
Permissiveness in Transactional Memories?

Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh

EPFL, Switzerland

Abstract. We introduce the notion of permissiveness in transactional
memories (TM). Intuitively, a TM is permissive if it never aborts a trans-
action when it need not. More specifically, a TM is permissive with re-
spect to a safety property p if the TM accepts every history that satisfies
p. Permissiveness, like safety and liveness, can be used as a metric to
compare TMs. We illustrate that it is impractical to achieve permissive-
ness deterministically, and then show how randomization can be used
to achieve permissiveness efficiently. We introduce Adaptive Validation
STM (AVSTM), which is probabilistically permissive with respect to
opacity; that is, every opaque history is accepted by AVSTM with pos-
itive probability. Moreover, AVSTM guarantees lock freedom. Owing to
its permissiveness, AVSTM outperforms other STMs by upto 40% in read
dominated workloads in high contention scenarios. But, in low contention
scenarios, the bookkeeping done by AVSTM to achieve permissiveness
makes it, on average, 20-30% worse than existing STMs.

1 Introduction

Transactional memory (TM) tries to maximize concurrency in an implementa-
tion while providing the illusion of sequentiality to the programmer. It holds the
promise to exploit the computational power of modern multi-processor archi-
tectures within the security afforded by a simple, non-concurrent programming
model. A transaction is an atomic program that can commit its actions to mem-
ory, or abort without changing the memory. An abort can be caused by the
programmer (say, if some exception is raised), or by the TM itself, if there is
a risk to violate the correctness of the memory. Typically, this correctness is
expressed by some form of serialization for transactions; that is, a transaction
can commit only if the state of the memory could have been generated by some
sequential execution of the transactions so far.

At first glance, one would expect from a TM that it never aborts a transaction
when it need not, i.e., when there is no risk of violating correctness. It turns
out, however, that proposed TMs have certain scenarios where a transaction is
aborted even if it could have committed without violating correctness. In other
words, these TMs do not enable the maximal amount of possible concurrency
among a set of transactions. This observation naturally raises the question of
whether one can devise an ideal, maximal TM, which never aborts a transaction
unless necessary for correctness. We call such a TM permissive.
? This research was supported by the Swiss National Science Foundation.



In this paper, we formalize the notion of permissiveness and discuss why the
existing TM implementations are not permissive. We argue that permissiveness
is expensive to achieve in a deterministic TM. We then present a randomized
permissive TM. We show in particular that using randomization in choosing the
serialization point of every transaction creates an efficient permissive STM.

Formally, a deterministic TM is an online algorithm that is given a sequence
of statements and decides for each statement, based on the statements so far,
whether or not to accept the statement. A deterministic TM is permissive with
respect to a given safety property (e.g., serializability) if every history (finite
sequence of statements) that satisfies the safety property is accepted by the TM.
In Section 2, we show that existing TMs, like TL2 [1], WSTM [3], and DSTM [9],
are not permissive with respect to serializability or opacity, a strong form of
serializability that arguably corresponds to what should be expected from a TM
[7, 9]. Opacity captures the practical notion in TM that transactions execute
serially, and even aborting transactions do not view inconsistent state. To our
knowledge, the only deterministic TM permissive with respect to serializability
or opacity occurs in our recent work [5]. This TM is built using the notion of
conflict graphs [10]. But the conflict graph changes globally with every statement.
Capturing this change incurs a high cost per statement, and the feasibility of a
practical deterministic permissive TM remains questionable.

For randomized TMs, it is natural to consider weaker, probabilistic notions of
permissiveness. Formally, a randomized TM is an online algorithm that is given
a sequence of statements and decides for each statement, based on a random coin
toss, whether to serialize the transaction at the current statement, and based
on the statements so far, whether or not to accept the statement. We say that
a randomized TM is permissive with respect to a safety property if every his-
tory that satisfies the safety property is accepted by the TM with probability 1.
Moreover, we say that a randomized TM is probabilistically permissive with re-
spect to a safety property if every history that satisfies the safety property is
accepted by the TM with positive probability. We do not know of any existing
randomized TM that is permissive, or probabilistically permissive, with respect
to serializability or opacity. We present Adaptive Validation STM (AVSTM),
which is probabilistically permissive for opacity. AVSTM can be configured to
be probabilistically permissive for serializability too. AVSTM uses randomiza-
tion to determine an ordering (serialization) point during the life-time of each
transaction. We have designed AVSTM in such a manner that it guarantees lock
freedom; that is, infinitely many transactions commit in every infinite history
produced by AVSTM.

