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Abstract

Problems in fault-tolerant distributed computing have been studied in a variety of
models. These models are structured around two central ideas:

1. Degree of synchrony and failure model are two independent parameters that de-

termine a particular type of system.
2. The notion of faulty component is helpful and even necessary for the analysis of

distributed computations when failures occur.

In this work, we question these two basic principles of fault-tolerant distributed com-
puting, and show that it is both possible and worthy to renounce them in the context
of benign failures: we present a computational model, suitable for systems with benign
failures, which is based only on the notion of transmission failure.

In this model, computations evolve in rounds, and messages missed at a round are
lost. Only information transmission is represented: for each round r and each process
p, our model provides the set of processes that p “hears of” at round r (heard-of set)
namely the processes from which p receives some message at round r. The features of
a specific system are thus captured as a whole, just by a predicate over the collection
of heard-of sets. We show that our model handles benign failures, be they static or
dynamic, permanent or transient, in a unified framework.

Using this new approach, we are able to give shorter and simpler proofs of important
results (non-solvability, lower bounds). In particular, we prove that in general, Con-
sensus cannot be solved without an implicit and permanent consensus on heard-of sets.
We also examine Consensus algorithms in our model. In light of this specific agreement
problem, we show how our approach allows us to devise new interesting solutions.

1 Introduction

Problems in fault-tolerant distributed computing have been studied in a variety of models.
Such models are structured around two central ideas:

1. Degree of synchrony and failure model are two independent parameters that determine
a particular type of system.

2. The notion of faulty component is helpful and even necessary for the analysis of dis-
tributed computations when failures occur.

In this paper we question these two basic principles of fault-tolerant distributed computing,
and show that it is both possible and worthy to renounce them in the context of benign
failures: we present a computational model, suitable for systems with benign failures, which
is based only on the notion of transmission failure.

“Replaces TR-2006: The Heard-Of Model: Unifying all Benign Failures.



Computations in our model are composed of rounds. In each round, a process sends a
message to the other processes, waits to receive messages from some processes, and then
computes a new state. Every message received at some round has been sent at that round.
Consequently, any message missed at a round is definitely discarded. Using the terminology
of Elrad and Francez [14], a round is a communication-closed-layer.

Most of the solutions to agreement problems that have been designed as well for syn-
chronous message-passing systems as for partially synchronous or asynchronous ones are
structured in rounds (e.g., [12, 1, 13, 10, 6, 31]). However, concerning impossibility results
(lower bounds, non-solvability, ...) in message-passing systems, round-based computa-
tional models have been considered almost always for synchronous systems. The reason for
that lies in the fact that it is an open question whether round-based models are equivalent
to the ones in which late messages are not discarded.

To the best of our knowledge, Dwork, Lynch, and Stockmeyer [13] were the first to define
a round-based model for non synchronous computing. More precisely, they generalized
the classical round-based computational model for synchronous systems to a large class of
partially synchronous systems. Then Gafni [16] extended the round-based model to any type
of systems. The basic idea in his model is to study how a system evolves round-by-round
and to abstract away the implementation of the communication between processes, be it
shared-memory or message-passing. The properties of the communication mechanisms and
system guarantees are captured as a whole by a single module that is called Round-by-Round
Failure Detector (for short RRFD) module. More precisely, at each round r and for each
process p, the module provides a set of suspected processes from which p will not wait for a
message (here, we call messages the pieces of information that are exchanged, whatever the
medium of communication is). At this point, only non-transmission of information appears
in the model: the reason why a process is suspected is not specified, whether it is due to
the fact that the process is late or has crashed. In this way, synchrony degree and failure
model are encapsulated in the same abstract entity.

The latter idea seems quite sound since separating synchrony degree and failure model
breaks the continuum that naturally exists between them: for example, message asynchrony
means that there is no bound on message delays, and message loss corresponds to infinite
delays. Moreover, capturing synchrony degree and failures with the same abstraction gives
hope for relating different types of systems, in particular synchronous and asynchronous
systems.

Unfortunately, this idea is not followed through to the end in [16] since the notion
of failure model is underhandedly reintroduced via the one of faulty component. Indeed,
the communication medium is implicitly assumed to be reliable (no anomalous delay, no
loss) and when process p receives no message from ¢, the latter process is considered to
be responsible for the transmission failure (¢ is late or has crashed). The so-called Round-
by-Round Failure Detector modules only suspect processes, never links. Obviously, this
impacts the design and correctness proofs of algorithms: for example, agreement problems
are specified in [16] as usual, exempting faulty processes from making a decision.

