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Abstract—Modeling and simulation can be powerful tools for agent systems, just with slightly different constraints and
analyzing multi-agent systems, such as networked robotic systemscapabilities.
and sensor networks. In this paper, it is shown concretely how  gansor networks produce spatio-temporal monitoring data

instances of both these elements fit into a general methodology for . . . . .
multi-level modeling providing insight into system dynamics. Use which can be considered both dense, compared with traditional

of the resulting general framework is illustrated through appli- m.onitoring and measuring techniques, and sparse, compared
cation to a specific sample case study involving a robotic wireless with the information gathered and used for the control of

sensor network engaged in an acoustic detection task. We thenmany multi-robot systems. A robotic sensor network has the
compare and contrast the resulting family of models, highlighting  yotential to capitalize on benefits from the extremes of both
explicitly the trade-off between realism and simplicity. . - L
systems: power management and explicit communication from
the network and self deployment, reconfiguration, and collec-
tion afforded by the ability of the robots to self-locomote. Not

By the canonical definition, a sensor network is a sysil of these capabilities will be exploited here, but it is foreseen
tem consisting of “many spatially distributed low-cost sengo leverage these possibilities in the future.
ing nodes that collaborate with each other but operate auAn element frequently encountered in many distributed
tonomously, with information being routed to whichever nodgystems is the concept of consensus [13], which is applied
can best use the information.” [1] Particularly as recent focis mobile networks of autonomous agents [14], in stationary
has shifted heavily towardirelesssensor networks and theirwireless sensor networks [15], and as bacterial quorum in
potential to bring “spatially distributed collaboration” closer tanatural systems [16]. And though some centralized solutions
“low-cost” ([2], [3]), the question of how to efficiently designare occasionally used, fully distributed consensus mechanisms
and manage control of such networks is of ever increasingn be considered an expressionSfarm IntelligenceSl).
importance. While it is not the primary focus of this article, the ideal

Many of the most common sensor network applicatior® simplicity in swarm-intelligent control will serve as an
to date have been based upon the sampling of continuoulgpiration for the design of a concrete case study on which
available parameters (such as temperature, humidity, or otf@illustrate the presented modeling framework.
environmental factors, as in [4], [5]), which has allowed them The application of SI to distributed, real-time, embedded
to take advantage of extremely low duty cycles in the intereSystems aims at developing robust task-solving methodologies
of extending network lifetime. However, in situations whery minimizing the complexity (including the intelligence) of
the phenomena of interest are spatially and/or temporaffje individual units and emphasizing parallelism, and self-
unpredictable, the problem becomes slightly more complicat@gganization.
and the response of the network to environmental change$fom an engineering standpoint, the principle advantages of
necessitates increased dynamism in behavior. swarm-intelligent system design are four-fold:

While there have been several attempts at modeling sensor scalability, from a few to thousands of units;
networks for data filtering [6], [7], data prediction [8], network « flexibility, as units can be dynamically added or removed
classification [9], [10], and system performance [11], all such  Without explicit reorganization;
work that we are aware of tends to focus on a single level ofe robustnessnot only through unit redundancy but also
modeling for a very specific aspect of the system (typically ~through an adequate balance between explorative and
either sensing or networking). Here we propose a slightly —exploitative behavior of the system;
different approach: applying a statisticallti-levelmodeling ~ » and simplicity (and low-cost) at the individual level,
methodology which allows us to capture the dynamics of Which also increases robustness.
the entire system together, at multiple levels of abstraction.Networked robotic swarms share several similarities with
This type of analysis has become commonplace in swarkiireless sensor networks: they both consist of a large number
robotic systems [12], and should be equally applicable @ relatively simple nodes acting independently and interacting
sensor networks—which can also easily be considered muwiith each other. In this way, both can be considered potential