Typically, the efficiency of a TM is measured by the number of transactions
that commit per time unit. So, in theory, putting the bookkeeping aside, a more
permissive TM should also be more efficient, as it aborts less often. We evaluat
this claim in practice by implementing an AVSTM prototype and comparing its
performance to existing TMs. Our evaluation on a multi-processor architecture
(4 processor dual-core running Linux) shows that, indeed, AVSTM outperforms
existing TMs (such as DSTM, WSTM, TL2) by upto 40% in high-contention



scenarios, where many processes are accessing a small set of variables. In low-
contention scenarios, AVSTM does not outperform the most efficient TMs, and
suffers performance by 20-30%. This is due to the amount of bookkeeping used
by AVSTM, which turns out to be more expensive than a few unnecessary aborts
in low-contention scenarios. We present a simple scheme to compose TL2 with
AVSTM obtaining the advantages of both algorithms. In short, the processes run
by default TL2 and dynamically switch to AVSTM when contention increases.

Related work. Many STMs [1, 3, 8, 9, 11] have been proposed in the literature.
Most of these guarantee opacity, but none of them is opacity-permissive. Exist-
ing STMs guarantee different levels of liveness. DSTM [9] guarantees obstruction
freedom. Many contention managers [6, 12] have been proposed to boost obstruc-
tion freedom. But, in our knowledge, there is no contention manager that boosts
obstruction freedom to yield lock freedom. WSTM [3] guarantees lock freedom.

2 Framework

We formalize the notion of safety and permissiveness in transactional memories.

Preliminaries. Let V be a set {1, . . . , k} of k variables. Let C = {commit} ∪
{abort} ∪ ({read,write} × V ) be the set of commands on the variables in V . For
our formalism, we treat these commands as atomic. Let P = {1, . . . , n} be the
set of processes. Let Σ = C × P be a finite alphabet of statements. A history
h ∈ Σ∗ is a finite sequence of statements in Σ. Given a history h, we define the
projection h|p of h on process p ∈ P as the longest subsequence h′ of h such
that every statement in h′ is in C × {p}. Given a projection h|p = σ0 . . . σm of
a history h, a statement σi is finishing in h|p if it is a commit or an abort. A
statement σi is initiating in h|p if it is the first statement in h|p, or the previous
statement σi−1 is a finishing statement.

Given a projection h|p of a history h on process p, a consecutive subsequence
x = σ0 . . . σm of h|p is a transaction of process p in h if (i) σ0 is initiating in h|p,
and (ii) σm is either finishing in h|p, or σm is the last statement in h|p, and (iii)
no other statement in x is finishing in h|p. The transaction x is committing in h
if σm is a commit statement. Given a history h and two transactions x and y in
h (possibly of different processes), we say that x <h y if the finishing statement
of x occurs before the initiating statement of y in h. A history h is sequential if
for every pair (x, y) of transactions in h, either x <h y or y <h x.

We define a function com : Σ∗ → Σ∗ such that for all histories h ∈ Σ∗, the
history com(h) is the longest subsequence h′ of h such that every statement in h′

is part of a committing transaction in h. Thus, com(h) consists of all statements
of all committing transactions in h. A statement σ = ((read, v), p) in x is a global
read of the variable v if there is no write to v before σ in x.

Safety properties. Strict serializability [10] is a commonly used correctness
criterion for concurrent systems and, in particular, for transactional systems. In
the scope of STMs, a stronger notion of correctness, referred to as opacity has
been suggested [7, 9] to avoid unexpected side effects, like infinite loops, or array



bound violations due to aborting transactions. Opacity requires that a history is
strictly serializable, and that the aborting transactions do not see inconsistent
values. Transactional memories use direct update semantics (every transaction
modifies the shared variables in place and restores them in case of abort), or
deferred update semantics (every transaction modifies a local copy, and changes
the shared copy upon a commit). We define the notion of a conflict under the
deferred update semantics. A statement σ1 of transaction x and a statement σ2

of transaction y (x 6= y) conflict in a history h if (i) σ1 is a global read of variable
v and σ2 is a commit and y writes to v, or (ii) σ1 and σ2 are both commits, and
x and y write to v. Note that the definition of a conflict would be different with
direct update semantics.

A history h = σ0 . . . σm is strictly equivalent to a history h′ if (i) h|p = h′|p
for all processes p ∈ P , and (ii) for every pair σi, σj of statements in h, if σi and
σj conflict and i < j, then σi occurs before σj in h′, and (iii) for every pair x, y
of transactions in h, if x <h y then it is not the case that y <h′ x. A history
h ∈ Σ∗ is strictly serializable if there exists a sequential history h′ such that
h′ is strictly equivalent to com(h). Furthermore, we define that a history h is
opaque if there exists a sequential history h′ such that h′ is strictly equivalent to
h. (Note that h may contain unfinished transactions.) We note that if a history
h is opaque, then h is strictly serializable.

We define the safety property strict serializability πss ⊆ Σ∗ as the set of all
strictly serializable histories, and the safety property opacity πop ⊆ Σ∗ as the
set of all opaque histories.