The RRFD model is here influenced by the whole literature on fault-tolerant distributed
computing — with one single exception, namely the work by Santoro and Widmayer [29,
30] discussed in more details below — which models benign failures in terms of faulty
components: for example, the loss of a message is attributed to a faulty behavior of either
the sending process (send omission), the receiving process (receive omission), or the link.
Unfortunately, the principle of a priori blaming some components for transmission failures
yields several major problems. First, it may lead to undesirable conclusions: for example,
in the send-omission failure model, the entire system will be considered faulty even if only



one message from each process is lost. Hence there is no algorithm in this traditional
component failure model that can tolerate such transient failures, however few they may be.
Second, it allows faulty processes to have deviant behaviors: in decision problems, a faulty
process is never obliged to make a decision. Indeed, even in their uniform versions [17] that
require coordination among all the processes that decide, including those to which faults
are ascribed, decision problems share the same restricted termination clause that exempts
faulty processes to make a decision. For example, a process p that is blamed for the non-
delivery of a single message — as this failure transmission is rightly or wrongly accounted
for an omission from p — is allowed to make no decision even if p is blamed for nothing else.
Finally, as already observed by Dolev [8], it appears that the real causes of transmission
failures, namely sender failure, receiver failure, or link failure, may be actually unknown.
Failure transmissions are often ascribed to some components in an arbitrary manner that
may not correspond to reality.

Moreover, there is no prima facie evidence that the notion of faulty component is really
helpful in the analysis of fault-tolerant distributed algorithms. We show that our model
leads to the development of new conditions guaranteeing the correctness of fault-tolerant
algorithms, and to shorter and simpler proofs. This is due to the fact that the notion
of faulty component unnecessarily overloads system analysis with non-operational details.
In other words, it is sufficient that the model just specifies transmission failures (effects)
without accounting for the faulty components (causes).

Santoro and Widmayer [29, 30] clearly pointed out this issue. They introduced the
Transmission Faults model that locates failures without specifying their cause. A transmis-
sion failure can represent link failure as well as process failure. Contrary to classical models
in which transmission failures involve only messages sent or received by an unknown but
static set of processes (the so-called faulty processes), the Transmission Faults model is
well-adapted to dynamic failures. However, this model is designed only for synchronous
systems. Indeed, Santoro and Widmayer showed that dynamic transmission failures in syn-
chronous systems have the same negative effect as asynchronicity. This de facto reintroduces
synchrony degree and failure model as two separate parameters of systems.

Contribution

Our aim is to develop a computational model for distributed systems that combines the
advantages of the RRFD model [16] and the Transmission Faults model [29], but avoids their
drawbacks. We propose a round-based model, called Heard-Of (HO for short) in which (1)
synchrony degree and failure model are encapsulated in the same high-level abstraction, and
(2) the notion of faulty component (process or link) has totally disappeared. As a result,
the HO model accounts for transmission failures without specifying by whom nor why such
failures occur.

More precisely, a computation in the HO model evolves in rounds. In each round, a
process sends a message to all the others, and then waits to receive messages from the other
processes. Communication missed at a round is lost. For each round r and each process p,
HO(p,r) denotes the set of processes that p has “heard of” at round r, namely the processes
from which p receives some message at round r. A transmission failure from ¢ to p at round
r is characterized by the fact that ¢ does not belong to HO(p, ). The features of a specific
system are captured in the HO model as a whole, just by a predicate over the collection of
the HO(p,r)’s, called a communication predicate.

The HO model handles benign failures, be they static or dynamic, permanent or tran-
sient, in a unified framework. In particular, the model can naturally represent link failures,



contrary to models with failure detectors [6, 16]. Indeed, in such models, when the failure
detector module indicates to some process p to stop waiting for a message from ¢, this is
interpreted as “q is (suspected to be) faulty”. Obviously, such an interpretation makes no
sense if links may lose messages.

Another feature of the HO model is that contrary to the random model [28, 1] or
the failure detector approach, there is no notion of “augmenting” asynchronous systems
with external devices (oracles) that processes may query: the communication predicate
corresponding to an HO system is an integral part of the model and should be rather
seen as defining the environment. The weaker the predicate of an HO system is, the more
freedom the environment allows the system, and the harder it is to solve problems. The HO
abstraction (communication predicates) is supported only by the messages sent in the HO
algorithm. In other words, we cannot decouple predicates from the underlying algorithms.
This is the reason why we encapsulate algorithm and communication predicate in the same
structure that we shall call an HO machine.

Besides the construction of the HO model, we present various results about the Con-
sensus problem that illustrate its semantic effectiveness. Our first result concerns systems
that never partition; it characterizes the minimal communication predicate needed to solve
Consensus in such systems. To do so, we first introduce the concept of translation of com-
munication predicates. Informally, a communication predicate P can be translated into
another one P’ if there is a distributed algorithm that transforms heard-of sets satisfying P
into new ones satisfying P’. Any problem that is solvable under P’ is then solvable under
P instead. The so-defined relation is transitive, and thus orders communication predicates
with respect to their abilities to solve problems. If P can be translated into P’, then we
say that P is at least as strong as P’.

