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Abstract

Two biomass gasification concepts, i.e. indirectly heated, fast internally circulating fluidised bed
(FICFB) gasification with steam as gasifying agent and two-stage, directly heated, fixed bed Viking
gasification are compared with respect to their performance as gas generators. Based on adjusted
equilibrium equations, the gas composition and the energy requirements for gasification are accu-
rately modelled. Overall energy balances are assessed by an energy integration with the heat cascade
concept and considering energy recovery in a steam Rankine cycle. A detailed inventory of energy
and exergy losses of the different process sections is presented and potential process improvements
due to a better utility choice or feed pretreatment like drying or pyrolysis are discussed. While
Viking gasification performs better as an isolated gas generator than state-of-the-art FICFB gasifi-
cation, there is large potentia for improvement of the FICFB system. Furthermore, a concluding
analysis of the gasification systemsin an integrated plant for synthetic natural gas production shows
that FICFB gasification is more suitable overall due to a more advantageous energy conversion re-
lated to the producer gas composition.
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Nomenclature

Abbreviations
FICFB Fast internaly circulating fluidised bed
HHV Higher heating value

IT™

lon transfer membrane

LHV Lower heating value

MER Minimum energy requirement
SNG Synthetic natural gas

Roman letters

Cp Specific heat at constant pressure kJ (kg K)
E Mechanical or electrical power kW
Eq  Heat exergy kW
E,  Exergy of material streams kW
Kp Partial pressure ratio between C,H4 and CHy -
Kp Equilibrium constant based on pressure -
Kp Apparent equilibrium constant -
L Exergy loss kW
m Mass flow kg/s
p Pressure bar



Q  Heat KW

T Temperature °C
Ta Atmospheric temperature °C
Ty Gasification temperature °C
Tag  Air temperature at dryer inlet °C
Greek letters

AR?  Standard heat of reaction kJ/mol
Ahyap  Latent heat of vaporisation kJkg
Ahi0 Lower heating value of substance i kJkg
AK®  Exergy value of substance i kJkg
Ap Pressure drop bar
AT Temperature difference °C
€ Energy efficiency %
n Exergy efficiency %
Dyood  Wood humidity %owt
Subscripts

bd Boudouard equilibrium

cg Cold gas

e Electric

hg Hydrogenating gasification equilibrium
HT  Heat transfer

th Thermal

tot Tota

wg Water gas shift equilibrium
Superscripts

0 Standard conditions

+ Material or energy stream entering the system
— Material or energy stream leaving the system

1 Introduction

Due to its renewable character, biomass and waste gasification is commonly considered as one of the
promising technologies for rational and carbon-neutral conversion of energy (Perry et a., 2008). Besides
the traditional application of this technology for generating power in centralised combined cycle plants
(Craig and Mann, 1996; Brown et al., 2009) or in the local production of combined heat and power
using gas engines (Hofbauer et al., 2002; Henriksen et al., 2006; Yoshikawa, 2006) and more recently
fuel cells (Omosun et al., 2004; Karellas et al., 2008), there is currently also alarge interest in processes
for the synthesis of liquid and gaseous fuels (Spath and Dayton, 2003; Mozaffarian and Zwart, 2003;
Hamelinck et al., 2004; Duret et al., 2005; Gassner and Maréchal, 2009b; Heyne et al., 2008; Ptasinski,
2008; Luterbacher et al., 2009).

In process design, suitable biomass gasification technology is usually identified considering design
constraints like capacity and criteria like gas composition, calorific value and contaminants that are
related to the specific application (Mozaffarian and Zwart, 2003; Hamelinck et al., 2004; Stucki, 2005).
Process integration aspects are regarded to a lesser extent, although heat requirements of gasifiers are
generally important and influence the systems' overall performance markedly. Especially for biomass-
based fuel production, ahigh chemical gas conversion is essential since the primary product is the energy
stored in the material outlet streams. Furthermore, the energy requirements and recovery possibilities of
the reforming steps after gasification are different to those in power generation, and proven technology
established for this specific application does not necessarily fit the modified demand.

For this reason, the present paper investigates the thermodynamic performance of two potential gasifi-
cation systems for fuel production as producer gas generators. Several authors have recently investigated
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the thermodynamic and exergetic performance of gasification (Ptasinski et a., 2007; Jarungthammachote
and Dutta, 2007; Prins et a., 2007) and gasification systems for the production of power (Brown et al.,
2009; Prins et a., 2007; Fryda et a., 2008) and fuels (Ptasinski, 2008). Apart from (Brown et a., 2009),
however, al these studies disregard or discuss the effects of process integration only very briefly, and
lack a systematic approach as provided by pinch analysis techniques. The present work paper therefore
focusses on the integrated energetic and exergetic performance and addresses two exemplary gasifica
tion systems for whom this type of analysis has yet to be carried out. In particular, an indirectly heated
fluidised bed gasifier with steam as gasifying agent (FICFB process (Hofbauer et al., 2002)) — being
currently regarded as promising option for synthetic natural gas (SNG) production (Heyne et a., 2008;
Stucki, 2005) — and a directly heated, fixed bed gasifier based on a relatively novel two-stage concept
(Viking process (Henriksen et a., 2006)) are compared.

