Synchronizing Refactored UML Class Diagrams
and OCL Constraints

SlaviSa Markovi¢ and Thomas Baar
Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences
CH-1015 Lausanne, Switzerland
Email: {slavisa.markovic, thomas.baar} @epfl.ch

Abstract—UML class diagrams are usually annotated with
OCL expressions that constrain their possible instantiation. In
our work we have investigated how OCL annotations can be
automatically updated each time the underlying diagram is
refactored. All our refactoring rules are formally specified using
a QVT-based graphical formalism and have been implemented
in our tool ROCLET.

I. REFACTORING CLASS DIAGRAMS

In this section we give a motivation for performing UML/
OCL refactorings and show on an example, how OCL con-
straints have to be treated when the underlying UML class
diagram changes. Note that our approach does not aim to
improve the structure of OCL expressions in order to get rid of
OCL smells (see [1]). We are just concerned about smells in
UML class diagrams, how to eliminate these smells by class
diagram refactorings, and how to keep the annotated OCL
constraints in sync with these changes.

Figure 1 shows the application of refactoring MoveAt-
tribute on a class diagram annotated with one OCL invari-
ant. The refactoring moves attribute telephone from class
Person to class Info. In order to preserve the syntacti-
cal correctness of annotated constraints, it is necessary to
rewrite all navigation expressions of form exp.telephone
by exp.info.telephone.

context Person inv:
self.telephone='222-333"

Person 1 1 Info

felephone:String person info

%

Person 1 1 Info

person info felephone:String

context Person inv:
selinfo)elephone="222-333'

Fig. 1. MoveAttribute Example

The only preconditions for this refactoring are (1) that the
attribute is moved over an association with multiplicities 1-1
and (2) that in the destination class (Info), or in any of its
descendants and ancestors, there is no attribute with the same
name as the name of the moved attribute (telephone).

There are other refactoring rules, which do not influence
annotated OCL constraints but whose applicability depends on
the absence of OCL expressions of a certain type. One example
is the rule PushDownAttribute; Fig. 2 shows an application
where attribute color is pushed down from class Vehicle

TABLE I
OVERVIEW OF UML/OCL REFACTORING RULES

Refactoring rules Influence on OCL Precondition
RenameClass No* UML
RenameAttribute No* UML
RenameOperation No* UML
RenameAssociationEnd No* UML
PullUpAttribute No UML
PullUpOperation No UML/OCL
PullUpAssociationEnd No UML/OCL
PushDownAttribute No UML/OCL
PushDownOperation No UML/OCL
PushDownAssociationEnd ~ No UML/OCL
ExtractClass No UML
ExtractSuperclass No UML
MoveAttribute Yes UML
MoveOperation Yes UML
MoveAssociationEnd Yes UML

*—Rename refactorings influence textual notation of OCL constraints but not
their metamodel representation

to class Car. This refactoring is only possible if for all
occurring expressions exp.color the type of subexpression
exp conforms to destination class Car.

Vehicle
color:S@)

Car context Car inv: Car

self.color="blue’

Vehicle

context Car inv:
self.color="blue'

Color:Strin

Fig. 2. PushDownAttribute Example

In [2], we have investigated and formalized a catalog of
class diagram refactorings together with necessary changes of
OCL constraints. Table I gives an overview of refactorings that
can be applied on a class diagram, together with information
whether the refactoring influences OCL constraints, and which
part of the UML/OCL model is checked by the refactoring’s
application condition.

II. MODEL TRANSFORMATIONS

UML class diagrams and their OCL constraints can be
seen as models (i.e. instances of corresponding metamodels).
The refactoring of UML/OCL models is a special type of
model transformation and can, thus, be specified by the OMG
standard QVT (Query/View/Transformation).