Of special interest is the communication predicate P:p,um‘f which guarantees that at
each round, all processes hear of the same non-empty subset of processes. Such a permanent
operational agreement on heard-of sets clearly suffices to solve Consensus. Conversely and
more surprisingly, we show that under the condition that there is no heard-of set partitioning
—i.e., at each round, any two processes hear of at least one common process — if Consensus
is solvable with the communication predicate P, then P is at least as strong as P:p,uni s In
other words, Consensus cannot be solved without an implicit permanent agreement on the
heard-of sets.

Then we describe four basic translations. Using these translations, we prove several
results related to the communication predicate guaranteeing that every round has a non-
empty kernel, i.e., at each round there is some process that is heard by all. We show that
non-empty kernel rounds can be emulated by majority heard-of sets, and more generally,
can be emulated in any system that never partitions. By means of these basic translations,
we also give a simple direct proof of the reduction of the worst-case synchronous lower
bounds [11, 22] to the general FLP asynchronous impossibility result [15] (this reduction
has been previously established by Gafni for Atomic-Snapshot asynchronous systems [16]).
This exemplifies how, by getting rid of the first principle which artificially separates syn-
chrony degree and failure model, we can describe synchronous and asynchronous systems
in a unified framework, and take advantage of this to relate impossibility results that are
traditionally considered as quite different in essence.!

Nnterestingly, there is another approach to unify synchronous and asynchronous models, which consists in
developing tools for model-independent analysis of decision problems, instead of using translations between
system models. More specifically, [18] develops arguments from algebraic topology for synchronous, partially
synchronous, and asynchronous systems as well, while [24] introduces the notion of layering as a tool for
model-independent analysis of the Consensus problem. Note that the approaches in [18, 24] both use the



Finally we study how to solve Consensus in systems prone to partitioning. The HO
formalism enables us to describe well-known Consensus algorithms, and also to design new
solutions. For each Consensus algorithm, we determine a simple communication predi-
cate which guarantees correctness. Interestingly, all the communication predicates that we
display express conditions that have to hold just sporadically, contrary to the perpetual
correctness conditions stated in classical models (eg., the “Q” condition for the Failure De-
tector model [5]). Hence, the HO model seems to be a natural formalism for expressing
fine-grained conditions with respect to time. Moreover, in many real systems, we observe
series of “bad” and “good” periods in regards to both synchrony and failures. Since they
just require sporadic conditions on heard-of sets, the algorithms that we examine are well-
adapted to such systems, and so are quite realistic solutions to the Consensus problem.

This paper is structured as follows. In Section 2, we describe our model, and present
many traditional systems in the HO framework. In Section 3, we define the notion of trans-
lation and propose a characterization of the communication predicates that make Consensus
solvable (under certain transmission failure bounds). In Section 4, we give four basic trans-
lations, and highlight the key role played by the “no partitioning” assumption. In Section 5,
we describe several Consensus algorithms, and determine HO conditions for their correct-
ness. Section 6 concludes the paper.

2 HO model

As explained in the Introduction, computations in our model are composed of rounds,
which are communication-closed layers in the sense that any message sent in a round can
be received only at that round. The technical description of computations is similar to
the ones in [13] and [16], and so the model generalizes the classical notion of synchronized
rounds developed for synchronous systems [21]. We introduce the notion of kernel at round
r that represents what processes share during round r from the operational viewpoint. As
we shall show, this notion plays a key role in solving Consensus.

2.1 Heard-of sets and communication predicates

We suppose that we have a non-empty set Il of cardinality n, a set of messages M, and a
null placeholder indicating the empty message. To each p in II, we associate a process, which
consists of the following components: a set of states denoted by states,, a subset init, of
initial states, for each positive integer r called round number, a message-sending function Sy
mapping states;, x II to a unique (possibly null) message, and a state-transition function T}/
mapping states, and partial vectors (indexed by II) of elements of M U {null} to states,,.
In each round r, process p first applies 5, to the current state, emits the “messages” to be
sent to each process, and then, for a subset HO(p,r) of II (indicating the processes which p
hears of), applies T} to its current state and the partial vector of incoming messages whose
support is HO(p,r). The collection of processes is called an algorithm on II.