In the first step of the analysis, process models based on adjusted equilibrium equations are devel oped
to investigate the level of thermodynamic conversion of the produced gas. The heat requirements of
the gasification process are then used in an energy integration to determine the overall thermodynamic
performance of the system. By assessing the energy and exergy losses in the different process sectionsin
detail, both systems are compared and potential improvements are proposed. Finally, the performances
of an integrated SNG plant are assessed for both gasification systems and confronted with their isolated
performance as gas generators.

2 Processdescription

Developed at the Technical University of Vienna, FICFB gasification has been designed as an internally
circulating fluidised bed system where heat is transferred by circulating the bed material between two
physicaly separated gasification and combustion chambers (Hofbauer et a., 2002). As shown on the
left of Figure 1, gasifying steam is injected into a stationary fluidised bed where drying, pyrolysis and
gasification of the raw material take place. The reactor is heated indirectly by transferring hot bed
material via a cyclone from a combustion chamber, where the ungasified char and additional fuel —
typically cold producer gas — are oxidised. The obtained synthesis gas is cooled to 150C, filtered and
washed with water or biodiesal in order to remove dust particles, tar and other contaminants before being
used in an energy conversion unit or afuel conversion process.

The fundamental design idea behind the Viking gasification process developed at the Technical Uni-
versity of Denmark is to perform athermally staged gasification with intermediate partial oxidation for
tar cracking (Henriksen et a., 2006). As shown on the conceptual flowsheet (Fig. 1, right), wood is
first conveyed through a screw pyrolysis unit, where it is heated to 500-600 C and partially decomposed.
After thermal cracking of the tars through partial oxidation of the gas phase, the remaining solid species
are gasified in a fixed bed. The synthesis gas leaving the gasifier at 700-800C is cooled to 90°C and
filtered. Finally, the condensates are removed at ambient conditions in a gas-liquid separator.

3 Process modélling

3.1 Method

Following a systematic methodology for preliminary process design and analysis (Gassner and Maréchal,
2009a), the thermodynamic process modelling is performed in two successive steps. First, commercial
flowsheeting software (Belsim SA, last visited 04/2009) is used to calculate the operation of the process
units by applying conservation principles and simple model equations. From this energy-flow model, the
heat and power requirements are identified and transferred to the energy-integration model. Inthis second
step, the combined production of gas and power from residual heat below the pinch is maximised. Since
the operating conditions of the non-linear energy-flow model are fixed after the first step, the energy-
integration model can be formulated as a linear subproblem, which is resolved by mixed integer linear
programming minimising the operating cost and considering the heat cascade equations as constraints
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Figure 1: Conceptual flowsheets for FICFB (left) and Viking gasification (Note: The purpose of these
schematicsisto illustrate the model structure and does not correspond to the physical process layout, i.e.
the pyrolysis, oxidation/combustion and gasification reactors correspond to one physical unit.)

(Gassner and Maréchal, 2009a). One of the key advantages of this approach is that the topology of the
heat exchanger network and the fuel supply for indirectly heated gasification are not defined a priori, but
computed in the integration step, which makes the method very suitable for preliminary process design.
In addition, as the heat transfer and the chemical conversion are addressed separately, this approach
alows for better understanding the exergy losses in the heat transfer operations with a systematic vision
since it considers al the possible heat recovery by heat exchange.

3.2 Energy-flow models
3.21 Gadification

Due to the inherent need for simple model equations in flowsheet calculations, gasification systems are
often modelled assuming thermodynamic equilibrium of the gas phase at the reactor outlet, as for ex-
ample for steam gasification in (Schuster et al., 2001). However, comparisons with experimental data
show that thisis generally not a valid assumption and kinetic effects must be taken into account. Many
authors, for example (Li et al., 2004; Pellegrini and de Oliveira Jr., 2007; Proll and Hofbauer, 2008),
therefore fix the carbon conversion and/or the fraction of methane and higher hydrocarbons, or correct
the equilibrium constant with a multiplication factor (Jarungthammachote and Dutta, 2007; Huang and
Ramaswamy, 2009). Introduced by Gumz (1950) and discussed for the application to biomass gasifica
tion by for instance (Prins et al., 2007) and in more detail by (Bacon et a., 1982; Kersten, 2002; Brown,
2007), a thermodynamically more consistent way to adjust the equilibrium equations is to correct the
equilibrium temperature by introducing artificial temperature differences AT of the form:

Kp = Kp(Tg+AT) (1)

where K, isthe theoretical equilibrium constant and Kp the apparent equilibrium constant corresponding
to the experimentally observed composition at the gasification temperature . By adjusting the AT
with experimental data, it is possible to use a simple thermodynamic relationship to correctly compute
both the gas compositions and energy balance around the nominal operation conditions and to model the
influence of the design variables of the gasifier.

Considering that the outlet streams of the gasifiers consist of H,, CO, CO,, CH4, H20, N2 and C(s),
three equations in addition to the atomic balances are required to determine the gas composition. In our
model, two solid-gas, i.e. the hydrogenating gasification (Eg. 2) and the Boudouard (Eg. 3) equilibria,



and the water-gas shift (Eq. 4) reactions have been used:

C(s) +2Hy = CHy AR? = —75kJ /mol )
C(s)+CO, = 2CO AR? = +173kJ/mol ©)
CO+Hy0 = COz + Hy AR? = —41kJ /mol (4)

In FICFB gasification, experimental data of the gasifier shows that higher hydrocarbons are produced,
which could as well be represented by an adjusted equilibrium equation in the form of Eq. 1. However,
very high values are typically found and indicate that the mathematical representation has no physical
meaning. Its amount is therefore calculated assuming that they are appropriately represented by ethene
and that its partial pressure is proportiona to one of methane:

Pc2r4 = KpPcHa (%)

According to these equations, the four parameters to be fitted in the gasification models are ATy (Eq.
2), ATod (EQ. 3), ATyg (EQ. 4) and k, (EQ. 5).