candidates for swarm-intelligent methods of control.
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experiments on real hardware can be expensive and tinagailability. However, by demonstrating correspondence with
consuming. Models can help us to capture and understdrigher abstraction layer representations of the system, we
these dynamics and give us the flexibility to explore certatcan gather and analyze information which may eventually be
aspects of the solution space with less effort. Naturally, theregpplied back to the design and control of the target system.
a trade-off between the complexity of the model and its fidelity this context, simulation can therefore be a very useful tool
to the real system, but using a family of models can help @3 bridging the gap between theory and experiment. It is not
evaluate this trade-off by demonstrating directly comparabietended to be a substitute for real experiments, but rather a
results on multiple levels of abstraction. This suite of modetipplement, allowing additional flexibility and diversity in the
then becomes a powerful tool allowing us to bridge the gdests performed.
between mathematical equations and reality. In many cases, iAt the core of the multi-level modeling methodology is the
even allows us to generalize from one situation to another, toade-off between complexity and realism in the modeled rep-
to a broader class of scenarios. resentation of the system. Indeed, this relationship is implicitly
These methods have been quite successful in swarm-robgtiesent in any model, but part of the strength of the multi-level
systems, where the holistic approach to the system (includiagproach is that it not only treats this element explicitly, but
the environment, sensing, actuation, communication, etcprovides a spectrum of different models presenting a clear
presents an encouraging comparison to wireless sensor me#pping from one level to the next, demonstrating precisely
works. On the other hand, current probabilistic models ie impact of this trade-off.
swarm robotics which go up to the macroscopic level are oftenModels of lesser complexity, when used properly, can be
based on mean-field approaches and non-spatial metrics wregrige desirable for any of several reasons; ease of manipula-
the (continuously changing) actual locations and trajectorigen, speed of execution, and aide to understanding underlying
of the robots can be neglected if there is sufficient randomrinciples, for example. However, it is clear that care must
ization of their positions over time and with repeated rurtse taken to ensure that the simplified model still faithfully
(due to noisy local interactions and basic, reactive navigatiogpresents the real system, or the work done with it will be of
schemes). For specific classes of scenarios and objectives (étfe use.
aggregation [17], stick pulling [12], foraging [18]), particularly The real system can be seen as the basis of the hierarchy,
in swarm-robotic systems, this assumption makes sense, asdt must necessarily represent the ground truth on which all
allows for a drastic reduction in the number of states consigubsequent modeling levels will be built, and against which
ered in the system; unfortunately, that is no longer the catsey will be eventually judged.The following is a brief
when considering a sensor network, as nodes typically do maerview of the types of models that will later be described in
move continuously or rapidly, if at all, and therefore do nanore detail, from the most realistic and complex to the most
necessarily represent a well-mixed system over time and oadistract.
repeated runs. Similar to further classes of scenarios where . .
deliberative navigation schemes are used for the sake of SysémModule—Based Microscopic Model
efficiency [19], this lesser degree of spatial randomness will The natural first step is to take a simulated model which
eventually need to be treated differently at the macroscopfcas realistic as possible, modeling not only the agents and
level. their environment, but the individual modules which make up
The remainder of the article will be organized as followghe agents and the environment, such as sensors, actuators and
Section Il will motivate the overarching structure of the multisignal propagation.
I(;avell modeling approach, and Section Il will §peC|fy th.eB. ﬁgent-based Microscopic Models
etails of a concrete case study and a corresponding behavioral
controller that will be used as an example onto which we can!n contrast, agent-based models abstract away the internal
apply the modeling framework. In Section IV, we explain howetails of the individual nodes, treating each as a simple, but
and why the module-based microscopic model is constructa@netheless independent element. The environment can also
and calibrated, and apply it to the presented case study. Hsesimplified in order to accelerate numerical implementation.
higher-level agent-based models are shown and compared i#) Continuous SpatialThe continuous model can be seen
Section V, further elucidating the similarities, differences2S & type of Monte-Carlo simulation, in which the agents and
and relationships between the various levels. Some resditgir environment are modeled in a continuous spatio-temporal
are shown in Section VI, and their implications discussed fr@Rmework.
Section VII, highlighting thegenericnature of this approach 2) Discrete Non-Spatial:lt is often possible to analyze

to modeling, despite the presence of the current illustratif@® System and derive independent expressions for the transi-
case study. tion probabilities from the environment, allowing the Markov

chains to be iterated over (in discrete tinv@jhout explicitly
Il. MULTI-LEVEL MODELING APPROACH modeling the spatiality of the environment.

