole simulation environment used to obtain de-
tailed memory access profiling of the JVM (for both the application and the collector
phase). It is based on cycle-accurate simulations of the original Java code of the ap-
plications under study. Then we summarize the representative set of GCs used in our
experiments. Finally we introduce the sets of applications selected as case studies.
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3.1 Simulation Environment

Our simulation environment is depicted in Figure 1 and consists of three different parts.
First, the detailed simulations of our case studies have been obtained after modifying
significantly the code of Jikes RVM (Research Virtual Machine) from the Watson Re-
search Center of IBM [9]. Jikes RVM is a Java virtual machine designed for research. It
is written in Java and the components of the virtual machine are Java objects [10], which
are designed as a modular system to enable the possibility of modifying extensively the
source code to implement different GC strategies and custom GCs. We have used ver-
sion 2.3.2 along with the recently developed memory manager JMTk (Java Memory
management Toolkit) [9].

The main modifications in Jikes have been performed to integrate in it the Dy-
namic SimpleScalar framework (DSS) [21], which is an upgrade of the well known
SimpleScalar simulator [4]. DSS enables a complete Java virtual machine simulation
by supporting dynamic compilation, threads scheduling and garbage collection. It is
based on a PowerPC ISA and has a fully functional and accurate cache simulator. We
have included a cross-compiler [12] to be able to run our whole Jikes-DSS system onto
the Pentium-based platform available for our experiments instead of the PowerPC tra-
ditionally used for DSS. In our experiments, the memory architecture consists of three
different levels: an on-chip SRAM L1 memory (with separated D-cache/I-cache), an on-
chip unified SRAM L2 memory of 256K and an off-chip SDRAM main memory. The
L1 size is 32K and the L1 associativity has been tested between 1-way and 32-ways.
The block size is 32 bytes and the cache uses and LRU blocks replacement policy.

Proposed Simulation Environment

Jikes RVM 
Linux/ PowerPC

Simulation results
 (instruction and data accesses)

Dynamic SimpleScalar

Linux/ IA32

cross-compiler

updated analytical Cacti Model for 0.13um 
(final energy values calculation)

Fig. 1. Graphical overview of our whole simulation environment

Finally, after the simulation in our Jikes-DSS environment, energy figures are cal-
culated with an updated version of the CACTI model [3], which is a complete en-
ergy/delay/area model, scalable to different technology nodes, for embedded SRAMs.
For all our results shown in Section 4, we use the .13µm technology node. In our en-
ergy results for the SDRAM main memory we also include static power values (e.g.
precharging of a bank, page misses, etc.) that have been derived from a power estima-
tion tool of Micron 16Mb mobile SDRAM [13].
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3.2 Studied State-of-the-Art Garbage Collectors

Next, we describe the main differences among the studied GCs to show how they can
cover the whole state-of-the-art spectrum of choices in current GCs. We refer to [11]
for a complete overview of garbage collection techniques and for further details of the
specific implementation used in our experiments with Jikes [9].

In our study all the collectors fall into the category of GCs known as tracing stop-
the-world [11]. This implies that the running application (more frequently known as
mutator in the GCs context) is paused during garbage collection to avoid inconsistencies
in the references to dynamic memory in the system. To distinguish the live objects
among the garbage, the tracing strategy relies on determining which objects are not
pointed to by any living object. To this end, it needs to traverse the whole relationship
graph through the memory recursively. The way of reclaiming the garbage produces
the different tracing collectors of this paper. Inside this class we study the following
representative GCs for embedded devices: mbdlma@hotmail.com - Mark-and-sweep
(or MS): the allocation policy uses a set of different block-size free-lists. This produces
both internal and external fragmentation. Once the tracing phase has marked the living
data, the collector needs to sweep all the available memory to find unreacheable objects
and reorganize the free-lists. The sweeping of the whole heap is very costly and to avoid
it in the Jikes virtual machine, the sweep-phase is implemented as lazy. This means that
the sweep is delayed up to the allocation phase. This is a classical collector implemented
in several Java virtual machines as Kaffe [2], JamVM [15] or Kissme [16].

- Copying collector (SemiSpace or SS): it divides the available space of memory in
two halves, called semispaces. The objects that are found alive are copied in the other
semispace in order and compacted.

Generational Collectors: in this kind of GCs, the heap is divided into areas according
to the antiquity of the data. When an object is created, it is assigned to the youngest
generation, the nursery space. As objects survive different collections they mature, that
is to say, they are copied into older generations. The frequency with which a collection
takes place is lower in older generations.

