A new fast ion source and detector for investigating the interaction of turbulence with supra-thermal ions in a single magnetized toroidal plasma.

G. Plyushchev, H. Bochner, A. Diallo, A. Fasoli, I. Furfaro, W. W. Heidbrink, B. Labit, S. H. Müller, M. Podestà, F. M. Poli, Y. Zhang

1 Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

Partly funded by the "Fonds National Suisse de la Recherche Scientifique"

Motivations

- Fast ions present in many tokamaks (even with ECRH).
- The anomalous transport in tokamak could be explained by turbulence.
- Poor knowledge in fast ions – turbulence interaction in toroidal devices.
- Turbulent transport (diffusion).
- Inhomogeneous poloidal electric field from plasma;
- Classical interaction with the main plasma
- Divergence due to space charge is negligible (very small current).

Objectives of investigation

1. Turbulent plasma influence on fast ions beam.
2. Fast ions beam influence on plasma turbulence.
3. Fast ions beam influence on coherent waves in regimes with closed magnetic flux surfaces.

TORoidal Plasma Experiment (TORPEX)

- Fast ions: 100eV-1keV ions energy;
- Low gas load; aluminosilicate Li-6 ion emmiter;
- Not sensitive to magnetic field;
- High voltage modulable power supply;
- Light ions to facilitate the ion-electron interactions; Li-6;
- Small size to minimize perturbations;
- Screen grid at plasma floating potential;
- Focusing.

Main diagnostics of TORPEX

- High-frequency Langmuir probes
- 3D Mirnov coils
- Gridded energy analyser
- Moving Langmuir probes
- Moving 2D Langmuir probe
- Moving Rogowski coil
- Gridded energy analyser

Scheme of the experiment

- Toroidal cross-section of TORPEX vacuum vessel:
- Fast ions source and gridded energy analyser will be installed on 2D poloidally moving system to change fast ions deposition and to measure beam current profile from shot to shot.

Divergence of ion beam

- Five possible mechanisms:
 1. Space charge of the beam ions;
 2. Drift motion + cyclotron motion;
 3. Classical transport;
 4. Inhomogeneous poloidal electric field from plasma;
 5. Turbulent transport (diffusion).

Space charge

Divergence due to space charge:

\[
\frac{d}{dr} = \frac{eU_{eff}^2}{2m_1^2 \sqrt{n_1 x}} \left(1 - \frac{r}{b_1} \right) \left(1 - \frac{r}{b_2} \right)
\]

Divergence due to space charge is negligible (very small current).

2D poloidally moving system

- Based on sliding seal feedthroughs with differential pumping:
- Coverage area
- Angular feedthrough
- Ceramic tube
- Remote linear motion
- Arm for remote angular motion

Particle trajectories

- Single particle approximation:
 - Toroidal cross-section:
 - Poloidal cross-section:

Fast ions source

- Scheme of fast ion source.

Gridded energy analyser

- * 2 grids;
- * Screen grid;
- * Biased with sweeping voltage (f=1kHz);
- * Spatial resolution ~5mm;
- * Energy resolution ~0.1V.