Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Dephasing representation: Employing the shadowing theorem to calculate quantum correlation functions
 
research article

Dephasing representation: Employing the shadowing theorem to calculate quantum correlation functions

Vanicek, Jiri  
2004
Physical Review E

Due to the Heisenberg uncertainty principle, various classical systems differing only on the scale smaller than Planck's cell correspond to the same quantum system. We use this fact to find a unique semiclassical representation without the Van Vleck determinant, applicable to a large class of correlation functions expressible as quantum fidelity. As in the Feynman path integral formulation of quantum mechanics, all contributing trajectories have the same amplitude: that is why we denote it the "dephasing representation." By relating our approach to the problem of existence of true trajectories near numerically-computed chaotic trajectories, we make the approximation rigorous for any system in which the shadowing theorem holds. Numerical implementation only requires computing actions along the unperturbed trajectories and not finding the shadowing trajectories. While semiclassical linear-response theory was used before in quasi-integrable and chaotic systems, here its validity is justified in the most generic, mixed systems. Dephasing representation appears to be a rare practical method to calculate quantum correlation functions in nonuniversal regimes in many-dimensional systems where exact quantum computations are impossible.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PRE2004.pdf

Access type

openaccess

Size

65.3 KB

Format

Adobe PDF

Checksum (MD5)

3335b15001e4757ddd7f7d4c0400117b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés