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Abstract: Numerical simulations of sawteeth in tokamaks have been
carried out using reduced magnetohydrodynamics and a simple transport
model. The electron temperature is evolved self-consistently including
ohmic heating and a strongly anisotropic thermal conductivity. The
character of the sawteeth is found sensitive to the values of the transport
coefficients. In particular, the perpendicular viscosity v must be
comparable to, or larger than, the perpendicular heat conductivity % 1 in
order for distinct relaxation oscillations to occur. To study the region of
high Lundquist number S (up to 107), v and y N have been scaled as 1/S, and
S has been varied. The influence of the Lundquist number on the sawteeth
is strongly affected by modifications of the equilibrium induced by the
sawteeth themselves. The collapse time shows a much weaker dependence
on S than the expected S1/2 scaling, because the deviation of central q away
from unity over the sawtooth cycle decreases for increasing S.
Furthermore, the resistive instability is turned on quickly because the shear
changes from almost zero in the central region to order unity over one
resistive layer width. The simulated sawtooth period and collapse time for
S £ 107 compare favorably with those observed in small and medium size
tokamaks.



1. Introduction

Sawtooth oscillations in which the central temperature shows a
sudden drop followed by a slow increase until the next drop [1] occur in
practically all tokamaks under a variety of experimental conditions. A
theoretical model for the sawteeth was proposed by Kadomtsev [2]. In his
model, the drop is triggered by the growth of the m=1/n=1 resistive kink
mode when the safety factor in the centre qg falls below unity. Via a
complete resistive reconnection of the helical flux inside the q=1 surface,
the deformation relaxes to a symmetrical state with q above unity
everywhere and a flattened temperature profile in the central region of the
plasma. After such an internal disruption, the temperature and current
profiles peak again under the influence of ohmic heating, qq again falls
below unity and the cycle is repeated. Recent experimental data indicates
that the Kadomtsev model is not always applicable and suggests that the
central q may be significantly less than unity while the discharge is still
sawtoothing [3]. Furthermore, measurements on JET indicate that the
growth-time of the instability leading to the drop in central temperature is
too short to be connected with a resistive mode [4,5].

The first simulations of sawteeth were performed by Waddell et al.
[6], using reduced magnetohydrodynamics (MHD). Sykes and Wesson [7]
followed repeated oscillations, assuming Spitzer resistivity 1 o< T-3/2 and
using an equation for the temperature evolution that included ohmic
heating and perpendicular thermal diffusion. In this model the oscillations
were found to decay in time. Denton et al. [8,9] and Bondeson [10]
reproduced periodic oscillations by introducing a large thermal
conductivity along the field-lines.

All computations carried out so far have been made with plasma
parameters far from those characteristic of current experiments. The

purpose of this paper is to present self-consistent simulations performed



with parameters closer to those of the experiments and to make comparison
with experimental data for Lundquist numbers up to about 107. Our
principal finding is that the reduced-MHD simulations reproduce the
behavior of small and medium size tokamaks surprisingly well, e.g., with
respect to sawtooth period and collapse time. In particular, the collapse
time shows a much weaker dependence on resistivity than the S1/2
dependence expected from the Sweet-Parker scaling [11,12], mainly
because the change in central q over the sawtooth cycle decreases with
increasing S. Consequently, the amount of helical flux Ay , to be

reconnected decreases with resistivity and this partly compensates for the
decrease in reconnection rate, dy_/dt. Furthermore, in the nonlinear

simulations, the maximum growth-rate of the resistive kink mode scales

weakly with S, roughly as S

. The weak dependence on S results from the
modification of the equilibrium profiles by the sawteeth themselves, such
that the shear changes from practically zero inside a central region to order
unity over one resistive layer width. The sawtooth period shows a weaker
than linear dependence on S, in agreement with experimental results.