Transactional memories. We model transactional memories as transition sys-
tems, that consist of a set of states, an initial state, an alphabet of statements,
and a transition relation between the states.

We define a TM A = 〈Q, qinit , Σ, δ〉, where Q is a set of states, qinit is
the initial state, Σ is the set of statements, and δ ⊆ Q × Σ × Γ × Q is the
transition relation, where Γ = (0, 1] represents the probability of a transition.
For all q ∈ Q and σ ∈ Σ, if there are m outgoing transitions (q, σ, γi, q

′) ∈ δ
with 1 ≤ i ≤ m, then we have

∑
i γi = 1. A transition relation δ is deterministic

if for all q ∈ Q and σ ∈ Σ, if (q, σ, γ1, q1) ∈ δ and (q, σ, γ2, q2) ∈ δ, then q1 = q2

and γ1 = γ2. Given a TM A, a sequence q0 . . . qm of states is a run for a history
h = σ0 . . . σm if (i) q0 = qinit , and (ii) for all i such that 0 ≤ i ≤ m, we
have (qi, σi, γ, qi+1) ∈ δ where γ is positive. The outcome of a TM captures the
probability of the different histories accepted by the TM. The outcome OA of
the TM A is a function OA : Σ∗ → [0, 1]. Given a history h and a TM A, the
outcome OA(h) = γ if there exist a set ρ1, . . . , ρm of runs for h with probabilities
γ1 . . . γm such that

∑
0≤i≤m γi = γ.

Safety and permissiveness of TM. We formalize the safety and permissive-
ness properties of TM, assuming that the commands in Σ occur atomically. A
TM A is π-safe for a safety property π ⊆ Σ∗, if for every history h ∈ Σ∗ such
that OA(h) > 0, the history h ∈ π. In other words, a TM is safe with respect
to a property if the outcome of the TM is positive only for histories that satisfy
the property.



A TM A is π-permissive if for every history h ∈ π, we have OA(com(h)) = 1.
A TM A is probabilistically π-permissive if for every history h ∈ π, we have
OA(com(h)) > 0. Note that a deterministic TM is probabilistically permissive
with respect to a property π if and only if it is permissive with respect to π.
On the other hand, a randomized TM may not be π-permissive, while being
probabilistically π-permissive.

We now show an example why the existing STMs are not permissive. Consider
the history h = ((write, v1), p1), ((read, v1), p2), ((write, v2), p2) (commit, p1),
(commit, p2). The history h is opaque, but its outcome is 0 for STMs like DSTM,
TL2, and WSTM. In fact, it is easy to see that any TM that checks at the time
of commit that the values of the variables read are equal to what values were
read earlier (that is, validates the read set), cannot be permissive with respect
to opacity. On the other hand, most of the existing TMs, for reasons of good
overall performance, do exploit such a validation strategy to ensure safety. We
now give algorithms that guarantee permissiveness in STMs.

3 Permissive Transactional Memories

We start with motivating the notion of permissiveness in TMs. TMs are online
algorithms. That is, a TM decides whether to accept a statement or abort the
corresponding transaction, only based on the statements seen so far. Let h be
the history seen by the TM so far. Let x be the unfinished transaction of the
process p in history h, and h′ = h · (c, p). A TM A may decide to abort the
transaction x in three scenarios:

– Correctness. The history h′ is not opaque. In this case, any TM safe with
respect to opacity needs to abort x. Thus, even a opacity-permissive TM
aborts x.

– Performance. The history h′ is opaque, but A is not sure whether h · (c, p)
is opaque. For efficiency, A decides to abort x and retry it. In this case, a
permissive TM will find out that h′ is opaque, and thus not abort x. It is
crucial for a permissive TM is to efficiently compute, given that h is opaque,
if h′ is opaque or not.

– Priority. The history h′ is opaque, but the unfinished transaction y of some
process p′ 6= p has to abort in every history extension of h′. The TM A
prioritizes p′ and hence aborts x, so that y retains the possibility to commit.
In this case, we argue that as a TM does not know the future input after h,
even after the TM aborts x, it is possible that due to conflicts, the TM has to
abort y too. We believe that the idea of permissiveness can well be integrated
with the notion of prioritizing certain processes, by making a process wait
(rather than abort) for the commit of another process with higher priority.

Thus, the key to an efficient permissive TM for a given property lies in
minimizing the cost of book-keeping required to check on the fly, whether the
history produced by the TM satisfies the property.



3.1 A deterministic permissive transactional memory

In recent work [5], we described transactional memory specifications for strict
serializability and opacity. The algorithm to obtain these specifications is based
on the idea of conflicts graphs [10]. We refer to this algorithm as Spec in this
paper. Spec assumes that the commands read,write, commit, and abort execute
atomically. Our assumption is justified as we only analyze Spec and do not build
a deterministic permissive TM implementation from it.