The generational collector can manage the distinct generations with the same policy
or assign to each one different strategies. We consider here two options:

– GenCopy: a generational collector with semispace copying policy in both nurs-
ery and mature generation. This collector is used in the BEA JRockit virtual Ma-
chine [19] and the SUN J2SE(Java 2 Standard Edition) JVM by default uses a very
close collector with a Mark&Compact strategy in the mature generation.

– GenMS: a hybrid generational collector with semispace copying policy in the nurs-
ery and mark-and-sweep strategy in the mature generation. The Chives Virtual Ma-
chine [1] uses a hybrid generational collector with three generations

Copying collector with Mark-and-Sweep (or CopyMS in our experiments): It is
the non-generational version of the previous one. Objects that survive a collection are
managed with a mark-and-sweep strategy and therefore they are not moved any more.

In Jikes, these five collectors manage objects bigger than a certain threshold (by
default 16K) in a special area. Jikes also reserves space for immortal data and meta data
(where the references among generations are recorded, usually known as the remem-
bered set). These special memory zones are also studied in our experimental results.



Energy Characterization of Garbage Collectors 73

Finally, it is important to mention that, even though we study all the previous GCs
with the purpose of covering the whole range of options for automatic memory man-
agement, real-life Java-based embedded systems typically employ MS or SS since they
are initially the GCs that possess less complex algorithms to implement; Thus, theo-
retically putting less pressure in the processing power of the final embedded system
and achieving good overall results (e.g. performance of memory hierarchy, L1 cache
behaviour, etc.)
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Fig. 2. Energy figures for L1-32K, direct mapped and LRU replacement policy

3.3 Case Studies

We have applied the proposed experimental setup to the GCs presented in the previous
subsection running the most representive benchmarks in the suite SPECjvm98 [17] for
new embedded devices. These benchmarks could be launched as dynamic services and
extensively use dynamic data allocation. The used set of applications is the following:

222 mpegaudio: it is an MPEG audio decoder. It allocates 8 MB + 2 MB in the LOS.

201 compress: it compresses and then uncompresses a large file. It mainly allocates
objects in the LOS (18 MB) while it uses only 4MB of small objects.

202 Jess: it is the Java version of an expert shell system using NASA CLIPS. It is
compound fundamentally of structures of sentences ‘if-then’. It allocates 48 MB (plus
4 MB in the LOS) and most objects are short-lived.

205 Raytrace: raytraces a scene into a memory buffer. It allocates a lot of small data
(155 MB + 1 MB in the LOS) with different lifetimes.

213 javac: it is the java compiler. It has the highest program complexity and its data is
a mixture of short and quasi-inmortal objects (35MB + 3 MB in the LOS).

The suite SPECjvm98 offers three input sets(referred as s1, s10, s100), with differ-
ent data sizes. In this study we have used the medium input data size, represented as s10,
as we think it is more representative of the actual input sizes of multimedia applications
in embedded systems.
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4 Experimental Results

This section shows the application of the previously explained experimental setup (see
Section 3 for more details) to perform a complete study of automatic dynamic memory
management mechanisms for embedded systems according to key metrics in embedded
systems (i.e. energy, power and performance of the memory subsystem). To this end,
in this section we first analyze the dynamic allocation behaviour of the different SPEC
benchmarks and categorize them in dynamic behaviour scenarios. Then, we discuss
how the different GC strategies respond to each scenario. Finally, we study how several
key features of the memory hierarchy (i.e. associativity of the cache and the size of
main memory) can affect each GC behavior from an energy consumption point of view.

4.1 Analysis of Data Allocation Scenarios for JVM in Embedded Systems

After a careful study of the different data allocation behaviours encountered in the SPEC
benchmarks, we have been able to identify three types of scenarios:

1. The first scenario related to benchmarks that employ a very limited memory space
within the heap, such as 222 mpegaudio in SPEC. In fact, since it allocates a very
reduced amount of dynamic memory, it is usually not considered in GC studies. Nev-
ertheless, as we can see in figure 2(a) the GC choice influences the virtual machine
behavior during the mutator phase (due to allocation policy complexity and data lo-
cality) and it can achieve, if correctly selected, up to a 40% global energy reduction.
Hence, we are including it as representative example of this kind of benchmarks, which
in reality are not so infrequent since many traditional embedded applications (e.g. MP3
encoders/decoders, MPEG2 applications, etc.) use static data and only few data struc-
tures demand dynamic allocations.

