Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. A Reconfigurable Network-on-Chip Architecture for Optimal Multi-Processor SoC Communication
 
Loading...
Thumbnail Image
conference paper

A Reconfigurable Network-on-Chip Architecture for Optimal Multi-Processor SoC Communication

Rana, Vincenzo  
•
Atienza, David  
•
Santambrogio, Marco D
Show more
2010
VLSI-SoC 2008: VLSI-SoC: Design Methodologies for SoC and SiP
16th IFIP/IEEE International Conference on Very Large Scale Integration

Network-on-Chip (NoC) has emerged as a very promising paradigm for designing scalable communication architecture for Systems on Chips (SoCs). However, NoCs designed to fulfill the bandwidth requirements between the cores of an SoC for a certain set of running applications may be highly sub-optimal for another set of applications. In this context, methods that can lead to versatility enhancements of initial NoC designs to changing working conditions, imposed by variable sets of executed real-life applications at each moment in time, are very important for designing competitive NoCs in industrial SoCs. In this work, we present a run-time reconfigurable NoC framework based on the partial dynamic reconfiguration capabilities of Field- Programmable Gate Arrays (FPGAs). This new NoC framework can dynamically create/delete express lines between SoC components (implementing dynamically circuit-switching channels) and perform run-time NoC topology and routing-table reconfigurations to handle interconnection congestion, with a very limited performance overhead. Moreover, we show in our experimental results that the addition of these dynamic reconfiguration capabilities into basic NoCs using our framework only implies a very limited area overhead (around 10% on average) with respect to the initial NoC designs; thus, it can bring great benefits when compared to traditional non-reconfigurable NoC design approaches for worst-case bandwidth requirements in SoCs with many possible sets of running applications.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

paperM2B-VLSI-SoC2008[1].pdf

Access type

openaccess

Size

658.49 KB

Format

Adobe PDF

Checksum (MD5)

94894d257bab588246b09c38fe705c00

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés