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ABSTRACT

The operational range of MEMS electrostatic parallel plate actuators can be extended beyond pull-in with

the presence of an intermediate dielectric layer, which has a significant effect on the behavior of such actuators.

Here we study the behavior of cantilever beam electrostatic actuators beyond pull-in, using a beam model.

Three possible static configurations of the beam are identified over the operational voltage range. We call them

floating, pinned and flat: the latter two are also called arc-type and S-type in the literature. We compute the

voltage ranges over which the three configurations can exist, and the points where transitions occur between these

configurations. Voltage ranges are identified where where bi-stable and tri-stable states can exist. A classification

of all possible transitions, based on the dielectric layer parameters, is presented. Dynamic stability analysis is

presented for the floating and pinned configurations. For high dielectric layer thickness, discontinuous transitions

between configurations disappear and the actuator has smooth predictable behavior, but at the expense of lower

tunability. We suggest that variable dielectric layer thickness may be used to obtain both regularity/predictability

as well as high tunability.

I. I NTRODUCTION

This paper presents a study of cantilever beam MEMS electrostatic actuators beyond pull-in. The effects

are studied of an intermediate dielectric layer on possible configurations of the actuator and transitions between

them.

The behavior of MEMS electrostatic parallel plate actuators before pull-in is studied extensively in the

literature. These actuators can be meaningfully modeled beyond pull-in with the presence of an intermediate di-

electric layer between the electrodes. Many MEMS devices operate beyond pull-in, e.g., capacitive switches [1],

[2], zipper varactors [3], [4], and tunable CPW resonators [5].

The cantilever beam electrostatic actuator is illustrated in Fig. 1. It has three possible configurations in the

entire operational range. These configurations differ in the boundary conditions at the free end of the cantilever

beam and are as follows.

1) Floating Configuration: The cantilever beam has no contact with the dielectric layer and is illustrated

in Fig. 3(a). The bending moment and shear force at the free end are zero.

2) Pinned Configuration: The free end of the cantilever beam touches the dielectric layer but is free to

pivot about the contact point and is illustrated in Fig. 3(b). The deflection (measured from the dielectric

layer) and the bending moment are zero at the touching end.

3) Flat Configuration: A non-zero length of the beam is in contact with the dielectric layer, as illustrated in

Fig. 3(c). The contact length of the cantilever beam varies with the applied voltage. Deflection measured
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Fig. 1: Schematic view of the cantilever
beam electrostatic actuator.
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Fig. 2: V limits for different configurations.
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(a) Floating configuration. (b) Pinned configuration.
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Fig. 3: Possible static configurations of the cantilever beam actuator. (The scale in the vertical direction is
exaggerated.)

from the dielectric layer, slope and moment are zero at the point separating the contact and the non-

contact regions of the cantilever. The point is denoted byx = a in Fig. 3(c). The shear force is nonzero

at this point. Note that, unlike the previous two configurations, the non-contacting region is not known

in advance.

II. M ODELING AND SIMULATIONS

The non-contact portion of the beam for all the three configurations is governed by the same equation

although the boundary conditions differ. The 1-D equation governing the mechanical deformation of an Euler-

Bernoulli beam, neglecting the fringing field, is

E I
∂4z

∂x4
+ ρ

∂2z

∂t2
= − ε0 w V 2

2
(

z +
td
εr

)2 . (1)

The variablesx andz in the above equations denote the position along the length and the lateral deflection of

the beam respectively;t is time; E is Young’s modulus of the material;I is moment of inertia of the beam

cross-section;ρ is mass per unit length of the beam;ε0 and εr are permittivity of free space and dielectric

constant respectively. The other parameters are marked in Fig. 1. Effects like step-ups, stress-stiffening and

softened contact surfaces are not included in this model.

The length quantitiesx and z (refer to Fig. 1) are normalized with respect to the length and zero bias

height of the beam. Timet is normalized with respect to a constantT =
√

ρ l4

E I , defined in such a way that

the coefficient of the term containing the time derivative in Eq. 1 becomes unity. Two other non-dimensional



1

(c) 0.07 < h < 0.40

(b) 0.03 < h < 0.07

(e) h > 1.24

(d) 0.40 < h < 1.24

(a) 0 < h < 0.03

PSfrag replacements

float

float

float

float

float

pin

pin

pin

pin

pin

flat

flat

flat

flat

flat

0

0

0

0

0

V
min
pin

V
min
pin

V
min
pin

V
min
pin

V
max
pin

V
max
pin

V
max
pin

V
min
flat

V
min
flat

V
min
flat

V
max
float

V
max
float

V
max
float

V
max
float V

max
pin = V

min
flat

V
max
pin = V

min
flat

V
max
float = V

min
pin

Fig. 4: Classification of possible transitions based on the numerical results of Fig.??.

quantities are defined and are:V̂ =

√
ε0w l4

2 E I g3
V andh =

td
g εr

. The governing equation becomes

∂4ẑ

∂x̂4
+

∂2ẑ

∂t̂2
= − V̂ 2

(ẑ + h)2
. (2)

For static analysis, there is no time dependence and the equation reduces to

d4ẑ

dx̂4
= − V̂ 2

(ẑ + h)2
. (3)

The hats in the normalized equation are now dropped for convenience. Equation 3 constitutes a nonlinear

boundary value problem for the floating, pinned configurations, and a nonlinear free boundary problem for the

flat configuration. They are solved using a finite difference scheme through an iterative procedure. The system

can have multiple solutions for a givenV within the same configuration. All the physically feasible solutions

are obtained by varying the initial guess made in the iterative procedure. The following section presents the

effects of dielectric layer.