Performing systematic experiments directly on the target, _ . . ,
hard t b b tv. ti . ~Note that another option would be to incrementally validate models (i.e.,
araware system can be cumbersome, costly, 'me'consumltﬂgground truth for leveb+1 is leveln), but this remains a different question

or even impossible for logistical reasons such as safety for future study.



Ill. CASE STUDY: DETECTING ACOUSTICEVENTS

In general, the problem of resource allocation is not limited
to power management within the network, but extends also to
the treatment of data and interrupts destined for the operator
outside the network. Various monitoring and detection appli-
cations naturally have a wide range of requirements regarding
false positives and false negatives, and the relative severity o}
either occurrence. :

For the purposes of illustration, we will consider a scenario

In Whl(,:h false p_osmves_ are particularly undeswgble, as th%. 2. LEFT: The e-puck, a small-scale experimental robotic platform.
may trigger the invocation of a costly (or otherwise resourcehown here with the radio communication board stacked between the basic

intensive) procedure. Such an environment places particufadule and the jumper board, allowing the implementation of sensor net-

: : ks and other networked robotic systems. RIGHT: The experimental setup
emphasis on measurement confidence, and we have C:gsgicribed in Section Ill-A recreated in Webots, with plug-ins for acoustic and

structed a simplistic collective decision algorithm accordinglyietwork dynamics. The 42 nodes arranged i & 7 grid remain stationary
exploiting the multi-level modeling framework to carry oulftfixed), while the event source wanders randomly around the arena emitting

; : ; ; ort acoustic events at 2 second intervals. The inset shows the simulated
further syste.mauc exploration of its behavior and perforri‘i_‘puck robot.
some analysis.
Acoustic event detection has been selected as an example

of a domain where the measurement target is unpredictablegRaracteristics of the desired target evehtare specifiable,
space and time. Our treatment here will use acoustic evepif the actual events (and their locations, times, etc...) are by
as an illustration, but may be straightforwardly applied to anyefinition unpredictable. The two probabilitie?;,;andPe.en,,
modality which is localized in space and time. while still indirectly controllable, are often inherent qualities
In this system, we will attempt to increase measuremegf the physical agent being used, and should be determined
confidence by requiring a consensus among an arbitrary ing@npirically on the chosen hardware platform.
A. Experimental Setup of e-pupké (a miniatur(? robf)tic platform recently developgd
at the Ecole Polytechnique &t€rale de Lausanne, shown in

Cazhgepggsgieﬁszec: O;t tgfe S.yStzTanigger'tS aenv.'liontTatG'léure 2 left). The standard e-puck has a trinaural microphone
seh yas SIX P s (as illus ay on-board, which was used in conjunction with a simple

. i T
in Figure 1). digital filter to detect acoustic pulses at approximately 3.6 kHz.

A area of interest It is also equipped with a small speaker, allowing it to emit
N number of available nodes sound. Additionally, the e-pucks have been fitted with a custom

D(N) distribution of available nodes . - L .