The important idea of the Spec is the prohibited read and write sets, which
allow us to remove finished transactions from the conflict graph. This keeps the
conflict graph finite. Spec [5] can be configured to obtain specifications for strict
serializability or opacity. As the algorithm provides TM specifications for strict
serializability (resp. opacity), it has outcome 1 for all and only those histories
which are safe with respect to strict serializability (resp. opacity). In other words,
we get a TM which is safe and permissive with respect to strict serializability or
opacity.

The cost of the read operation in Spec for n processes is O(n2). In a practical
scenario, most of the statements are reads, which in existing TMs, have a com-
plexity of O(n). Some highly performance oriented TMs, like TL2, just require
O(1) for a read statement. So, we believe that the high cost of a read opera-
tion in Spec makes it a poor choice for a practical implementation. Hence, we
do not create a TM implementation from Spec. We open the question whether
there exists a deterministic permissive TM where the read operation is at most
linear in the number of processes. Here, we now describe a randomized STM,
called Adaptive Validation STM (AVSTM), which is probabilistically permissive
w.r.t. opacity, and at the same time, performs well practically. The algorithm
derives its name from the fact that transactions adaptively validate themselves.
All transactions maintain a possible interval to serialize themselves, and at the
time of commit, randomly choose a point within that interval.

3.2 A randomized permissive transactional memory

Algorithm 1 shows the algorithm for AVSTM, which can be used for either
strict serializability (SS-AVSTM) or opacity (OP-AVSTM). We do not assume
that the commands in Σ are atomic in AVSTM. Only the reads and writes of
global variables, and the CAS operation are treated as atomic. This allows us
to use AVSTM as a real TM implementation, which we discuss in Section 3.5.
The idea of AVSTM is to randomly choose, at the time of commit, a possible
serialization point for every transaction. In principle, this allows transactions
to probabilistically commit in the past, or in the future. For example, if two
transactions x, y access the same variable, where x writes and y reads – even if
x commits, y may commit afterwards if the transaction x chooses a serialization
point in the future.

We first describe the variables and functions used in AVSTM. The function
rs : P → 2V is the read set and ws : P → 2V is the write set of the processes.
The function rv : V → N gives the read version number and wv : V → N gives



the write version number of the variables. The function Global : V → N is the
global valuation of V , and Local : P ×V → N is the process-local valuation of V .
Moreover, the functions min ser point : P → N and max ser point : P → N
denote the minimum and maximum possible serialization points for the processes
respectively. The function ser point : P → N represents the tentatively chosen
serialization point for the processes. AVSTM uses a variable commit num ∈ N
that represents the sequence number of the commit being performed, and a
variable owner ∈ P ∪ {⊥} that denotes the process which owns the current
commit. When no process is committing, then the owner is ⊥. The commit
sequence number and the owner process are treated as an atomic pair so that they
can be atomically manipulated. For the implementation, we encode commit num
and owner within the same variable as commit num · (n + 1) + i, where n is the
number of processes, and i = 0 if owner =⊥ and i = owner otherwise. Also,
every process uses a local variable lcn ∈ N. The read set and write set of all
processes are initially empty. Version numbers of all variables and serialization
points of all processes are initially set to 0. When a transaction is started by
process p, the variable commit num is first read into the local variable lcn. Then,
lcn is written into ser point(p) and min ser point(p), and max ser point(p)
is initialized to infinity. We now give an informal description of the algorithm.

– Upon read of variable v by process p: If v is in the write set of the process,
then p returns the local value of v. Otherwise, the global value of v is copied
as the local value of v for p. The value ser point(p) is set to the maximum of
the write version of v and its previous value. If some process p′ is committing
a transaction that writes to v, then p first helps p′ to commit. Then, v is
added to the read set of p. If the global value of v has not changed during
this read operation, then the value read is returned. Otherwise, the read is
performed again. To ensure opacity, p also needs to check whether it has a
positive interval to commit.

– Upon write of variable v with value val by process p: The variable v is added
to the write set. The local value of v in process p is set to val (overwritten
if already existed). The value ser point(p) is chosen as the maximum of its
previous value, the write version of v and the read version of v.

– Upon commit of a transaction by process p: For a read only transaction,
committing a transaction simply requires to set the read set to empty. Oth-
erwise, the process p first aims to gain ownership of the commit. Until then,
it helps other processes which are committing. p increments ser point(p)
to ensure that for every variable v in the write set, ser point(p) ≥ rv(v). If
there is no positive interval to commit, then the unfinished transaction of p
is aborted. Once p obtains ownership of the commit (owner = p), the process
p starts the helpCommit for itself. The commit of p may also be helped by
other processes. Finally, the read and write sets of p are reset to empty.

– Upon abort of a transaction by process p: The read and write sets are reset
to empty.