3.2.2 Pyrolysis

The equilibrium-based models represent the products and heat demand of gasification with reasonable
accuracy, but do not alow for taking the bulk formation of condensable hydrocarbons during pyrolysis
into account. A recently published experimental study (Fassinou et a., 2009) of the screw pyrolysis
section of the Viking systems show that these condensable substances (incl. HO) contribute to 28-

78%wt of the gaseous phase from pyrolysis. Although some yield data and the detailed non-condensable
gas composition are reported, no complete mass- and energy-balances can be deduced from the given
information. Model validation is thus impossible, and no rigorous model for the conversion of speciesin
the pyrolysis has been developed. Instead, a simplified formulation based on a partia gasification of the
biomass feed is adopted. It is considered that the atomic species in the biomass are uniformly gasified,
which fixes the solid composition. Assuming further that the complete volatile fraction identified in the
proximate analysis is released, two model equations are necessary to fix the gas phase composition and
the heat demand. For this purpose, the hydrogenating gasification (Eg. 2) and water-gas shift (Eq. 4)
reactions are used and reconciled with the consistent dataset for the overall plant.

3.2.3 Datareconciliation

With the general assumptions and operating conditions detailed in Tables 1 and 2, the model parameters
of the gasification reactor model are determined using data of wood characteristics, process conditions
and gas compositions from Gabel et al. (2004); Henriksen et al. (2005); Rauch (written around 2004). For
FICFB gasification, the reference temperature for gasification is 850°C, while the artificial temperature

differences in Viking gasification refer to pyrolysis and gasification temperatures of 600C and 750°C

respectively. The values of the identified parameters and their accuracy with respect to the measured data
are given in Tables 3 and 4.

3.24 Error analysis

According to Table 4, the model is able to accurately reproduce the measured composition of the pro-
ducer gas. Except for the CO, fraction of the FICFB reactor with a relative error of 5.5%, all calculated
compositions are within a 5% error range. As aready discussed in Section 3.2.2, the model parameters
and gas composition after pyrolysis must however be considered as artificial since the higher hydrocar-
bons are not explicitly included as model species, but partially accounted for by the non-condensable
species and the ungasified raw material. According to experimental data, about 14%vol CH;, 40%vol

CO, 18%vol CO,, 19%vol H, and 3%vol C4H4 ¢ are typically obtained in the dry, non-condensable
product at nominal conditions (Fassinou et al., 2009). However, for the validity of the following energy
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Parameter Unit FICFB Viking

Eisentropic,turbomachinery % 80 80
APexchangers bar - R
Apfilter bar 0.10 0.10
APgasi fier bar 0.15 0.05
Carbon conversion % 920 99
Gasifier heat loss % 102 20
Vol atiles® % - 84
Wood humidity (®wood)© %wt 10 30

@ based on transferred heat
b based on lower heating value of feed

¢ according to data used for reconciliation (Henriksen et al., 2005; Rauch, written around 2004)

Table 1. Model assumptions.

Operating conditions Unit FICFB Viking
Steam preheat temperature °C 500 -
Air preheat temperature °C 600 600
Steam/biomass ratio - 0.6 -

Table 2: Operating conditions.

Process FICFB Viking

Reactor Gasification Pyrolysis Gasification

AThg -260°C -289°C -11°C

AThg -201°C - -123°C

ATwg -112°C +12°C -126°C

Kp 0.204 0 0
Table 3: Reconciled model parameters.

Process FICFB Viking

Reactor gasification pyrolysis gasification

State wet dry wet wet dry

CoHgy 18/18 -/119 -/- -/- -/-

CHy4 8.8/9.0 -193 -135.7 -11.2 12/12

H> 37.3/39.5 -141.0 -14.9 -130.4 30.5/314

CO 29.4/28.0 -1289 -/3.0 -/18.3 19.6/19.0

CO, 16.2/15.3 -115.9 -133.2 -114.2 15.4/14.7

N> 29/29 -/3.0 -/0.2 -1327 33.3/33.7

H20 36/35 -/- -123.0 -132 -/-

Table 4: Gasifier outlet compositions in %vol (Data (Ggbel et al., 2004; Rauch, written around 2004) /
Calculation).



integration and exergy analysis, the accuracy of the intermediate composition has no influence since only
acorrect reproduction of the heat demand for pyrolysisiscrucial. Indeed, thisisassured by the computed
nitrogen fraction in the producer gas, which isin very good agreement with the data from the plant. As
it enters the reactor in a known ratio to oxygen, this fraction directly represents the degree of partia
oxidation in the gasification. The enthal py balance of the gasification reactor isthus accurate, which also
implies that the total enthalpy of the close-coupled pyrolysis products is correct.