E set of events occurring in the environment extension turret for short-range radio communication using a

Pyei(r,I.) probability of detecting an event of intensify the subset of the 802.15.4 and ZigBee protocols present in
at a distance: TinyOS [20] (and are therefore fully interoperable with both

Peom(r,1;) probability of message reception with intenstty ~ Micaz [2] and Telos [3]). The transmission power of the
at a distancer communication module is software-controllable, and passes
Of these, A, N, and D may be directly and arbitrarily through a custom attenuation circuit yielding effective ranges
selected by the experimenters (though the precise realizatiorbefween approximately 10cm and 5m. More details about the
D(N') may be perturbed by noisy factors beyond their controbadio turret used can be found in [21].
For the present study, we construct the default hardware
A N system by distributingV = 42 agents over a regular gfid
: Pl N (D = 50cm spacing) in a rectangular arend (= 3 x 3.5
tD meters). Each is equipped with a communication device (radio)
‘ and an acoustic sensor (trinaural microphone array). Acoustic
E  Tcom pulses of a certain amplitudd.(= 8, in the arbitrary units
¥ * used within the firmware controller) are seen as events of
ras interest, and are generated on this area at random locations
by a 434 agent unrelated to the established network in any
way.

Fig. 1. lllustration of basic characteristics and parameters of the experimentathttp://www.e-puck.org

setup. Nodes were spaced approximately 50 cm apart on a grid in a 3 by 3.8various strategies for automatic deployment have been explored in the
meter area. (Thege; and rcom shown here are based on the Heavisidgiterature, and for the sake of simplicity will not be treated here; these include
approximations that will be used fdPge:(r) and Peom (r) in Section V-A. mapping and monitoring an unknown indoor environment [22], [23], even

Obviously, other forms could be chosen for these functions, but they are mefstribution across an input target function [24], density-biased distribution

complicated to represent in this type of diagram.) based on sensor measurements [25], and using virtual pheromones [26].



notification detection

IV. THE MODULE-BASED MICROSCOPICMODEL
notification /\ /\ detection . X . . .
The first abstraction layer we will consider is theodule-
C :) based microscopic modetealistic simulation. While obvi-
W W ously a simplified version of the real world, this level still
maintains as much realism as possible by preserving intra-node
details, such as the individual sensors and sensing modalities,
actuators, transceivers, etc. It bears reiteration thati@o-
Fig. 3. Basic description of the individual controller algorithm as i ; ; ; ;
finite state machine fo” = 2. All nodes begin by “listening,” and upon %COpIC mode| |mpI.|es' ;eparate and_ independent computation
either detecting an “event” or receiving a “message,” wait a short perid@ €ach of the individual agents; here, theodule-based
of time for the complimentary signal before returning to the “listen” statenicroscopic model further divides each agent into separate

either successfully (having observed a matched pair of the tow signals)égjcmations for each of its constituent sub-systems (modules).
unsuccessfully (timeout, most likely indicating a false positive). Therefore,

an event is only reported at the level of the entire network if detected bylgt Identifying and Calibrating the Modules
least two nodes. ’

message timeout event timeout

Considering the chosen domain—+abotic sensometwork
engaged in the detection atousticevents—at least three non-
B. Control Algorithm and Parameters trivial modules will be necessary: the e-puck robot (with sen-
Let us treat the system as follows. In our setup, we requisers and actuators), acoustic dynamics (speakers, microphones,

an event to be detected by at least nodes before it is propagation, and reflection), and the radio communication
reported. A node that perceives an event will announce theret (OSI layers, channel emulation and noise, collisions,
tentative detection to a subset of the network (the nodes witlgte. . . ).
communication range; default being single-hop broadcast), andNote that while the selection of modules is influenced
await confirmation in the form of similar messages generatedmewhat by the problem domain being considered, we have
by other nodes in the network. Thus, we have constructechat yet limited ourselves to any specific controller behavior;
simple controller at the individual level which can be describaetie module-based microscopic model is inherently generic, and
by the finite state machine shown in Figure 3 for the casan be used to explore and test any number of variations on
where C = 2. In this way, a successful detection can bthe behavioral controller.
defined as the reception of both an event and a confirmationl) Robotic Node Dynamics—The e-puck in WebBtsyond

within a given window of time. creation of the 3D model of the robotic platform in the Webots
This adds three more control parameters into the systeimulator [27], it is necessary to properly calibrate input and

description: output responses to match those of the real hardware platform.
T. timeout after hearing an event, waiting for message The amount of wheel slip experienced by the virtual locomot-
T,. timeout after receiving a message, waiting for event ing robot is determined by running odometric experiments on