The procedure helpCommit(lcn, p) is shown in Algorithm 2. It allows a pro-
cess to help a process p in committing a transaction as follows. First of all, the



read version of all variables in rs(p) is incremented to the ser point(p). Then,
the write version of all variables in ws(p) is also incremented to ser point(p).
Then, the global value of these variables is updated. Then, the maximum serial-
ization point of all processes whose read set intersects with the write set of p is
set to ser point(p). Similarly, the minimum serialization point of all processes
whose write set intersects with the write set of p is set to ser point(p). Last of
all, the commit is made unowned (owner =⊥). We note that the version numbers
increase monotonically. Also the epoch based storage management ensures that
a pointer to a memory location is not freed if any process holds a reference to
the location. Thus none of the CAS operations in AVSTM suffer from the ABA
problem. We now analyze the safety, liveness, and permissiveness of AVSTM.

3.3 Safety and permissiveness of AVSTM

The order of operations in the read statement and in the procedure helpCommit
is crucial for safety and permissiveness of AVSTM. We observe that the order
of statements in the read and helpCommit procedure is essential for the safety
and permissiveness of AVSTM. Upon a read of a variable v, the value of v is
read (line 3) before the version number of v is read (line 4). Also, the read is
successful only if the global value of v observed at the end of the read procedure
(line 10) is same as the one read at the beginning of the read procedure (line 3).
In the procedure helpCommit, for the variables being written, the write version
number is updated (line 10) before the value of the variable is updated (line 12).
Moreover, if the variable read by a process p is being written by some process p′,
then p first helps p′ to commit. Together, this ensures that the version number
read in line 4 of the read procedure corresponds exactly to that of the value read
in line 3.

We prove the following properties of OP-AVSTM: safety and probabilistic
permissiveness with respect to opacity. Similar proofs can be obtained for SS-
AVSTM with respect to strict serializability. We also give an example of how
OP-AVSTM works on a given opaque history.

Theorem 1. OP-AVSTM is safe with respect to opacity.

Proof. The procedure helpCommit allows many processes to commit a transac-
tion for a particular process. But, the values and version numbers are committed
exactly once, as the version numbers increase monotonically. Thus, the CAS does
not suffer from the ABA problem. Also, the transaction x of process p commits
only if it has a positive interval at the time of commit. For the case of opacity, it
is also ensured that when a variable is read, then the transaction has a positive
interval to commit. A transaction x of process p successfully reads a variable only
if max ser point > min ser point. Note that the order of operations in the read
and helpCommit is crucial to this correctness. The read operation first reads the
variable, and then reads the version number. The procedure helpCommit first up-
dates the version number and then updates the variables. This order ensures that
if a newer value of a variable is read, then its corresponding version number is



Algorithm 1 Adaptive Validation STM
Upon read of variable v by process p

if v ∈ ws(p) then return Local(p, v)
do forever

Local(p, v) := Global(v)
local write version := wv(v)
ser point(p) := max(ser point(p), local write version)
〈lcn, p′〉 := 〈commit num, owner〉
if p′ 6=⊥ and v ∈ ws(p′) then helpCommit(lcn, p′)
OP-AVSTM:

if max(min ser point(p), ser point(p)) ≥ max ser point(p) then abort
if Local(p, v) = Global(v) then break

rs(p) := rs(p) ∪ {v}
return Local(p, v)

Upon write of variable v with value val by process p
local write version := wv(v)
local read version := rv(v)
ser point(p) := max(ser point(p), local write version, local read version)
ws(p) := ws(p) ∪ {v}
Local(p, v) := val

Upon commit by process p
if ws(p) = ∅ then rs(p) := ∅; return
do forever
〈lcn, p′〉 := 〈commit num, owner〉
while p′ 6=⊥ do

helpCommit(lcn, p′)
〈lcn, p′〉 := 〈commit num, owner〉

for each variable v ∈ ws(p) do
ser point(p) := max(ser point(p), rv(v))

ser point(p) := max(min ser point(p), ser point(p))
if ser point(p) ≥ max ser point(p) then abort
ser point(p) := a random number between ser point(p) and max ser point(p)
new cp := lcn + 1
if CAS(〈commit num, owner〉, 〈lcn,⊥〉, 〈new cp, p〉) = 〈lcn,⊥〉 then break

helpCommit(new cp, p)
rs(p) := ∅; ws(p) := ∅

Upon abort by process p
rs(p) := ∅; ws(p) := ∅

also read. When a transaction x of a process p starts, the variable min ser point
and ser point are set to the serialization point of the last committed transac-
tion. This ensures that for non-overlapping transactions x, y, if y finishes before
x starts, then x serializes after y. Moreover, the transaction x of process p can
commit only if max ser point > min ser point at the time of commit. Also,