In carrying out these simulations, we have found that the character of
the sawteeth is sensitive to the values of the transport coefficients, in
particular to the ratio of the perpendicular viscosity v to perpendicular heat
conductivity y . If v/x is too small, the characteristic relaxation
oscillation of the sawteeth is replaced by more or less continuous mode
activity and the equilibrium never departs significantly from marginal
stability with q = 1 in a large central region. However, if v/y | > 1, distinct
relaxation oscillations are produced. The reason for this dependence is that
the viscosity influences the damping rate of the postcursor oscillation. If
the damping is weak, the postcursor does not have time to decay before the
next crash is triggered, and continuous mode activity results. Recent
experimental results concerning momentum confinement from Doublet IIT

[13], TFTR [14] and ASDEX [15] all indicate that the momentum



confinement is of the same order as the energy confinement, although both

are anomalous.
2. The model

Our simulations are based on the standard, straight cylinder, low-f3,
reduced-MHD equations [16]. The code [10] evolves the electron
temperature selfconsistently with a highly anisotropic thermal diffusivity
and ohmic heating. The perpendicular thermal conductivity has been
inferred from temperature measurements on the Frascati Tokamak (FT).

In normalized units, the model equations are:

9 g 2
(at+y_—VJ_)(o-B-V3+vVlm ,

X o BVo- G- +E,0 ,
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G+ ¥V T = G -y (1)

+ V_L'XJ_VJ_T + (B:-V)y, BT ,

A
where B = Vy X% + BT 2 y is the magnetic flux function, v = V¢ X z, and
¢ is the stream function, @ =-V l2¢ is the vorticity and j= -V _L2\|I is the
plasma current. Moreover, j, is the bootstrap current [17], T is the

electron temperature, M is the neoclassical Spitzer resistivity and
\' l=V -Z 9/9z. The unit length is the minor radius a, the unit time is the

Alfvén transit time T AT R/v A’ where R is the major radius and v A is the
Alfvén speed in the toroidal magnetic field By. v and x | are the

perpendicular viscosity and perpendicular thermal diffusivity multiplied
by T, /a?and X, is the paralle] thermal diffusivity multiplied by 7, /R?.

The temperature corresponds to the poloidal beta of the electrons divided



by qa2, T = (R/a)? B/2. In the following we shall refer to this normalized
beta as Bpol. The normalized temperature is also a measure of the ratio of
the energy confinement time, T =3nT/2n j* and the resistive diffusion
time, T, = a? Ho/M.

The code uses finite differences with 200 points in the radial
direction and Fourier expansion in the azimuthal and toroidal directions.
The present study is restricted to single-helicity perturbations withm/n =1,
and mode number up to m=4 (in some cases m=8) have been retained. The
applied toroidal field E_ (t) has been adjusted in time to keep the g-value at
the edge fixed. No assumption has been made regarding the symmetry of
the perturbations, i.e., ¥, ¢ and T have all been expanded with both cosine
and sine components.

We have chosen as a reference case a typical ohmic discharge in FT,
with B, = 6T, a =0.20 m, R = 0.83 m, q,= 2.6, central density n(0) ~
1.8x10%* m™ and central temperature T(0) between 500 and 1000 eV. With
these parameters, the Alfvén time is T, ~ 0.085 psec, the Lundquist
number is S =T/t ~ 10" the normalized parallel thermal conductivity is
%X ,~ 20 and the normalized temperature is T ~ 0.02 + 0.04. We have
assumed a radial dependence of the type xl(r) = xl(O)/ [1—(x/r, )2 12, with
1,/a = 1.1, for the perpendicular thermal diffusion coefficient to represent

the results of power balance studies on FT. y, and v have been taken

constant over the cross-section.

3. Dependence on thermal diffusivity and viscosity

In general terms, the sawtoothing can be thought of as a nonlinear,
dissipative system, in which relaxation oscillations occur. As is well known
in nonlinear dynamics, the behavior of such systems is often sensitive to the
parameter values, in particular to the dissipation coefficients. We have

observed that this is indeed the case for the sawteeth: simulations



performed initially with somewhat randomly chosen parameter
combinations (n, Vv, X, and y,,) would produce very different results
ranging from distinct sawteeth to weak, continuous mode activity. To
obtain some understanding of the influence of the parameters on the
character of the sawteeth, we first studied the dependence on v and X, at
moderate S. We emphasize that the scaling studies presented here are self-
consistent, taking full account of modifications in the equilibrium profiles,
that result from the action of the sawteeth themselves. Such modifications
lead to important and unexpected results for the dependence on the
Lundquist number.