3.2.5 Discussion

Examining the reconciled model parameters, it is obvious that the synthesis gas from both gasifiersis not
in thermodynamic equilibrium. All the apparent equilibrium temperatures observed in the gasification
sections are below the actual reactor temperatures. Compared to equilibrium, the gasifiers produce gases
that contain too much hydrocarbons and carbon dioxide and too little hydrogen and carbon monoxide.
The difference from equilibrium is thereby not as substantial in case of Viking gasification, which may
be due to the different reactor types. A previous study (Gassner and Maréchal, 2009b) observed similar
temperature deviations for air blown and steam blown gasifiers of fluidised bed type and reasoned similar
catalytic activity of the bed. Unlike in fluidised bed reactors, the temperature in fixed beds is not equally
distributed and part of the gas might be formed at higher temperatures. In case of Viking gasification,
the pyrolysis gas is furthermore heated to 1100°C by partial oxidation in order to thermally crack the
tars. Since this shifts the gas equilibrium towards H, and CO and reaction kinetics tend to accelerate
with temperature, this might also lead to approach thermodynamic equilibrium at the gasifier outlet to a
greater extent.

3.3 Energy integration
3.3.1 Problem definition

After the calculation of the thermodynamic unit conversions in the energy-flow models, the energy in-
tegration of the process is performed. For this purpose, the heat requirements of the process streams,
available utilities and energy recovery technology are assembled in the heat cascade formulation, which
is used to modd the heat exchanger network (Gassner and Maréchal, 20093).

In this analysis, the heat demand above the pinch is satisfied through combustion of cold producer
gas and ungasified char. In directly heated gasification, residua char is diluted in the ash and cannot
be recovered. Excess heat below the pinch is recovered and converted to electricity by a steam Rankine
cycle. In this work, typical small scale operating conditions of 60 bar for steam production and 500C
for steam superheating are assumed. Two intermediate steam utilisation levels at 15.5 bar (200C) and
1.0 bar (100°C) and one condensation level at 0.23 bar (20°C) fed with cooling water are used. Par-
tial condensation in a condensing stage is allowed to minimum vapour fraction of 85%, and isentropic
efficiencies for the backpressure and condensing turbine stages are of 80% and 70%, respectively. In
the heat cascade formulation, minimum approach temperatures of 8 C, 4°C and 2°C for gaseous, liquid
and condensing or evaporating streams, respectively, are assumed. For the heat transfer to the reactive
sections (pyrolysis, FICFB-gasification) and from the fumes down to a stack temperature of 120C, the
minimum approach temperature is set to 25°C.

The performance of the process is assessed by calculating the energy balances, the cold gas efficiency
£cg (EQ. 6) and the overall energy efficiency g (EQ. 7), defined as:

ARG 1
£og = OL%S (6)
ARGo0gMwood
A Mgas + E~
Eot = Ogasr.ngas = (7)
Ahyo0aMwood + E

where Ah? and m designate the lower heating value per unit mass and the mass flow, respectively. E~



Proximate analysis Ultimate analysis

ARG oo ary 19.2 MJKggry C 50.93 %owt
ARG 42 18.2 MJKGgry H 6.11 %owt
AR 4P 21.6 MJIKgary ¢] 42.16 Yowt
DPuood 30 Yowt N 0.80 %owt

a Ah\(l)vood is calculated considering the latent heat of vaporisation of the moisture and referred to the dry mass of wood, i.e.
Ah\(/)vood = Ah\c/)\/ood,dry — Ahvap@wood / (1 — Pwood )-
b Chemical exergy is calculated according to Szargut and Styrylska (1964).

Table 5: Feedstock properties.

refers to overall produced and E* to overall consumed power, whereas one of these terms is equal to
zero since only the overall balance is of interest.

For a proper comparison of the gasification systems, the same feedstock properties as shown in Table
5 and an arbitrary total energy input of 1 MWhwood @re chosen since the model is independent of the
equipment size.

3.3.2 Resaultsand Discussion

The resulting energy balances and composite curves without and with a steam cycle for energy recovery
are depicted in Table 6 and Figure 2. The datareveals a considerable difference of the performance of the
investigated gasification systems. In case of FICFB gasification, only 78% of the chemical energy inputis
converted into product, while 91% are recovered in Viking gasification. From the energy loss inventory,
it is seen that the lower carbon conversion in FICFB gasification is not the reason for the difference since
it isused as fuel in the combustion. However, significant amounts of energy are lost in the gas cooling
and cooling water, and a considerable by-production of electricity is observed. The composite curves
show that the FICFB gasification system is pinched at 875°C , and of the endothermal reaction must be
supplied at this high temperature. From the whole demand of 266 k\Wn/MW yg0d, ONly 30% are satisfied

with the ungasified char and 19% of the total cold producer gas is required to supply the remaining
70%. Consecutively, an important amount of 148 KWih/MW,,00q Of sensible heat of the fumes and wet

producer gasisavailable below the pinch, from which 36% can be recovered as electricity with aRankine
cycle (Fig. 2b). In Viking gasification, the heat demand is satisfied by partial oxidation inside the reactor
and the composite curves do not show a process pinch due to heat transfer. The key advantage of this
technology in terms of gas efficiency is however caused by the staged gasification concept. In contrast
to FICFB gasification where the entire heat demand for the decomposition must be withdrawn from the
chemical energy of the material streams, part of this demand is satisfied by recovering the sensible heat
from the producer gasin the pyrolysis. Less heat is thereby released from the material stream, and only a
marginal 20 kWg/MW,,00q Can be by-produced from the 52 kWin/MW,,q0g that must be evacuated from

the system.