Algorithm 2 helpCommit(lcn, p)
local ser := ser point(p)
local read set := rs(p)
local write set := ws(p)
if 〈lcn, p〉 6= 〈commit num, owner〉 then return
for each variable v ∈ local read set

local read version := rv(v)
if local read version < local ser then

CAS(rv(v), local read version, local ser)
for each variable v ∈ local write set

local write version := wv(v)
local read version := rv(v)
old val := Global(v)
new val := Local(p, v)
if 〈lcn, p〉 6= 〈commit num, owner〉 then return
if local read version < local ser then

CAS(rv(v), local read version, local ser)
if local write version < local ser then

CAS(wv(v), local write version, local ser)
CAS(Global(v), old val, new val)

for all processes p′ 6= p do
for each variable v ∈ rs(p′) ∩ ws(p) do
local max := max ser point(p′)
if local ser < local max then

CAS(max ser point(p′), local max, local ser)
for each variable v ∈ ws(p′) ∩ ws(p) do
local min := min ser point(p′)
if local ser > local min then
CAS(min ser point(p′), local min, local ser)

CAS(〈commit num, owner〉, 〈lcn, p〉, 〈lcn,⊥〉)

for every variable v ∈ rs(p), when v is read by transaction x, the write version
wv(v) < min ser point. Moreover, after v is read, no transaction that writes to
v commits with a serialization point less than max ser point. Similarly, the vari-
ables in ws(p) have not been written later than min ser point. Thus, the trans-
action x sees a state of the variables, consistent in the interval min ser point
to max ser point. As this holds for every committing, aborting, and unfinished
transaction of every process, opacity is guaranteed by OP-AVSTM.

ut

Theorem 2. OP-AVSTM is probabilistically permissive with respect to opacity.

Proof sketch. For any opaque history h, every transaction serializes at some
point within its lifetime. We can thus mark the serialization point of every trans-
action in h. As the length of h is finite, there is positive probability that every
transaction in h chooses the required serialization point in OP-AVSTM. Hence,
h is accepted by OP-AVSTM with positive probability.

ut



Example of probabilistic permissiveness of OP-AVSTM. Consider an
opaque history h = ((write, v1), p1), ((write, v2), p2), ((read, v1), p2) (commit,
p1), (commit, p2). First, the process p1 writes to v1. Then, the process p2 writes to
v2. Then p2 reads the variable v1. When p1 commits, let the chosen serialization
point be c. The write version of v1 is seen as the initial value 0 by p2 as p2

reads before p1 updates the write version number of v1 to c. In this case, it is
ensured that the maximum serialization point of p2 is also set to c. Now, when p2

commits, it can choose a serialization point less than c and successfully commit.
Even if the commands in Σ are not considered to be atomic, a similar argument
can be made about the probabilistic permissiveness of AVSTM.

3.4 Liveness of AVSTM

Different notions of liveness have been proposed for transactional memories. A
TM is obstruction free if for every infinite history h produced by the TM, if
some process p ∈ P takes infinitely many steps in isolation in h, then p commits
infinitely often. A TM is lock free if every infinite history h produced by the TM
contains infinitely many commits. A TM is wait free if every infinite history h
produced by the TM contains infinitely many commits for every process p ∈ P .

Theorem 3. The algorithms SS-AVSTM and OP-AVSTM are lock free.

Proof. We prove the theorem by contradiction. Let there exist a time t after
which no process commits a transaction. We first note that no operation in
AVSTM is blocking. Thus, every process, when scheduled, executes a statement
of the algorithm. Also, transactions are of finite size. We note that a process
can loop in the read or commit operation only if some other process performs a
successful commit. So, if there is no commit of any transaction after time t, then
there must be an infinite number of aborts of transactions after t. A transaction
aborts only if it cannot find an interval to commit. As the maximum serialization
point is initially ∞ when a transaction starts, the only way that a transaction
does not find an interval to commit is when the maximum serialization point
is set to a finite value. This occurs only within the procedure helpCommit . We
also note that the maximum serialization point is changed in the procedure
helpCommit at most k times, where k is the number of variables. Moreover,
the procedure helpCommit for a particular transaction can be executed at most
once by every process. Thus, there exists a time t′ ≥ t such that the maximum
serialization point of any process does not change after t′. Thus, there is no
abort after t′. This contradicts our assumption. Hence, AVSTM guarantees lock
freedom.

ut

4 Implementation and experiments

To evaluate the practical importance of the notion of permissiveness, we imple-
mented AVSTM within the LibLTX package [3]. The LibLTX package includes



 0

 20

 40

 60

 80

 100

 120

 140

1 10 20 30 40 50

E
xe

c.
 ti

m
e 

pe
r 

su
cc

es
sf

ul
 tx

Number of processes

WSTM
DSTM

TL2
AVSTM

(a) Skip list of size 4; 90% reads

 0

 20

 40

 60

 80

 100

 120

 140

1 10 20 30 40 50

E
xe

c.
 ti

m
e 

pe
r 

su
cc

es
sf

ul
 tx

Number of processes

Fraser STM
DSTM

TL2
AVSTM

(b) Skip list of size 4; 10% reads

 0

 20

 40

 60

 80

 100

 120

 140

1 10 20 30 40 50

E
xe

c.
 ti

m
e 

pe
r 

su
cc

es
sf

ul
 tx

Number of processes

WSTM
DSTM

TL2
AVSTM

(c) Red-black tree of size 4; 90% reads

 0

 20

 40

 60

 80

 100

 120

 140

1 10 20 30 40 50

E
xe

c.
 ti

m
e 

pe
r 

su
cc

es
sf

ul
 tx

Number of processes

Fraser STM
DSTM

TL2
AVSTM

(d) Red-black tree of size 4; 10% reads

Fig. 1. Performance results on benchmarks in high contention. The execution time is
measured in micro-seconds.

an implementation of DSTM with the Polka contention manager (which typically
gives best performance results to DSTM [12]) and WSTM [3]. We also imple-
mented an STM based on TL2 [1] within the LibLTX package. We integrated
the storage management of AVSTM with the epoch-based garbage collector [2],
where a memory pointer is not freed if any process holds a reference to it. This
allows the simple use of CAS in the procedure helpCommit , without causing any
ABA problem. We compare the performance of AVSTM configured for opacity,
with DSTM, WSTM, and TL2 in high contention scenarios, that is, when many
processes are accessing a small set of shared variables. We experimented on a
quad dual core (8 processors) 2.8 GHz server with 16 GB RAM. Executing a large
number of processes on a small number of processors creates a practical scenario,
where a thread holding a lock may get descheduled, and the liveness property of
lock freedom becomes critical for performance. We use two different benchmarks:
skip lists and red black trees. For both of these benchmarks, we experiment with
a data size of 4 items, and with two different types of workloads, one is read
dominated with 90% reads, and other is write dominated with 10% reads. The
results (Figure 1) show that AVSTM always outperforms DSTM and WSTM



 0

 20

 40

 60

 80

 100

 120

 140

1 10 20 30 40 50

E
xe

c.
 ti

m
e 

pe
r 

su
cc

es
sf

ul
 tx

Number of processes

WSTM
DSTM

TL2
AVSTM

(a) Skip list of size 1024; 90% reads

 0

 20

 40

 60

 80

 100

 120

 140

1 10 20 30 40 50

E
xe

c.
 ti

m
e 

pe
r 

su
cc

es
sf

ul
 tx

Number of processes

WSTM
DSTM

TL2
AVSTM

(b) Skip list of size 1024; 10% reads

 0

 20

 40

 60

 80

 100

 120

 140

1 10 20 30 40 50

E
xe

c.
 ti

m
e 

pe
r 

su
cc

es
sf

ul
 tx

Number of processes

WSTM
DSTM

TL2
AVSTM

(c) Red-black tree of size 1024; 90% reads

 0

 20

 40

 60

 80

 100

 120

 140

1 10 20 30 40 50

E
xe

c.
 ti

m
e 

pe
r 

su
cc

es
sf

ul
 tx

Number of processes

WSTM
DSTM

TL2
AVSTM

(d) Red-black tree of size 1024; 10% reads

Fig. 2. Performance results on benchmarks in low contention. The execution time is
measured in micro-seconds.

by upto 40% in high contention scenarios. Also, in our experiments, AVSTM
outperforms TL2 in high contention when the workload is read dominated. We
admit that the official implementation of TL2 will perform better than our ver-
sion of TL2, but our experiments do show that AVSTM is comparable to the
existing TM algorithms in the literature. We also note that AVSTM is lock free
while TL2 is not. TL2 performs better than AVSTM in high contention when
the workload is write dominated. This, we believe, has an interesting theoretical
explanation. When the workload is write dominated, even AVSTM has to abort
very often in order to be safe. This gives TL2 an advantage over AVSTM as TL2
uses a simpler invalidation scheme. On the other hand, when the workload is
read dominated, AVSTM has to abort less often than TL2. This is because TL2
aborts many opaque histories, whereas the bookkeeping of AVSTM helps it to
avoid some redundant aborts.

Permissiveness in AVSTM does come with a price. As we saw in the algo-
rithm for AVSTM, different processes access the global data concurrently. Thus,
AVSTM incurs high overhead due to poor cache performance. To evaluate this
overhead, we evaluate the performance of different STMs in a low contention



scenario of 1024 data items. The results are shown in Figure 2. We find that
although AVSTM is not as good as other TMs, it does not yet pay an over-
whelming penalty for the bookkeeping needed to achieve permissiveness. On
average, AVSTM performs 20-30% worse than existing TM algorithms. We now
discuss how AVSTM can be used as a fallback mechanism with TL2 to boost
performance and progress guarantees in high contention scenarios.