2. The second scenario has been identified in benchmarks that mostly allocate large
objects, such as 201 compress. This benchmark is the Java version of 129.compress
benchmark from the SPEC CPU95 suite and it is an example of Java programming
in a C-like style. The fraction of heap accesses to the TIB (Type Information Block)
table is very small relative to the fraction of accesses to array elements (the Lemper-
Ziv’s dictionaries). This means that the application spends more time accessing static
memory via C-like functions rather than generating and accessing dynamic memory
using object-oriented methods as in native Java applications. Hence, similarly to the
previous type of scenario, it is usually considered an exception and not included in
GC studies. Nonetheless, we have included it in our study as we have verified that
such kind of non-truly object-oriented Java program with dynamic behaviour is quite
common in embedded systems. Moreover, we consider that compressing algorithms are
very frequently present in embedded environments and the big amount of large objects
allocation required in such systems demands a deep understanding.

3. The third possible scenario has been observed in benchmarks with a medium to
high amount of allocated data, and with different life timespan, for instance, in SPEC:
202 Jess, 205 Raytrace and 213 javac. These benchmarks are the ones most fre-

quently considered in performance studies of GCs and in this paper we present com-
plementary results for them taking into consideration energy figures apart from perfor-
mance values.
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4.2 Comparison of GC Algorithms

Our results indicate that each GC shows a different behaviour regarding which scenario
the application under study belongs to. In the first scenario, the percentage of energy
wasted in the collection phase is not significative in comparison with the energy spent
during the mutator phase. However, as Figure 2(a) depicts, the global JVM energy con-
sumption varies significantly depending on the chosen GC. First, we can observe that
it is very important the effect of the allocation policy associated with the GC. In fact,
Figure 2(a) indicates that the simplest GC of all tested copying collectors, i.e. SS (see
Section 3.2 for more details) attains better energy results than MS, which uses free-
lists and lazy deletion. Second, our results indicate that since the number of accesses
and L1 cache miss rates (see Table 1) of all copying-based collectors are very similar,
the main factor that differentiates their final energy figures is the L2 miss rate. Thus,
outlining that hybrid collectors that minimize this factor (i.e. CopyMS and GenMS) pro-
duce the best results for energy consumption. In fact, the best choice for this scenario
(i.e. CopyMS) achieves an overall energy reduction of 55% compared to the classical
Mark&Sweep collector employed in many embedded systems.

In the second scenario, the percentage of energy wasted in the collection phase
varies from a 25% to a 50% of the final JVM energy consumption. This indicates that
current GCs for embedded systems are not really tuned for this type of embedded appli-
cation. Then, considering the special characteristics of 201 compress (see Section 4.1),
we can observe that, contrarily to the previous scenario, the energy behavior during the
mutator phase for the pure copying GCs is better than for the hybrid ones. However,
the better space management that hybrids collectors exhibit produce a lesser number of
collections; Thus, the energy spent in the collection step is up to 40% less than pure
copying GCs. All in all, hybrid collectors attain a final energy reduction of 5% com-
pared to copying GCs, and again CopyMS is the best election.
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In the third group of benchmarks, we find that the handicaps associated with the
classical SemiSpace copying collector make it not appropriate for memory constrained
environments. The fact is that Figure 3(a) (for a heap memory of 16MB) shows that SS
consumes less energy than MS during the mutator phase, the one next with less energy
consumption in this phase, but it possesses a large penalty in the collection step. As
a result, the global energy consumption of this GC is twice the consumption of any
other collector studied. Due to this fact, it is discarded and it will not be included in the
rest of results presented related to the third scenario for a main memory size of 16MB.
Nevertheless, it is important not to discard this GC in other working environments with
less constrained main memory sizes. In fact, we have performed an additional set of
experiments with larger main memories (i.e. 32MB or 64MB) and, with these larger
heap sizes, SS achieves even better results than MS. This is due to the fact that SS
performs more memory accesses than MS when there are more objects alive in the
heap, while MS and other GCs perform more memory accesses when more objects are
dead. Therefore, on the one hand, in smaller heaps (e.g. like with 16 MB), there is
not enough time for the objects to die and SS is more expensive than MS in energy
consumption. On the other hand, in large heaps where more objects can die between
memory collections, SS is favoured compared to MS and other GCs; thus, it consumes
less energy.