4 Exergy analysis

4.1 Method

In order to further investigate the loss sources of the gasification systems, exergy balances considering
the exergy value of material, thermal and mechanical streams (designatedEy, Eq and E respectively) are
defined for all process sections. The exergy lossesL (Eq. 8) and efficiency i (Eg. 9) are then calculated
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Figure 2: Composite curves for FICFB (left) and Viking gasification (right).



Type FICFB Viking

Consumption Wooaod 1000 kw 1000 kW
Electricity 2kw 2 kwW
Production Gas 784 kW 907 kW
Electricity 54 kKW 20 kW
L osses Gasification 13 kW 27 kW
Combustion 14 kW -
Gas cooling 59 kW 22 kW
Cooling water 91 kW 32 kW
Total 177 kW 81 kw
Efficiencies £og 78.4% 90.7%
Eot 83.8% 92.5%

Table 6: Energy balances. Note that thetotal consumption must not necessarily equal the total production
and losses since the consumption and production terms are based on lower heating value, but the gas
cooling loss includes condensation.

according to:

L=YE +YE;+>E"
~ (X5 +XE +XE) ®
= ©

=1-— . . .
T SE 3B 1 yEr

where superscripts '+ and -’ refer to streams entering and leaving the section, respectively. The exergy

value of material streamsis determined by adding its exergy value at atmospheric temperature T, and the
exergy necessary for heating the stream:

Ey = [Ak%/:cp <1— %) dT]
= m[Ak® + Cpa(T ~Ta(1+In(T/To))] (10)

where AK is the exergy value per unit mass and G the specific sensible heat at constant pressure. In this
formulation, the contribution of the pressure is not included inEy, since the whole system operates at
atmospheric pressure. The assumption of aconstant g, is also used to determine the exergy value of the

thermal streams:
. T2 Ta .
Eq—/Tl (1—?>dQ

T2 Ta
=m Cp|l1l—=)dT
T p< T>

=mcp [(T2 —T1) — Ta- IN(T2/Ty)]

=Q<1—Ta- M)

(T—Th) (1)

Finally, the exergy value of mechanical streams equals is energy valueE.

4.2 Resultsand discussion

Complementary to the energy conversion analysis of the previous section, the exergy inventory of Table
7 highlights that the principa irreversible losses occur in the reactive part of the processes. A comparison
of the gasifiers thereby shows that the exergy depletion in directly heated gasification is higher than in
the indirectly heated reactor since partial oxidation occurs. However, this loss exactly equals out with
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FICFB ~ Viking

L n L n
Section [kW] [%0] [kW] [%6]
Gasification? 176 87.4 245 80.2
Combustion 71 80.5 - -
Heat transfer
- above pinch 32 85.8 - -
- below pinch 27 83.1 16 83.3
Gas cooling® 24 75.4 13 87.1
Steam turbine 12 86.7 4 86.0
Total 342 70.8 278 76.6

a including pyrolysis

b The exergy efficiency of the cooling section is assessed on the basis of the theoretical work potential of the rejected heat -
the separation of condensates is not considered as a transformation and the chemical exergy of the inlet material streamis
not included in the denominator of Eq. 9.

Table 7: Exergy losses and efficiencies.

the combined depletion in gasification and combustion of the FICFB technology. As aready perceived
in the energy integration analysis, it is the consequences of the combustion that induce the difference
in performance. Exergy analysis thereby allows one to directly quantify the potential loss due to the
degradation of valuable thermal energy in heat transfer. Since the loss in mechanical energy potential
corresponds to the surface area between the uncorrected hot and cold streams in the exergy composite
curves, it is clear that it isimpossible to entirely recover the potential of the elevated amount of sensible
heat of hot fumes and wet producer gas. As illustrated in Figure 2c, the indirect heat transfer from
combustion to gasification above the pinch increases the exergy loss of this section by 13%. Together
with the depletion due to the heat transfer below the pinch and the gas cooling section, this resultsin an
overall exergy efficiency of 70.8% for FICFB gasification, while 76.6% is reached by Viking technol ogy.

5 Potential processimprovements

The energy integration and exergy analysis identifies that the main drawback of the FICFB gasification
process is its elevated heat requirement at high temperature. This results in a relatively low cold gas
efficiency, and the irreversible losses in all process sections do not alow for entirely recovering the
considerable amount of sensible heat from the fumes and the wet producer gas as eectricity. By mainly
targeting to decrease the minimum energy requirement (MER) above the pinch and the exergy lossesin
the reactive steps, this section presents measures to increase the cold gas and total process efficiency.

5.1 Fud choice

In the FICFB demonstration plant, the combustion zone is fed with additional cold, clean producer gas
to balance the heat demand of the gasification (Hofbauer et al., 2002). This has the main advantage that
the gas handling is conveniently simple, but it consumes energy from above the pinch to heat the cold
gas in the combustion zone. In order to satisfy the heat demand of the gasification reactor in a more
efficient way, hot producer gas could be withdrawn from the gasifier outlet. Although the actual MER
of 266 kWin/MW,,00q does not change, no more heat from combustion is used to preheat the fuel. As
shown in Table 8, the exergy losses in the combustion and the energy losses in the cooling water are
reduced, and less energy must be withdrawn from the product stream. An advantageous side-effect is
further observed in the gas cooling section since less gas is processed. Overall, using the hot and dirty
producer gas instead of clean and dry one would allow for increasing the cold gas and total efficiencies
by 3% and 2%, respectively.
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FICFB Viking

Pretreatment none none Drying Drying Drying Pyrolysis Pyrolysis
Fuel  cold gas hotgas coldgas hotgas drywood coldgas none
Type Humidity 30% 30% 15% 15% 15% 30% 30%
Consumption  Wood 1000 kW 1000kw 1000kW 1000kw 1000kw 1000kw 1000 kW
Electricity 2kw 2kw 4 kW 4kwW 4 kW 2kw 2kw
Production Gas 784kW  814kW  847kW  869kW  874kwW  888kW 907 kW
Electricity 56 kW 47 kW 30 kw 23 kw 23 kw 22 kw 20 kw
Energy Drying - - 19 kw 19 kw 19 kw - -
losses Gasification 13 kW 13 kW 10 kW 10 kW 9kw 9kw 27 kw
Combustion 14 kW 14 kW 12 kW 11 kW 10 kW 10 kW -
Gas cooling 59 kw 47 kW 59 kW 50 kw 50 kw 59 kW 22 kW
Cooling water 91 kw 75 kw 48 kKW 36 kw 39 kw 28 kW 32 kw
Total 177kw  149kW  148kW  126kW  127kW 106 kW 81 kW
Exergy Drying - - 12 kW 12 kw 12 kw - -
losses Gasification 176 kW 176 kW 154kW  154kW  132kW  150kW  245kW
Combustion 71 kw 61 kW 57 kW 50 kw 71 kw 49 kw -

Heat transfer

- above pinch 32 kW 33 kW 26 kW 27 kW 22 kKW 23 kW -
- below pinch 27 kW 24 kW 34 kW 32 kW 30 kW 25 kW 16 kw

Gas cooling 24kW  19KW  24kW  20kW  20kW  24kwW  13KkW
Steamturbine 12 kW 9kw 2 kW 0 kW 1 kW 3kW 4KW
Total 342kW  322kW  309kW  205kW  288kW  274kW  278KW
Efficiencies o 784%  814%  847%  86.9%  874%  888%  90.7%
Etot 838%  859%  87.2%  887%  894%  91.0%  925%
Thgasi fication 87.4%  874%  888%  888%  887%  89.0%  80.2%
Neombustion 80.5%  82.8%  80.6%  826%  742%  80.7% -

NHT. abovepincn ~ 85.8%  857%  858%  856%  859%  85.7% -
MHT. belowpinn ~ 83.1%  83.0%  80.4%  79.9%  80.0%  826%  83.3%

Ngas cooling 75.4% 75.4% 75.4% 75.4% 75.4% 75.4% 87.1%
TNsteam turbine 86.7% 87.3% 97.1% 99.3% 98.3% 93.7% 86.0%
Neg 66.2% 68.7% 71.5% 73.4% 73.9% 75.0% 75.0%
Ttot 70.8% 72.6% 73.7% 75.0% 75.5% 76.9% 76.6%

Table 8: Energy and exergy balances for system modification of the FICFB gasification. For comparison,
the origina performance is reprinted in the first and last rows.

5.2 Pretreatment

In addition to changing the fuel to satisfy the energy requirement in a more efficient way, the goal
of pretreating the feed is to inherently reduce the exergy losses and the heat demand of gasification.
However, this requires to use additional equipment or to change the design of the gasifier. In addition
to constructional modifications, a preprocessed feed is expected to decrease the AT value and thus reach
closer to equilibrium conditions, or it would allow for reducing the vessel size.

5.2.1 Drying

A simple way to limit the losses in the gasifier is to remove the humidity of the feed by drying. This
reduces the heat consumption above the pinch for evaporating water, which is easily satisfied with sen-
sible heat at low temperature. A technology model for convective drying with flue gas or air has been
developed and reported in previous work (Gassner and Maréchal, 2009b). Based on sorption isotherms,
the modd takes the temperature of the drying medium and the humidity of the solid into account. Since
provided elsewhere, a detailed description is not repeated here, and only the modelled performance in
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Figure 3: Drying efficiency and impact of drying on the process performance.

terms of drying efficiency &irying is reported:

AI"‘vap_ rh—|20,vap + O_drywood
Qair preheat + Efan

Edrying = (12
where Ahyap represents the vaporisation enthalpy of water, my2ovap the amount of evaporated water in
the dryer, Qdrywood and Qair preneat the sensible heat of the dried wood and preheated air, andE¢an the
electric power consumption of the fan. Figure 3 shows the drying efficiency for three different air preheat
temperature levels and the impact of drying on the cold gas and total efficiency of the process. Dueto the
large amount of heat that is available in this temperature range, the process efficiencies are not sensible
to the drying efficiency. Only for very intense drying at low efficiency, the usage of heat gets conflictive
with the electricity generation in the Rankine cycle. More importantly, the graph shows that the process
performance is considerably increased by drying the feed. At a humidity level of 15% detailed in the
comparative table (Tab. 8), the cold gas efficiency is increased by more than 6% compared to wood
at 30% humidity. Since heat below the pinch is used, the MER is decreased by 18% from 266 to 217
kKWn/MW,,00q and the exergy losses due to water evaporation at high temperature in the gasifier drop by
more than 12%. Drying therefore appears as a chemical heat pump.

In analogy with using hot instead of cold producer gas, some more benefit from drying can be obtained
if the heat demand is satisfied with dried wood. Since less feed materia is processed, the MER is
further reduced to 185 kW;n/MW,,00d, @nd the cold gas efficiency increases by 9% overall compared to
the reference technology. However, this solution would require a technical redesign of the combustion
chamber and adding a biomass hopper.

5.2.2 Pyrolysis

Alternatively to installing a wood dryer, it is conceivable to feed the FICFB gasification reactor via the
same type of screw pyrolysis device used in Viking gasification. Thiswould have an amplified beneficial
effect on the conversion efficiency, since the humidity is completely evaporated and the endothermal
decomposition is set on with heat below the pinch. By reducing the MER to 185 k\Wh/MW,00d, the
comparative table (Tab. 8) shows that more than 10% improvement in cold gas and 7% in total effi-
ciency compared to the reference solution is possible. If hot producer gas is furthermore used to supply
the remaining heat, the cold gas and total efficiency increase to 90.5% and 92.2% in terms of energy
and 76.4% and 77.9% in terms of exergy, respectivly. With similar pretreatment, the performance of
FICFB gasification is thus very close to Viking gasification, and might even exceed it with respect to the
indicators based on exergy.

The conceptual flowsheet with a practicable structure of the heat exchanger network and the corre-
sponding composite curve of this process option are shown in Figure 4. According to the calculations,
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Figure 4. Modified flowsheet with outline of heat exchanger network (left) and composite curve of
FICFB gasification with feed pretreatment by Viking pyrolysis.

the sensible heat of the producer gas balances the heat demand of the pyrolysis. It could thus be cooled
in the jacket of the pyrolysis screw before entering the cold gas cleaning. The sensible heat of the fumes
isleft to preheat the combustion air and to produce steam in order to cogenerate electricity viathe steam
Rankine cycle.

6 Performancein SNG production

Producer gas from gasification is generally not a product on its own, but further converted to electricity,
chemicals or fuels. Obviously, the overall performance of such systems does not only rely on the gasifier
efficiency, but also on its integration with the rest of the system. For the two gasification systems, this
effect is studied at the example of SNG production, which is a promising alternative to liquid synthe-
sis fuels for transport applications. In such a process, clean producer gas is catalytically converted to
methane by reforming the higher hydrocarbons (Eg. 13) and methanation of CO and H (Eq. 14) to
thermodynamic equilibrium at 300-400°C , whereas the necessary CO is provided by the simultaneously
occurring water gas shift reaction (Eq. 4):

CoHa+ 2H,0 = 2CO+ 4H; AR =209kJ /mol (13)
CO+ 3H, = CHy 4 H,0 AR = — 206kJ /mol (14)

As producer gas from biomass feedstock generally lacks hydrogen to be completely reformed into
methane, a considerable amount of CO, is by-produced in these reactions. In order to inject the gasinto
grid, the crude product must be upgraded to natural gas quality by drying and removal of the bulk CQ
to reach a Wobbe Index of at least 13.3 kWhypy/NmS. With both producer gas compositions of Table
4, this criterion can however not be met without removing the nitrogen. Instead of a cumbersome post-
treatment, nitrogen is more conveniently avoided by primary measures directly in gasification. In FICFB
gasification, the relatively small amount of nitrogen the producer gasis due to its usage for feed inerti-
sation and some dlip from the gasification chamber. In anew plant, inertisation could be done with CQ,
and by taking special care to nitrogen dlip in the design, it is assumed that its concentration is decreased
to 0.5%val. In Viking gasification, the nitrogen is introduced with the air for partial oxidation and can
only be avoided by using oxygen. In this work, either ion transfer membranes (ITM) or electrolysis are
considered for oxygen production. ITM is an emerging technology that is not yet commercialy proven.
It is expected to consume about 147 kWhy /tono, and 1.25 MWhh/tong, to heat the air from 500°C up
to the membrane’s operating temperature of 900°C (van Stein et al., 2002). As an dternative, oxygen
production by electrolysis is accompanied by animportant by-production of hydrogen, which could itself
be used in the methanation to increase the SNG yield from biomass (Gassner and Maréchal, 2008).
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gasification methanation CO2-removal
Unit FICFB Viking FICFB Viking Viking? FICFB Viking Viking?

CoHs %ol 24 - - - - - - -
CHs  %vol 117 27 49.8 385 49.8 92.0 91.9 92.3
Hy %vol 41.9 46.5 3.0 2.3 3.0 48 5.0 48
Co %vol 22.8 28.4 0.1 0.1 0.1 0.1 0.2 0.1
Co,  %vol 20.6 22.0 46.1 58.3 46.5 1.0 1.1 1.3
N, %vol 05 0.4 11 0.8 0.8 2.1 1.9 1.4

& with hydrogen injection from electrolysis.

Table 9: Dry gas compositions, flowrates and energy balance in SNG production.