Combining AVSTM with TL2

Our experiments gave us a clue on how we can make the best use of AVSTM,
which has excellent performance in high contention scenarios. AVSTM also gives
the progress guarantee of lock freedom. On the other hand, AVSTM is not a good
performer in low contention scenarios. We propose to use AVSTM as a fallback
mechanism, that is, it be combined with other STMs to get good performance
and guaranteed progress when high contention brings both performance and
progress at risk. We discuss here, as an example, how AVSTM can be combined
with TL2.

A TM that is running in low contention uses the TL2 mode. A process that
faces a series of aborts changes the mode from TL2 to AVSTM. Now, other
processes which are not in the final phase of committing (once the locks have
been acquired and the read set has been validated) can safely change their mode
to AVSTM by observing the change of mode, for example, during the validation
phase in the commit. A process which is in the final phase of commit has to be
dealt with properly. When a process p1 running in AVSTM mode tries to access
a variable which is locked in TL2 mode by process p2, following cases may occur:

– If the process p1 observes that the process p2 is not yet in the final phase of
commit (by reading a flag for example), then p1 can safely assume that p2

will not write to the variable.
– If the process p1 observes that p2 is in the final phase of commit, then p1

helps p2 to commit. For this to work properly, processes running in TL2
mode should commit using a compare and swap (CAS). As the write set is
generally small, this introduces negligible overhead.

5 Concluding Remarks

We presented a notion of permissiveness in TMs. As liveness guarantees are hard
to provide in TMs, we believe that permissiveness can be an interesting, com-
plementary metric while evaluating TMs theoretically. We discussed the high
performance cost of a deterministic permissive STM due to the overhead of
bookkeeping. We presented a randomized STM, AVSTM, that is probabilisti-
cally permissive for strict serializability and opacity. The randomization allows
probabilistic decisions, and hence lowers the cost. We showed the practical im-
portance of permissiveness by experiments that demonstrate how AVSTM out-
performs existing STMs in high-contention scenarios. We also provided a strat-
egy to use the randomized permissive STM in combination with TL2 to boost
performance and progress guarantees.



Future work. We look ahead to prove a lower bound on the time complexity of
an opacity-permissive deterministic TM, supporting the intuition that a practical
deterministic TM cannot be opacity-permissive. We also plan to extend the
formalism of permissiveness to quantify the amount of permissiveness of a TM.
For example, a TM is k-permissive (where 0 ≤ k ≤ 1) with respect to opacity if
on every opaque history, the ratio of unnecessarily aborting transactions to the
total number of transactions is at most k. This allows us to compare even non-
permissive TMs by their degree of permissiveness. Also, as in other formalizations
of STMs [4, 5, 13], we assumed the atomicity of individual commands (read,
write, commit). Generally, the commit is not atomic and it would be interesting
to revisit the notion of permissiveness with a finer grained model in mind.

References

1. David Dice, Ori Shalev, and Nir Shavit. Transactional locking ii. In DISC, pages
194–208. Springer, 2006.

2. Keir Fraser. Practical Lock Freedom. PhD thesis, Computer Laboratory, University
of Cambridge, 2003.

3. Keir Fraser and Tim Harris. Concurrent programming without locks. ACM Trans.
Comput. Syst., 2007.

4. Rachid Guerraoui, Thomas A. Henzinger, Barbara Jobstmann, and Vasu Singh.
Model checking transactional memories. In PLDI, pages 372–382. ACM Press,
2008.

5. Rachid Guerraoui, Thomas A. Henzinger, and Vasu Singh. Nondeterminism and
completeness in transactional memories. In CONCUR. Springer, 2008.

6. Rachid Guerraoui, Maurice Herlihy, Micha l Kapa lka, and Bastian Pochon. Robust
contention management in software transactional memory. In SCOOL, October
2005.

7. Rachid Guerraoui and Micha l Kapa lka. On the correctness of transactional mem-
ory. In PPoPP. ACM Press, 2008.

8. Tim Harris and Keir Fraser. Language support for lightweight transactions. In
OOPSLA, pages 388–402, 2003.

9. Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer. Software
transactional memory for dynamic-sized data structures. In PODC, pages 92–101.
ACM Press, 2003.

10. Christos H. Papadimitriou. The serializability of concurrent database updates. J.
ACM, pages 631–653, 1979.

11. Torvald Riegel, Pascal Felber, and Christof Fetzer. A lazy snapshot algorithm with
eager validation. In DISC, pages 284–298. Springer, 2006.

12. William N. Scherer and Michael L. Scott. Advanced contention management for
dynamic software transactional memory. In PODC, pages 240–248. ACM Press,
2005.

13. Michael L. Scott. Sequential specification of transactional memory semantics. In
ACM SIGPLAN WTC, 2006.