In addition, we can observe that the best energy consumption results for this sce-
nario are achieved by different variations of the two generational GCs studied (i.e.
GenMS and GenCopy in Figure 3(a)). This occurs because for the input data size used
(s10) the amount of metadata produced by the write barriers is insignificant. Thus, no
performance penalties appear in generational GCs and they attain similar results to the
hybrid solutions that were the best options in the other scenarios (e.g. CopyMS) during
the mutator phase. Next to this, the minor collections (only in parts of the heap, see
Subsection 3.2 for more details) in the generational strategy interfere less in the cache

Table 1. Summary of cache miss rates in all benchmarks with L1-32K and direct mapped

mut-ins-L1 % mut-data-L1 % mut-L2 % col-ins-L1 % col-data-L1 % col-L2 %
1◦ scenario MS 9.9 6.6 92.5 13.3 7.3 30.8

SS 9.9 6.2 67.3 13.3 7.8 41.1
CopyMS 10.0 6.2 54.8 14.0 5.7 36.4
GenMS 10.1 6.3 58.9 13.4 6.7 53.6

GenCopy 10.0 6.3 74.0 14.0 6.8 51.2
2◦ scenario MS 8.7 5.1 32.6 13.2 7.3 30.3

SS 7.7 7.4 22.0 13.3 7.8 42.7
CopyMS 8.6 7.0 30.5 14.0 5.6 37.1
GenMS 8.4 7.1 33.6 13.6 5.9 45.1

GenCopy 7.5 5.0 24.4 14.1 6.5 45.1
3◦ scenario MS 13.0 8.1 56.2 13.3 7.4 31.9

SS 13.4 8.5 52.5 13.4 7.8 44.2
CopyMS 13.1 8.8 53.9 14.0 5.7 38.4
GenMS 12.7 8.1 50.3 12.8 6.0 42.5

GenCopy 12.9 7.9 49.8 13.6 6.5 43.3
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behavior than the full heap collections of non-generational ones. Furthermore, GenMS
does not need to reserve space for copying surviving objects in the mature generation.
This produces a lesser number of both minor and mayor collections and it is the eventual
reason why GenMS obtains slightly better results than GenCopy.

Finally, to test if there are important effects of the eventual memory hierarchy in
the GCs, we have performed a final set of experiments varying the associativity of the
L1 cache from 1-way to 32-ways and with a main memory size of 16 MB. The results
accomplished are depicted in Figure 3(b), which indicates that the energy breakdown
figures of the different GCs (without SS) for this third scenario, distinguishing the en-
ergy consumption during the mutator phase (mut) and collector phase (col). As these
results outline, depending on the memory hierarchy (in this case simply modifying the
L1 associativity), the influence of the GC algorithm choice can vary significantly. In
fact, in this case the energy consumption differences between GCs can vary up to 50%
in the collection phase and and its indirect effect in the mutator phase can reach an
additional 20% variation in energy consumption. Hence, the global variation in energy
consumption can be up to 40%. Also, this study indicates that the L1 miss rates (see
Table 1) are very similar for all GCs. Finally, we can observe that Mark&Sweep has the
lowest L2 miss rates. Besides, with an associativity of 8-ways, the reduction in the num-
ber of misses (Figure 3(a)) is translated in a drastic reduction of the energy spent in both
main memory and L2 cache. This reduction produces a final global energy very close
to the best results of the generational GCs, figure 3(b). Therefore, the Mark&Sweep
handicaps can be diminished with a proper cache paremeters selection. In summary, the
GC algorithm choice is a key factor for optimizing the final energy consumption of the
JVM, but it should take into account the memory hierarchy to be tuned conveniently.

5 Conclusions

New embedded devices can presently execute complex dynamic applications (e.g. mul-
timedia). These new complex applications are now including Java as one of the most
popular implementation languages in their designs due to its high portability. Hence,
new Java Virtual Machines (JVM) should be designed trying to minimize their energy
consumption while respecting the soft real-time requirements of these embedded sys-
tems. In this paper we have presented a complete study from an energy viewpoint of the
different state-of-the-art GCs mechanisms used in current JVM for embedded systems.
We have shown how the GCs traditionally used in embedded devices (i.e. MS or SS)
for Java-based systems do not achieve the best energy results, which are obtained with
variations of generational GCs. In addition, the specific memory hierarchy selected can
significantly vary the overall results for each GC scheme, thus showing the need of
further research in this aspect of Java-based embedded systems.
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