RenameAttributeUML(a:Attribute, newName:String) |

c:Class

owner
feature
a:Attribute

c:Class

owner
feature
a:Attribute

name=oldName

{when}
oldName <> newName and
c.allConflictingNames()->excludes(newName)

name=newName

Fig. 3. QVT Formalization of RenameAttribute Refactoring

The formalization of the refactoring (RenameAttribute) is
shown as a QVT rule in Fig. 3. QVT rules consist of basically
two patterns (LHS, RHS). When applying the rule, occurrences
of LHS are searched for in the non-refactored model that we
want to change. If an occurrence is found, it is substituted with
the corresponding instantiation of RHS. Additional constraints
specified in the ”when” clause specify formally the application
conditions for the refactoring rule (ignoring them could result
in syntactically invalid target models). For more information
on the formalization of refactorings, we refer the interested
reader to [2]. The refactoring rule RenameAttribute does
not have an influence on attached OCL constraints. More
complicated rules that have an influence (e.g. MoveAttribute),
are formalized by two QVT rules; one describing the changes
in the class diagram and a second for updating the OCL (see
[2] for details).

III. LESSONS LEARNED

A model refactoring is usually defined as a model trans-
formation for which source and target model are instances of
the same metamodel. During our work on implementing QVT-
specified refactoring rules we have noticed that it is sometimes
useful to relax this definition and to allow source and target
model to have different metamodels.

A. Syntax Preservation

Refactoring rules should be syntax-preserving; i.e. syntacti-
cally correct source models should always be mapped to syn-
tactically correct target models. However, syntax preservation
is sometimes technically difficult to achieve, especially, if the
metamodel contains hundreds of well-formedness rules.

Syntax preservation becomes easier to handle when refac-
toring is seen as a two-step process: (1) the source model is
transformed to an intermediate model, which is an instance of
a different metamodel; (2) from the intermediate model the
final target model is recovered by a second transformation. In
case of UML/OCL refactorings, the intermediate metamodel
could represent OCL constraints as text and the refactoring
rules just have to “produce” text in order to represent syn-
chronized OCL constraints. The second recovery step would
then parse the produced text as OCL constraints and create
an instance of the original UML/OCL metamodel. Another
possibility for an intermediate metamodel could be to use the
original UML/OCL metamodel, but without any of its derived
model elements. In this case, the only task of the recovery step
would be to complete the intermediate model to an instance

of the original UML/OCL metamodel by adding the (so far
missing) derived model elements.

B. Behavior Preservation

In case of UML class diagram refactorings, the definition
of behavior preservation in traditional program refactoring as
”same inputs lead to the same output” is not applicable because
class diagrams represent only the static structure of a system.

Our criterion for behavior preservation is based on the
evaluation of OCL constraints in a system snapshot. In [3], we
propose to call UML/OCL refactorings behavior preserving
if the evaluation of a non-refactored OCL constraint on a
valid instance of a non-refactored UML class diagram yields
always the same result as the evaluation of the refactored
OCL constraint on the corresponding instance of the refactored
UML class diagram.

Contrary to some authors, like [4], we allow object diagrams
also to be refactored. We believe that our definition of semantic
correctness gives more freedom in performing refactorings and
allows wider spectrum of refactoring rules to be applied on a
UML class diagram.

IV. CONCLUSIONS

In this paper we have presented our approach of refac-
toring UML class diagrams annotated with OCL constraints.
All refactorings that can be applied on class diagrams are
specified as model transformation rules and implemented in
our ROCLET tool [5].

Moreover, an overview of lessons learned during the process
of formalization and implementation is given. We think that the
technique to handle refactorings as a 2-step process can help
to simplify the refactoring of many other software artifacts as
well.

REFERENCES

[1] Alexandre Correa and Cldudia Werner. Applying refactoring techniques
to UML/OCL. In UML 2004, volume 3273 of LNCS, pages 173-187.
Springer, 2004.

[2] Slavisa Markovi¢ and Thomas Baar. Refactoring OCL annotated UML
class diagrams. Software and Systems Modeling (SoSym), 2007. In press.
Online available under DOI 10.1007/s10270-007-0056-x.

[3] Thomas Baar and SlaviSsa Markovi¢. A graphical approach to prove
the semantic preservation of UML/OCL refactoring rules. In PSI 2006,
volume 4378 of LNCS, pages 70-83. Springer, 2007.

[4] Rohit Gheyi, Tiago Massoni, and Paulo Borba. A static semantics
for alloy and its impact in refactorings. Elsevier’s Electronic Notes in
Theoretical Computer Science (To appear), 2006.

[5] RoclET homepage. http: //www.roclet.org, 2007.