Figure 1 shows the time evolution of the central temperature and
safety factor and integrated energies W in the Fourier components 1/1 and
4/4 for three different values of 3 pol’ 0.022, 0.15 and 1.35. For all the
three cases, S = 104 and v = 10-4, and for those with B D 01=O.15 and
B P o1=1-35, we have discarded the trapped particle corrections in the
resistivity and bootstrap current. Figure 1 shows clearly that as [ pol is
reduced by increasing X, (i.e., by decreasing the energy confinement time),
the period of the sawteeth decreases, and their character of distinct
relaxation oscillations is lost. The relaxation oscillations of the 1/1 mode
energy are very pronounced in the high-B case, whereas for lower §,
where the sawtooth period is shorter, the postcursor of one crash does not
have sufficient time to decay before the next crash occurs. The values of
% ,(0) in the three cases of Fig. 1 are 1x10-3, 7x10-3 and 7x10-6, which may
be compared with the viscosity v = 10-4. The case of Bpol = 1.35
corresponds closely to that simulated by Denton et al [8]. In this case, the
variation in q, over the sawtooth cycle is large, Aq, = 0.25.

If we try to represent the sawtooth period of these three cases as a

power of Bp ol ie., Teaw & % c[:l’ the dependence is rather strong oc[3 = (.8.

Thus the energy confinement time plays an important role for determining

the period of the sawteeth.



In FT, Bpol =~ 0.02 + 0.04 and the corresponding case in Fig. 1 does
not have regular sawteeth. However, the character of the sawteeth is also
dependent on the viscosity. Figure 2 shows the time histories of T, q, and
the mode energies for four different values of viscosity, 10-3, 10-4, 10-5,
and 10-6. The resistivity 1 and the perpendicular heat conductivity ¥ jarea
factor of 20 larger than the reference case, ie., S = 5x105, x| = 2x10-5.
Whereas distinct relaxation oscillations are produced for v = 10-3 and 10-4,
the activity becomes irregular for v < 10-3, as is most clearly seen from the
plot of qO(t). As v is decreased, the period of the sawteeth decreases from
Tsaw = 3.3x103 1, atv =103 to Tsaw =~ 1x103 T, atv =106, The
dependence of the sawtooth period on viscosity is shown in Fig. 3. For
v210-5, we find Tsaw o< V'V with o, = 0.3.

The reason for the irregular behavior when v < 10-5, which is
similar to the case of small 3 in Fig. 1, can be understood from the time
evolution of the mode energies. The variation in the 1/1 mode energy is
close to four orders of magnitude at v = 10-3 and slightly less than one
order of magnitude when v = 10-6. An important role of the viscosity is to
control the decay of the postcursor of the internal disruption by changing
both the damping rate and the repetition time. The damping rate of the
energy in the 1/1 mode, W, is about 10 x 10-3 for v = 10-3 and 5 x 10-3
for v =10-6. This dependence is rather weak, but nevertheless has a strong
influence on the character of the sawteeth, in particular as the periodicity
time also increases with viscosity. We note that when the viscosity is of the
same order as the resistivity or larger, it reduces the growth rate of the
internal kink mode according to y o (n2/v)1/3 [18], which also tends to
make the period increase with v.

The three parameters % >’V and n affect the sawteeth in very different
ways. Viscosity increases the damping of the postcursor and slows down
the growth of the precursor. As a consequence, increasing v gives longer

sawtooth period and more pronounced relaxation oscillations. Increasing



Bp o1 at fixed n gives longer sawtooth period as the ohmic heating time
increases. Since Bp o1 (01 X ;) does not much influence the damping of the
postcursor, larger B pol also gives more pronounced relaxation oscillations.
We note that the experimental relation v = | lies within, but not far from
the boundary of the region that produces sawtooth-like oscillations in
Figures 1 and 2.