C number of confirmations required for event acceptance the real robot. The infrared proximity sensors are modeled as

For the present setuf, andT},, can be selected as a function3D cones, and the non-linear detection response and sensor
of the node spacing, the speed of sound, and the effectR@iSe closely match those observed in reality. .
communication range. An event passing at the speed of sound) Acoustic Dynamics—Generation, Reflection, Fading, and
will travel out of the area of interest in on the order of 1dMixing: In an enclosed environment, sound propagation and

milliseconds; therefore even accounting for some potentiR§rception can be highly influenced by the arrangement of en-
processing and sending deld§, = T,, = 0.5 seconds is Vironmental boundaries and physical obstacles. To accurately

more than sufficient. model these dynamics, it is necessary to extend simulation

In principle, C may be chosen arbitrarily, but there may b&eyond simple source-to-receiver calculations. A framework
application specific instances in which certain value§'shay Was therefore created which runs in parallel to the Webots
be optimal, and others implausible (as a function of the fieRimulation and calculates sound dynamics. This framework
being monitored and the agents being used). Where neces$§s @ two-dimensional map of simulation walls, along with
to further the example, we will continue to ugg = 2, as the locations of all microphones (receivers) and speakers

above. (sources), to implement the Image-Source sound propagation
o o algorithm [28]. The Image-Source algorithm was chosen as
C. Preliminary Implementation in Hardware a good compromise in the trade-off between accuracy (the

The three-state controller described in Figure 3 was implechnique models reflection and attenuation but not diffraction)
mented to run in-situ on the individual nodes, and 42 nodasd computational speed. The algorithm works by creating vir-
were arranged as shown in Figure 1. The event sourcetusl sound sources by reflecting actual sources across straight
mobile, and wanders freely about the arena avoiding obstacleslls in the environment; the signal perceived by a receiver
and emitting acoustic pulses, but does not interact in any otlteen becomes the sum of signals from all visible sources, both
way with the observing network. Fifty events were generatedraal and virtual. This method allows most of the algorithmic
random locations within the area of interest, and the resportgenputation to be executed in the preliminary setup, while
of the network to each event was recorded. the calculation of receiver detection can be determined very
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Fig. 4. Setup for experimental determination of the sensor and communica- . )

tion ranges through testing in the target environment. Nodes are spaced afig 6.  Average number of nodes in each state in response to an event.

centimeter intervals foP,., () and 60 centimeter intervals fdPeorm, (7). Results and standard deviation for the physical system compared with the
module-based microscopic simulation.

TS G Tooe ] S
08 ‘;‘ ) Ehghld(éé‘n;"u) o3t ghgwgzm"w when messages should be received at other agent locations.
sosf Threshold (Simulted) sos e L Tiveshod(Simiaeq Similar to the setup described for estimating the detection
Y * 0 range above, an analogous battery of tests measuring the
odl  ° iéf 05 o effective communication range was performed in the same
el , ! ;;—lh o configuration (Figure 4), but using 60 centimeter spacing to
T el %8 O T e 208 cover a larger area, and the eight tests consisted of 100

) ) messages each. Figure 5 right shows the results estimating
Fig. 5. The probabilitie,.+ () of detecting an event (left) anB.om (1)

of successful communication (right) versus radial distantethe robot. Sig- Pcom(r) for a fixed transmission power of 0.5 mW.