III. EFFECTS OF THE DIELECTRIC L AYER

The governing Eq. 3 has only two parametersV and h. h is proportional to the dielectric thickness for

a given zero bias height and dielectric constant. Similarly,V is proportional to the applied voltage. We study

solutions for fixedh and varyingV , for a range of values ofh.

The lower voltage limit for the floating configuration is trivially zero. There is no upper voltage limit for

the flat configuration since the non-contacting length approaches zero asV →∞. The otherV limits vary with

the h value and are computed by solving Eq. 3 for the corresponding boundary conditions and the results are

shown in Fig. 2. Possible transitions between configurations are shown in Fig. 4, based on Fig. 2. There may

be two or even three stable configurations at a givenV . As V is changed back and forth so that transitions

occur between states, therefore, there can be hysteresis in the actuator’s behavior. Note that there is no such

bi-stability for h > 1.24; and that there istri -stability for h < 0.07.

The existence of tri-stable states has not previously been noted for such actuators in the literature.

A. Transitions

Four transitions are identified, as suggested by Fig. 4.



1) Pull-In : Pull-in occurs when the floating configuration solution disappears, as discussed earlier. The

jump in the height at the free end of the beam at the point of transition results from a turning point bifurcation,

as discussed later. It is interesting to note that forh < 0.03 (Fig. 4(a)), the transition from floating has to be

to the flat configuration. For0.03 < h < 0.07 (Fig. 4(b)), the transition can be to either the pinned or the flat

configuration, and only a full nonlinear dynamic analysis (not attempted here) can resolve which configuration

is reached immediately after pull-in. Forh > 0.07, the transition has to be to the pinned configuration. Upon

increasing the voltage, regardless ofh, any pinned configuration will transition to a flat configuration.

2) Pull-Down: The transition from the pinned to the flat configuration is referred to here aspull-down.

The pinned configuration has a nonzero slope at the beam’s end point, while the flat configuration has zero

slope. As is the case for pull-in, a discontinuous transition from pinned to flat occurs due to a turning point

bifurcation, as discussed later. AsV is increased fromV max
pin , the magnitude of the slope at the touching end

point decreases faster and faster, until the curve turns around (not shown here; see discussion later) and the

pinned solution disappears.

3) Pull-Up: Starting in the flat configuration, a transition is possible to a pinned configuration. Here,

we refer to such a transition as pull-up. Again, forh > 0.4, pull-up is continuous (Fig. 4). In addition, for

h < 0.07, it is not clear without nonlinear dynamics analysis (not conducted here) whether the transition at

V min
flat occurs to the pinned or the floating configuration. Note that any pinned configuration must eventually

transition to the floating configuration asV is decreased.

4) Pull-out: Finally, the transition from either pinned or flat to floating is called pull-out. Note that, as

is widely observed in experiments, pull-out does not in general occur at the same voltage as pull-in; however,

for large enoughh, it does. This consistency in physical behavior may be useful in applications.

IV. DYNAMIC STABILITY OF EQUILIBRIUM SOLUTIONS

The dynamic stability of an equilibrium solution can be determined by considering small variations of that

solution, and is governed by an eigenvalue problem.

Let zeq be an equilibrium solution. Then

∂4zeq

∂x4
= − V 2

(zeq + h)2
(4)

Let ξ be a small perturbation tozeq. Putting

z = zeq + ξ (5)

in Eq. 2,
∂4 (zeq + ξ)

∂x4
+

∂2 (zeq + ξ)
∂t2

= − V 2

(zeq + ξ + h)2
.

This system is linearized for a small value ofξ and then, discretized using modal expansion method along the

lines of [6]. The eigen values of the resulting system are computed which determine the dynamic stability of

the equilibrium solutions. If all the eigen values are real and negative, the solution is stable. A positive eigen

value implies instability. At the stability boundary, one eigen value will be zero (a degenerate case). Figures

5(a) and 5(b) show the results of stability analysis for the floating and pinned configurations respectively. Each

point on each curve represents an equilibrium solution (floating or pinned). Solid lines indicate stable, and

dashed lines unstable solutions. Where the two branches coalesce in a turning point, the solution is borderline

unstable by linear analysis. The value ofV at the turning point represents pull-in and pull-down in the floating

and pinned configurations respectively.
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(a) Floating configuration: Variation of height at the free end of
the beam with the applied voltage.
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(b) Pinned configuration: Variation of slope at the pinned end
with applied the applied voltage.

Fig. 5: Stability analysis of equilibrium solutions of the normalized governing equation

V. CONCLUSIONS

Cantilever beam electrostatic actuators with an intermediate dielectric layer have been analyzed in detail

over the entire operational range using a beam model. Three qualitatively different configurations, here called

floating, pinned and flat, have been identified and studied. Transitions from and to the floating configuration

(pull-in and pull-out) and transitions from pinned to flat (pull-down) and flat to pinned (pull-up) have been iden-

tified as well. Dynamic stability analyses have complemented the study of these configurations and transitions.

Both the bi-stable and tri-stable states have been found.

Higher dielectric thickness gives more regular and predictable behavior, at the cost of lower overall

tunability in device characteristics. Hence, in future work, variable dielectric thickness may be studied with a

view to obtaining desired behavior beyond pull-in. In particular, we suggest that a low dielectric thickness over

most of the beam, smoothly increasing to a significantly larger value near the free end, may give both more

regular and reversible behavior as well as higher tunability.
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