The influence of resistivity is more complex. At fixed Bpol and v, the
repetition time increases with S, but this is partly counterbalanced by a
decrease of the damping and growth rates. The former effect is, however,
stronger and the net result is more clear relaxation oscillations at large S.
This can be seen by comparing Figs. 1a and 2b, where S changes from 1 x
10* to 5 x 10°, while B, and v are fixed. On the other hand, if v is scaled
in proportion to % |» as suggested by experiments, the character of the
sawteeth at fixed Bpol o< N/Y L shows a yery weak net dependence on S, as
we show in Sect. 4.

In addition to the dependence on B, and v discussed here, the
sawteeth are sensitive to the parallel thermal conductivity [9,10]. Too small
a value of y,, will completely eliminate the sawteeth, and instead give rise to
a steady m=1/n=1 convection pattern, which may be thought of as a
nonlinear form of the rippling mode. We have found that the threshold
value of y,, for regular sawteeth to occur is approximately that which
makes a temperature perturbation in the q = 1 region (where the q profile is
very flat) decay by one order of magnitude between two successive crashes.
The normalized parallel conductivity for FT, obtained from classical
transport theory, is about 20, which is sufficient for this condition to be
fulfilled in the range of parameters that we have explored. Therefore, we

have not further studied the dependence on the parallel thermal
conductivity, and used a fixed value of y,, = 27.



4. Dependence on Lundquist number

As shown in Sec. 3, the sawteeth are sensitive to the transport
coefficients, % oV and M. It would be desirable to make a complete
parameter study (at least three-dimensional) but this would be very costly
in computer time. Instead, we have taken the point of view that in
comparing tokamaks of different size, the primary variations are those in
S, while vS and ¥ lS stay relatively constant. We therefore consider the
reference parameters for FT quoted in Sec. 2 and scale these by introducing
an enhancement factor E for all the small transport coefficients (x Dz and
n). We shall show that the often assumed scalings for the growth-rate of
the resistive kink mode and the total collapse time are not applicable to the
sawteeth because they do not take into account the modifications that occur
to the equilibrium profiles as a result of the sawteeth themselves. By means
of self-consistent simulations we have found that these modifications are
dependent on the S-value. Thus, the scalings with S are strongly affected by
this self-consistency, which has hitherto been largely ignored.

In Fig. 4, we show the sawtooth period as a function of S, with vS and
X J_S fixed, for our reduced-MHD simulations together with experimental
data points [4,19-24]. To account for of the deg.egnd(e)r‘lﬁjce on ﬁpob we appli?d
the approximate scaling of Sec. 3, T, o< Bpol v~ with v ec ) e Bg%l.
This implies that, for fixed S, the net dependence on Bpol is T, o Bpol-
Therefore, the experimental points have been plotted as T saw/TaBpol - (In
comparing data for ohmic discharges, the exponent for Bpol is not very
sensitive, as Bpol does not vary by much between different machines.) The
agreement in Fig. 4 is striking; the simulation results fall within the scatter
of the experimental data for S < 106, while at S = 107, the period is

somewhat too short, for example, in comparison with FT. It is seen from
. ) ) O . N
Fig. 4 that with T /7, fixed, Toaw/ TA S > With o = 0.7,
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We now discuss the results for various enhancement factors E=25,
E=5 and E=1 more in detail. Figure 5 shows the time histories of central
temperature and safety factor together with the mode energies in the three
cases. It is clear from Fig. 5 that the variations in qq and T,y diminish as S
increases. For example, at S = 4 x 103, Aq,, = 0.05 and AT /T, = 40%,
whereas at S = 107, Aqo = (0.009 and ATO/T 0= 15%. This is consistent with
the fact that T aw SHOWS @ weaker than linear dependence on S.

It has been noted [4] that the collapse time in JET is very short (< 500
usec), and that this seems to be at variance with resistive reconnection rates
and also with a resistive mode as trigger for the internal disruption [5].
Instead, ideal instability has been suggested as a likely candidate for the
trigger [25,26]. While this conclusion appears well founded for a machine
of JET size, where S is between 108 and 109, we strongly argue that the
Kadomtsev-like sawteeth simulated here are in excellent agreement with
experimental data for S up to 107. In Fig. 6 we show the collapse time (i.e.,
the time-scale over which T, drops) and the growth times of the linear
instability, both obtained from the nonlinear simulations, for the three
values of E.