moidal regressions and approximate thresholds are shown with the measured .
data from both the physical system and the Webots simulation. The area Bit Correspondence Between the Physical System and the
of the threshold (vertical line) is equal to the area under the curve; this valNdodule-Based MinOSCOpiC Model
is used as a Heaviside approximation. ) ) o
As can be seen in Figure 5, the individual modules that

make up the module-based simulation exhibit responses which

quickly, allowing for fast simulation. However, the originalare quantitatively very close to the observations taken from
algorithm assumes that sound sources remain stationary, #il real system. Having demonstrated correspondence, it is
because this is often not the case in Webots simulations, th@v reasonable to perform additional simulations of the target
algorithm was modified; instead of finding virtual sources ifystem for analyzing its behavior.
the preliminary execution, the algorithm calculates all possible Figure 2 right shows the setup described in Section IlI-A
sound reflection paths. At each step of the simulation, feeproduced in the embodied simulator Webots, enhanced
every receiver, each source-path combination is checkedwih the aforementioned plugins modeling the propagation of
determine if it adds detectable input to reception. While thigcoustic signals and the wireless network dynamics. The same
technique is computationally slower than the original Imagéxperiment was performed for 500 events, with similar results,
Source algorithm with stationary sources, it is significantlgs shown in Figure 6.
faster than recalculating virtual sources at every simulationThis is only a very basic method of analyzing the system
step. dynamics. It is naturally also possible to define specific spatial

To determineP;..(r) in the target environment, we arrangedr non-spatial metrics. For instance, we could have asked our
28 nodes on a 30 centimeter grid near an event source i@gdel to predict the number of events detected’ryodes and
shown in Figure 4), and performed two tests of 50 generategported versus the number of events generated (non-spatial)
events each at four different source positions (in order @ a mapping of message propagation around specific event
minimize the effects of orientation and self-interference). Trdetections (spatial). Some examples of such metrics will be
percentage of successfully detected events at each position gagvn below.
recorded, and the combined estimationfaf;(r) is shown in » ) . .
Figure 5 left. C. AQdmonaI Exploration Using the Module-based Micro-

3) Network Dynamics—The OMNeT++ Webots Plug-in; SCOP!C Model
Not unlike the sound propagation just described, realistic rep-Another part of the stated reasoning for modeling is to
resentation of the radio communication channel also presefasilitate further exploration of the parameter space. The
a complex modeling challenge. For the radio transceiver, aristence of the model allows us to manipulate and re-run
802.15.4/ZigBee module was developed for the OMNeT+he experimentation quickly and easily.
[29] network simulation engine, which was wrapped as a 1) Discriminating Between Two Different Event Sources:
plug-in to webots; positions and instructions are passed froks the cited goal of this case study was to reduce the impact of
Webots to OMNeT++, which then handles the channel coditgcorrect detections on the network (false positives), let us now
and fading signal propagation, and in turn notifies Webotstroduce a second source of what we will call “undesirable”



events into the area of interest. This additional event source b <

also moves randomly idl, and emits acoustic pulses identical P ‘/\ /\ P

to the target source, but at a lower intensity (proportional to C :)
L: % ={0.5,0.75,0.95}).

\\PE/ \E/
2) Performance Metric:In order to have a quantitative

method of reporting system performance, we define a metric (-po™ e
function M as the number of desirable events successful&ly
_detected . and the number of undesirable events S_UCCESSf ransitions labeled by the probability of encountering the associated stimulus,
ignored, in relation to the actual number presented: yielding a probabilistic finite state machine (PFSM).

7. The deterministic responsive controller from Figure 3 modified with

Edet
Etot

Efp
max(E;,, Etor)

M(a,8) = a +5(1—

1)

> B. Discrete Non-Spatial Model

where I, is the number of events reportefl,,, the total  pecognizing that the finite state machine representation of
number presented, anfly, the number of false positives e penayioral controller can be considered a Markov chain,
reported. The coefficienis and 5 may be balanced accordingye 4 further simplification can be to treat it as such (see an
to the severity one wishes to associate with either term, &Rample in Figure 7), essentially reducing the system to a 1-

long as they sum to one for normalization. dimensional time-discrete synchronous simulation. In order to
Results using this metric will be presented and compargg thjs, transition probabilities will need to be determined,

with additional modeling layers in Section VI. either analytically or by estimation/extraction from the spatial
microscopic simulations where a closed form solution is not
V. USING HIGHER LEVELS OFABSTRACTION: possible. This yields a system in which each agent becomes
AGENT-BASED MICROSCOPICMODELS independent of the others, and actual location is immaterial