FICFB Viking
Pretreatment none Drying Pyrolysis Pyrolysis Pyrolysis
Type O,-production none none none ITM  Electrolysis
Chemical energy  wood, wet, in 1000 kW  1000kW  1000kw 1000 kW 1000 kW
wood, dry 1000kw  1034kw  1000kw 1000 kW 1000 kw
producer gas
- gross 1026 kW 1026 kW 1026 kW 931 kW 931 kW
- net 770 kW 839 kW 875 kw 896 kw 931 kw
crude SNG, methanation 672 kW 730 kw 762 kW 724 kW 973 kW
SNG, out 645 kW 704 kW 734 kW 698 kw 941 kw
electric energy consumption 33 kW 39 kW 37 kW 57 kW 433 kW
production 109 kw 82 kW 82 kW 94 kW 117 kw
net production 76 kKW 43 kW 45 kW 37 kW -316 kw
Efficiencies £cg 64.5% 70.4% 73.4% 69.8% 94.1%
Etot 72.1% 74.7% 77.9% 73.6% 71.5%
Neg 56.2% 61.2% 63.9% 60.8% 81.9%
TNtot 62.5% 64.9% 67.6% 63.9% 64.7%

Table 10: Chemical energy flows and overall energy balances in SNG production.

With the process model develop in previous work (Gassner and Maréchal, 2009b), the system perfor-
mance for both gasifiers is determined by considering that the bulk CG is removed by pressure swing
adsorption in order to meet the condition on the Wobbe Index. In order to limit the number of options to
be discussed, it is assumed that the process heat demand is satisfied with cold producer gas. For Viking
gasification, the steam network used for energy recovery is slightly adapted to the different process con-
ditions. Instead of steam production at 60 bar, methanation at 320°C and alow amount of heat available
above favours steam production at 50 bar and superheating to 480 C (ITM) or 460°C (electrolysis).

Tables 9 shows the computed gas compositions for this process setup. With the chosen approach for
the gasification modelling, the ratios between the species are preserved. As the producer gas from indi-
rectly heated, steam-blown gasification contains more (atomic) hydrogen, the relative share of methane
in the crude product is higher than the one obtained from the partialy oxidised producer gas. However,
this share equals out if by-produced H, from water separation is added before methanation. In order to
compare the performance of both in the system, the chemical energy flows and overall efficiencies are
shown in Table 10 for the pretreatment options discussed in Section 5. According to the thermodynamic
analysis of the gasifiers, the net producer gas yield from gasification is in all cases higher for Viking
technology. After methanation, however, this advantage is considerably reduced or even lost if the feed
isdried or pyrolysed. Asless methane is present in the partially oxidised producer gas, the equilibrium
conversion to methane is higher, and more energy is released in the exotherma methanation reactions.
The system with FICFB gasification actually benefits from the fact that the producer gasis further away
from equilibrium because the gasification reactions are less endothermal — and the ones in methanation
less exothermal. With respect to chemical and overall performance, Viking gasification with pure oxy-
gen is therefore only better if the FICFB feed is not dried. As for the isolated performance, drying and
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pyrolysis considerably increase the cold gas efficiency of the latter by 6% and 9%. With an potential
overal efficiency of almost 78% for FICFB gasification with pyrolysis pretreatment, this technology
seems clearly advantageous for SNG production. Directly heated gasification with oxygen from elec-
trolysis shows a very high SNG yield and an acceptable total efficiency especialy in terms of exergy.
The balance demonstrates that it is away to increase the SNG yield from wood by converting electricity
to SNG. From a practical point of view, the rationality of such a conversion might however be doubted
since the energy and exergy value of the gas are technologically by far not recoverable to supply a useful
energy service.

7 Conclusions

Using adjusted equilibrium equations in flowsheet calculations and performing the process integration
with pinch analysis, indirectly heated, fluidised bed gasification with steam as gasifying agent (FICFB)
and two-stage, fixed bed gasification with air as gasifying agent (Viking) are compared with respect to the
thermodynamic conversion and energetic performance. The modelling approach alows for accurately
reproducing experimentally observed gas compositions and to quantify the difference to thermodynamic
equilibrium. Directly heated, fixed bed gasifier is observed to be closer to equilibrium than FICFB
gasification. The reason for this is suspected in an unequal temperature distribution in the reactor and
intermediate heating of the pyrolysis product for tar cracking.

In order to analyse the overall performance and identify the major losses, the energy integration has
been completed with an exergy analysis of the different process sections. Due to a pinch of the FICFB
process streams at high temperature, its hot utility requirements satisfied with cold producer gas are ele-
vated and the exergy potential of the sensible heat is only partially recovered. Viking gasification proves
particularly efficient since part of the sensible heat is used to dry and start the endothermal decomposi-
tion at low temperature. With the actual technology at demonstration status, the advantage of a nitrogen
free product gas with high calorific value obtained from FICFB gasification is thus penalised by a 12%
lower cold gas and 9% lower overall energy efficiency for wood at 30% humidity. However, process in-
tegration allows for partly compensating the exergy losses and substantial improvements can be obtained
by satisfying the heat requirement of the plant with other streams and using additional technology. In
particular, balancing the heat requirement with hot producer gas would increase the cold gas and total
energy efficiencies by 3% and 2%, drying the feed to 15% humidity allows for a 6% and 3% increase,
and using the same type of screw pyrolysis than in Viking gasification improves these efficiencies by
10% and 7%, respectively. By applying severa of these modifications, the gap to Viking gasification is
reduced in terms of energy efficiency, and even surmounted in terms of exergy efficiency.

A final comparison of the performance of both gasification technologies in an integrated plant for
SNG production shows that the advantage in cold gas efficiency is quickly compensated by a higher
heat release in methanation. The fact that the producer gas from FICFB gasification is further away
from equilibrium turns out to be an advantage since the endothermicity of the gasification reactions is
restrained and less chemical energy islost in methanation.
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