Notably, both of these times scale weakly with S and at S = 107, they
are in good agreement with observations on FT. Figure 6 indicates that the
linear growth-rate scales approximately as S-1/3, This is exactly as would
be expected from linear theory, if the shear at the q=1 surface were
independent of S. Given that dq/dt scales as 1/S and that the resistive kink
mode becomes unstable as soon as q < 1 anywhere, one might expect that
the shear at g=1 during the linear growth phase decreases with increasing S.
This reasoning assumes that the q-profile near q=1 is independent of S.
However, in comparing the q-profiles in the three cases E=25, 5 and 1, we
find that the shear s = rq'/q is not a fixed function of r - r =1" Instead, we
find that s varies considerably within one resistive layer width, between
practically O on the inside to about 0.3 on the outside, even though the
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resistive layer shrinks with increasing S. Thus, the current gradients
become increasingly steep at the edge of the low-shear region as S increases
and the effective shear for the linear instability is approximately
independent of S. In Fig. 7 we show the q-profile together with the m=n=0
current profile for E = 5 (S = 2x106) at the time of maximum growth-rate
for the m=1 component, and during the end of the reconnection phase. The
very steep current gradient is built up during the non-linear end phase of
the crash (Fig. 7¢) just outside the low shear region, where a corresponding
jump in the g-profile can also be observed (Fig. 7d). The generation of a
negative spike in the current profile at the boundary of the reconnection
region was predicted already by Kadomtsev [2]. Furthermore, the g-profile
in Fig. 7b is slightly hollow, but not sufficiently to produce double sawteeth
[8,27]. However, we find that the tendency to form a hollow g-profile is
more pronounced at high S. This tendency is in agreement with
experimental observation; double sawteeth occur much more frequently in
large machines with S > 107, and only very rarely in a machine of TCA size
[24], where S is a few times 106.

In order to compare the resistive growth rates with those found in
ideal computations [26], we have varied q,,;, for a fixed current profile
(Fig. 7a), simply by rescaling the current. The result is shown in Fig. 8.
Note t_l}at a change of less that 2 x 10-3 in q min Produces a growth-rate y =
10-3 14, i.e., the threshold for instability is very steep. (The deviation of
the threshold q_. from unity is within the numerical error for the radial
resolution in our computation.) Figure 8 applies for S = 2 x 106. For
larger S, the absolute growth-rate of the resistive kink decreases, however,
the steepening of the current profile partly compensates, and the growth-
rate remains a very steep function of qmin. The net dependence of the
maximum 1/1 growth rate over the sawtooth cycle in the nonlinear
simulations is rather weak, approximately o< S-1/3, as shown in Fig 6.
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The collapse time also shows a weak dependence on S, much weaker
than the S1/2 dependence expected from Sweet-Parker scaling [11,12]. This
is easily understood, since, as shown in Fig. 5, the variation in q, decreases
for increasing S and, therefore, also the amount of helical flux to be
reconnected. It is important to realize that the effective Alfvén frequency
well inside the low shear region, (o< Igy-11), does not necessarily play any
role in determining the rate of reconnection, as the rigid m=1 displacement
of the interior is not an Alfvén wave but rather the reduced-MHD version
of the fast magnetosonic wave. (The fast wave does exist in reduced MHD
as a "surface wave", with ® = -V l2¢ = 0, analogous to pressure
perturbations in incompressible fluid mechanics. For the m=1 mode the
"surface wave" is a rigid displacement of the core, due to "forces" B-Vj
acting at its boundary.) Thus, the effective ideal time for the nonlinear
reconnection is determined by the shear at the the edge of the low-shear
region rather then the Alfvén time in the centre. This is in exact analogy
with the linear theory.

It 1s clear from the plots of the mode energies that at the end of the
internal disruption, the m=4/n=4 mode is excited to rather high amplitude,
and the question arises whether our simulations with m < 4 have sufficient
angular resolution. To check this, we have rerun the case at S=2x106
keeping Fourier components up to m=8/n=8. The result for T, (t) is shown
in Fig. 9. When examining gross features, such as T, (1), the four Fourier
components give adequate resolution. However, if we consider details of
the evolution, certain differences become apparent, notably the formation
of small secondary islands along the q=1 separatrix [28] which are seen
with eight modes but not with four. These details appear to have only very
slight influence on the gross properties and global evolution. In Fig. 10 we
show contour plots of the helical flux function .=y — (a2 - 1*)/2 at various
stages of the internal disruption for the eight-mode simulation at S=2x106.

The formation of the small secondary island is followed by coalescence
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with the primary one. Furthermore, components with m>2 are excited at
rather high amplitude, as is evident also in the contour plots of the
temperature (Fig.11). We note from the temperature plots that the shape of
the hot core changes during the internal disruption from a circle to a
crescent, as has been observed in JET [29] and TFTR [30].

Another issue of resolution concerns the influence of multiple
helicity interactions. For example, the very steep current profile in Fig. 7c
would make tearing modes with nearby rational surfaces unstable. This
effect was, in fact, predicted on theoretical grounds by Kadomtsev [2], and
was observed in a multiple-helicity simulation at moderate S [10], where
the m/n = 4/3, 5/4, 6/5, etc. modes where periodically destabilized by the
sawteeth. Clearly, this destabilization would be very powerful in the high-
S cases as seen from Fig. 7c. Thus, we expect that multiple helicity
reconnection must occur during the late phase of the internal disruption,
when the current gradient is particularly steep. This will lead to an increase
in the reconnected flux, and thus prevent Aq,, from becoming exceedingly
small at large S. The occurrence of multiple helicity interactions in a
region just outside the low shear region can also be argued from
experimental observations in TFTR [30] concerning the heat pulse
generated by the sawtooth crash. Very fast, poloidally asymmetric
propagation is observed outside the reconnection radius where n > 2
tearing modes with m/n near unity may have grown to sufficient amplitude
to stochasticize the magnetic field. We are planning to address the

influence of the multiple helicity interactions in the near future.

5. Scaling of the sawtooth period

Our simulations predict that at fixed q,, the sawtooth period scales as
T ABp0180 7. which, as shown in Fig.4, gives a good fit between different

machines. To compare with scalings observable in a single machine it is
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useful to display the dependence on the plasma parameters: the density n,

the temperature T, Z ;> the ratio between the ion mass and the proton mass
A, the toroidal field B., and the linear dimensions. From Teaw ™

T ABS(',?SOJ we obtain:
1.3 ,0.15_04 -0.7 ., 0.65 -1.55
Teaw =< (R/BT) A" a" H(Z ) n T , (2)
where

f(Z) = Z g [029+0.457/(1.077 +Z )] (3)

is the Z . dependence of the resistivity . It should be noted that the scaling
(2) has been obtained keeping q , fixed. When the density is changed at
fixed current, the temperature will change, and the relation T=T(n) would
allow us to give the absolute dependence of the sawtooth period from the
electron density. The scaling (2) is in reasonable agreement with that

0.5

observed in FT [31], where ~© saw < 1 is observed together with a weak

inverse dependence of the temperature on the density. On some machines,
TFR [32] and TCA [24], © <

dependence may be due to changes in the profiles and Z off

w depends linearly on n, but part of this

6. Discussion

We have simulated sawteeth using a reduced-MHD code with
transport. In this model, the sawteeth occur via a resistive kink mode and
complete resistive reconnection. Our main conclusion is that such a model
is in excellent agreement with experimental results, concerning sawtooth
period and crash times, for S-values up to about 107. We observe that when
S increases, certain changes to the equilibria occur, that make the precursor
growth time and the nonlinear crash time scale very weakly with S. One
effect is the steepening of the current profile at the edge of the low shear
region which enhances the linear growth-rate at high S. The other is the
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decrease in Aq,, with increasing S over the sawtooth cycle, which decreases
the amount of flux to be reconnected and, hence, makes the crash time of
the sawtooth depend very weakly on S. As a result of these changes, the
resistive kink mode does give growth-rates and crash times in agreement
with experiment for S up to about 107. Furhermore, the sawteeth have
been found sensitive to the values of the transport coefficients. In
particular, the perpendicular viscosity v must be of the same order as, or
larger than, the perpendicular heat diffusivity X, for regular sawteeth to
occur.