By the same principle of abstraction and Correspondence,gz?g“"ar to neglecting tr.aj'ectories in a mobile robotic system),
can further distill the system down to the interactions betwe nce the Iors.s of spatiality. ) .

its key parameters by considering agent-based microscopic 1) Probability 'of Event ArrlvaI:As we are considering the
model At this level, we consider one copy of the controllef€SPONSe to a single event independently of other events (for
state machine (Figure 3) for each agent in the system, and & time being, we will require that events be disjoint in the
interactions between them in a further simplified environmeHfn€ granularity of the system), we immediately condition the

(aspatialmodel; intentionally eliminating intra-node hardwardo!lowing on the reception of an event. That is, given that
module details). an event has occurred, at an unknown random locatio#, in
the probability P, that it is detected at a certain node should
correspond roughly to the geometric ratio of the detection area
to the total area:

The obvious first step is to keep the same logical sys-
tem construction from the module-based version, and simply ~ Adet _ 7rg,, _ m(0.8287)% 0.2055 @

remove the modules. For this case study, then, the event A A 3-35

generattﬁn bgcomes e} Mon(;cef C?;]Io S|mglat|onbo? atﬁom'nu%.ﬁererdet corresponds to the discontinuity in the Heaviside
space (there is no real need for the moving robot), the acou Hfction. This conceptual relationship can be seen in the illus-

events simply propagate at the speed of sound for a fixed ra f3tion provided in Figure 1. This is an over-estimate, though,

distance, and radio messages are delivered instantaneouslgutg to the fact that the outermost nodes are ahiy 0.25m
other Qgents in a fixed rad|a_1|_range. Details such as acouﬂ;&ﬂ the border, and therefore their detection zones extend
reflection and message collision are completely neglectedbgglond the arena. However, the average effective detection
this level; the model is simpler and faster, but less realistigl,ea can be approximated ’by removing tNg, gor — 26

raer T

By comparing the results of adjacent modeling layers, we CEﬁ]cular segmentsA..,) which extend over the boundary.
assess directly how much less realistic, and determine whether g

A. Continuous Spatial Model

or not it will have an appreciable impact on the usability of d

the results. Aseg = <T¢Qzet arccos [ , ] - d\/ Tet — d2> ®)
The physical setup described in Section I1I-C was recreated —  0.6708 det

in matlab, with each node characterized by its position in the . N - Aget — Noorder - Aseg

x-y plane. Heaviside (step function) approximations were used Ager = N = 17422 (4)

for the functions measured in Section IV-A (the vertical dotted Ager

lines in Figure 5 represent the cutoff, and correspondto anarea P =~ 1 0.1659 (5)

under the step function equal to that under the sigmoid).
This simulation was then run for 1,000 events, the results of Confirmation by Monte Carlo simulation of 100,000 gener-
which will be shown as part of the comparison in Section Vhated events yield®, ~ 0.1656.



2) Probability of Message Arrival: P,, is a bit more
complicated, as it must be conditioned not only on the arrival
of an event, but additionally on the detection of that event
at another node in the network, within a certain proximity 0.8}
so as to allow for communication. The probability of a node
being able to communicate with the node in question can be
calculated geometrically using the radius of communication,uo’? 06¢
as was done above with the sensory radius. Multiplied by thes
total number of nodes, this gives an estimate of the number o 04
nodes within communication range. Together with the fraction
of these which are in the “Event” state (and therefore sent a