It is quite evident that for S > 107, the present model would have to
be modified. If the scenario presented here is extrapolated to higher S, Aq,
and the repetition time appear to become too small. In addition, the current
profile at the edge of the low shear region would become extremely steep,
and multiple helicity interactions must be expected as discussed in Sec. 4.
Experimental data from JET [4,33] suggest that at very high S, ideal modes
are involved in the trigger [25,34] and presumably also in the subsequent
spreading of the hot core [35]. From the theoretical point of view, several
effects can be pointed out, that have not been included in the present
reduced-MHD computations, but could significantly affect the behavior of
the sawteeth. The most obvious of these is, of course, toroidicity and
compressibility, which have been studied in recent full MHD computations
[26,36]. Furthermore, as the ideal-MHD stability at q = 1 is generally
speaking close to marginal, it is also clear that many non-MHD effects such
as particle drifts and significant populations of hot particles expected in
certain RF-heating scenarii and, in future experiments, alpha particles, may
be important [37]. In view of several unexpected results from the present
reduced-MHD simulations, not to speak of the variety of sawteeth observed
experimentally, we are well aware that new surprises may be in store when
self-consistent simulations using more complete models are carried out at

Lundquist numbers characteristic of large tokamaks.
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Figure captions

Figure 1. Time evolution of the central temperature T,,, safety factor in
the center q, and integrated energies W in the Fourier components
m/n=1/1 and m/n=4/4 for three different values of the poloidal beta :

-4
a) ﬁpole.OZZ, b) Bpolz 0.15, ¢) Bpof’ 1.35. S=10* and v=10"*. The
unit time is the Alfvén transit time 1 x

Figure 2. Time evolution of the central temperature T, safety factor in
the center q, and integrated energies W in the 1/1 and 4/4 Fourier
components for four different values of the viscosity: a) v =10‘3,
b)v=10", ¢)v=107, ) v=10. $=5-103and B ~0.02.

Figure 3. Sawtooth period T .o/ Ta VETSUS Viscosity v for $=5-10° and
Bpol ~0.02.

Figure 4. Normalized sawtooth period Teaw! A Bpolo‘s versus Lundquist
number S: black circles are the simulation results obtained for Bpol
0.02 varying S while keeping vS and ¥ _LS fixed (vS=24 and 1S+

i

10). Other symbols refer to typical shots for different tokamaks.

Figure 5. Time evolution of the central temperature T » safety factor in
the center q, and integrated energies W in the 1/1 and 4/4 Fourier
components for three different values of the Lundquist number
S=107/E with E=25,E=5,E=1. The other parameters are the same of
Fig.4.

Figure 6. Growth time of the linear instability (open circles) and collapse
times of the central temperature (crosses; for each value of S are
shown the minimum and maximum value observed among several
teeth). The other parameters are the same of Fig.5.



21

Figure 7.  a) Current density profile j(r) (n=n=0) and b) safety factor
profile q(r) (only in the central region of the plasma) for the case
of Fig.5, S=2 0106’ at the time of maximum growth rate
(t/t,=20720); c) current density profile and d) safety factor profile
during the nonlinear phase (t/t 2=22020).

-1
A
factor 4., 18 varied (rescaling the current) for the current profile

Figure 8. Linear growth rate (in T, "unit) as the minimum of the safety

shown in Fig.7a.

Figure 9. Time evolution of the central temperature T o and mode
energies W for the last crash of Fig. 5 (S=2 -106): a) and b)
simulation with Fourier components up to m/n=4/4 ; c) and d)
simulation with Fourier components up to m/n=8/8.

Figure 10. Contour plots of the helical flux function for the eight-mode
simulation in Fig. 9 (S=2 °106). Contours are plotted only in the
region of low shear.

Figure 11. Contour plots of the temperature for the eight-mode
simulation of Fig. 9 (S=2 -10°).
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