message), this tells us what the probability should be that any 0.2 — wmodule—based
given node receives a message: Continuous Spatial
. . —— Discrete Non-Spatial
A Ng(k) A 0 ‘ ‘ :
Pn(k) ~ —=2.N-. = —=™ . Ng(k) (6 05 0.75 0.95
m (k) A N 2 Nelk) (6 Ratio | /1_
3.4648
= 33t -Ng(k) = 0.3300- Ng(k) T !
0.9 0.9
wherek is the iteration, andT the time (" is the sampling 08 08 :
interval). Notice the dependence on time; as such, we will not  , 07
be able to use average values in execution, but they may still ¢ 06
give us some confirmation that our derivation is not entirely 2,5 Sos
unfounded. In the spatial microscopic model of Section V-A, = o4 ® 04
the average percentage of nodes that received a message os 03
(N (k)/N) was 0.5987, while our theoretical equation (using 02 02
the average value d¥ (k) from the simulation) gives 0.5623. 01| Contruous Spatal 01
0 0
VI. RESULTS AND COMPARISON OFMODELING LAYERS *° malol) 1, °% *% ol 11, °%

Here we can fma”y see, in Figure 8, the output of eaqg Comparison of results from all three of the modeling levels

modeling level side-by-side for the source discrimination e)ére.sen'ted, for the source discrimination experiment described in Section IV-C.
periment described in Section IV-C. The ‘undesirable sourc®ean and standard deviation over 20 runs of 100, 1,000, and 10,000 events

was assigned an intensify, proportional to that of the target‘;grs tziti\r);cl)dule-based, continuous spatial, and discrete non-spatial models,
sourcel. (& = {0.5,0.75,0.95}) and C' = 2. All models peciivey.
were run 20 times; for 100 (module-based), 1,000 (continuous
spatial), and 10,000 events (discrete non-spatial), respectively.
Figure 8a shows/ (a — %, 8= %) an even balance betweersystem by providing an intuitive and incremental process
the two contributing terms of the metric; the lower plots shof@r building descriptions and abstractions of the system at
the extreme case®/(1,0) and M (0, 1). several levels. Once the system has been fully constructed,
All three models reflect similar trends, despite substantirther modifications can always be made to improve the
differences in computational complexity (approximately a@orrespondence between layers and the interaction between
order of magnitude in execution time between each). MoR&rameters, which the framework allows us to do much more
experiments are needed to identify subtle effects of differegffectively and with greater confidence that the analysis is both
modeling design choices on a given metric related to this cag@rect and complete.
study. Continuing the work presented here, an ongoing effort is
being made to add a “discrete spatial” level between the
continuous spatial and discrete non-spatial models shown here,
Here we have shown the application of a multi-levalsing the known properties of the signal propagation (acoustic
modeling methodology to a robotic wireless sensor netwodnd radio) and analytical geometry to identify regions of space
tasked with the reliable detection of acoustic events. Cleaovered by a given number of nodes and their relative areas.
correspondence has been demonstrated at each transit@mbined with a variable quantization of the field on which
allowing experiments to be performed at a simpler level witthe events are generated, we can further increase performance
only minimal loss of quality in the results, and maintainingnd simplicity (which also aids understanding) in comparison
generality and applicability to the target system. This is a basd@ the continuous model, but without sacrificing as much
formulation, with plenty of avenues open for refinement, butetail as the non-spatial model, a feature which is particularly
the essence of the multi-level framework is that it places oveafesirable when used with a spatial metric. This construction
and primary emphasis on maintaining a view of the whole providing further insight into the effects of varying the

VIl. REMARKS, CONCLUSIONS AND FUTURE WORK



node spacing in relation to the sensing and communicatiom] R. Jurdak, C. V. Lopes, and P. Baldi, “A framework for modeling sensor
ranges, and how to intelligently specify the number of nodes

participating in the consensu€§’).

(10]

Other obvious additions that we are currently studying

include the adaptation of the models to deal with nonlinerﬁr
systems in more a general way, particularly those involvi

g

spatial metrics. Eventually, we would also like to explore
the possibility of applying a macroscopic model as WeIL
incorporating all of the system dynamics into a single, conci e]
representation, neglecting even the individuality of the agents,

as previously done in swarm robaotics systems.

(23]
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