Computation evolves in an infinite sequence of rounds. For each computation, we de-
termine its heard-of collection which is the collection of subsets of 1I indexed by IT x IN*:

(HO(P,7))pert, r>0-

A communication predicate P is defined to be a predicate over collections of subsets of II
(representing heard-of collections) that is not the constant predicate “false”, and that is

notion of faulty component.



invariant under time translation, i.e., P has the same truth-value for any heard-of collection
(HO(p, 7 + 1)) perr =0 » Where i € N.2 Note that if C is a condition over the heard-of sets at
some round, then the natural communication predicate that guarantees C eventually holds
at some round is the following:

Py = Vr >0, Irg > 7 : C holds at ro,

which expresses that C holds infinitely often.
For any round r, its kernel is defined as the set of processes

K(r)= () HO(p,r).
pell

Intuitively, it consists of the processes which are heard by all at round r. More generally,
we introduce the kernel K (¢) of any set ¢ of rounds as:

K(¢) = K(r).

rEg

When ¢ is the set of all the rounds in the computation, this defines the (global) kernel of
the computation:

K=()K(r).

r>0

It will be convenient to introduce the cokernel of some round, or more generally of some
collection of rounds, as the complement in II of the above defined kernels. Thus, with the
same notation as above, we let

coK(r) =1\ K(r), coK(¢p) =11\ K(¢), and coK =11\ K.
Round r is said to be uniform when, for any two processes p, ¢ in II,
HO(p,r) = HO(q,r).
Round r is said to be a nek (for non-empty kernel) round if
K(r) # 0,
and it is said to be split when there exist two processes p, q in Il such that
HO(p,r)NHO(q,r) = 0.

Obviously, a nek round is not split, but the converse does not hold. Moreover, a non-trivial
uniform round, that is a uniform round with a non-empty common heard-of set, is a nek
round.

A nek computation is a computation whose global kernel is non-empty. In such a com-
putation, there is at least one process from which every process hears during the whole
computation. A computation is said to be space uniform when each of its rounds is uni-
form. It is said to be time uniform when the sets HO(p,r) do not vary according to time:

Vr >0,Vpell : HO(p,r) = HO(p,r + 1).

2The latter condition is due to the fact that we do not want correctness of algorithms depends on the
time at which algorithms start to run (see Proposition 2.1).



Finally, a computation is said to be regular when a process that is not heard by some process
at some round is not heard by any process later:

Vr>0,Vpell : HO(p,r +1) C K(r).

Note that regularity is a weak form of the combination of space and time uniformity.
Equivalently, we would rather consider talked-to sets, denoted TT (p,r) and defined by

TT(p,r)={q €l : p€ HO(g,r)},

which are the dual notion of heard-of sets. Contrary to HO(p,r), process p cannot know
TT(p, R) at the end of round r, and this is the reason why we have preferred to express the
communication properties of computations in terms of their heard-of collections instead of
their talked-to collections.

2.2 HO machines

A Heard-Of machine (or HO machine for short) for II is a pair M = (A, P) where A is an
algorithm on II and P is a communication predicate. For example, we shall consider the
HO machines with the communication predicate:

’Psp,unif 2 Vr >0, Vp,q € I’ HO(p,T) = HO(%T)’

that is HO machines with space uniform computations, and those with regular computa-
tions:

Preg 2 Vr>0, Vpell : HO(p,r+1) C K(r).
We shall also consider the class of HO machines that share the “no split” predicate:
Prospiit = ¥r >0, Vp,q € 1 : HO(p,7) N HO(q,r) # 0,
the subclass of HO machines with the communication predicate:
Prekrounds = Vr >0 : K(r) # 0,

and the one with the stronger communication predicate:

Prer 2 K # 0.
More generally, we introduce the communication predicate:

77{( i |eoK| < f

which is equivalent to
K| >n— f.

We shall also consider the weaker predicate:
P{IO 2 Vr>0,Vpell : |[HO(p,r)| >n—f,
. n—1
and more specifically P};5 = 73;{5 ] that asserts every heard-of set is a majority set.
A run of M = (A, P) is totally determined by a set of initial states (one per process)

and a heard-of collection that satisfies P. To each run corresponds the collection of the
states (one per process and per round) reached by processes during the run; we denote p’s



state at the end of round r by a}(,r). By extension, the initial state of p is denoted by aéo).

In all the sequel, given a run of M, for any variable X, of process p, X,(;T) will denote the
value of X, after r rounds of this run.

A problem X for 11 is a predicate over state collections. An HO machine M = (A, P)
solves a problem X if the state collection in each of its runs satisfies 3J; then we say that
problem X is solvable under P.

Since communication predicates are invariant under time translation, and round num-
bers are not part of process states, correctness of algorithms does not depend on the time
at which algorithms start to run. Formally, for any integer ¢ and any HO algorithm A with
the message-sending and state-transition functions S;' and T} respectively, let i A denote the
algorithm defined by the message-sending functions *Sj and the state-transition functions
"I’y such that S} and "I} are trivial for the first ¢ rounds, and for any round r > i,

isr =51 and T =10

Proposition 2.1 If the HO machine M = (A, P) solves 3, then for any integer i, the HO
machine ‘M = (*A,P) also solves 3.

In this paper, we concentrate on the well-known agreement problem, called Consensus.
In this problem, each process p has an initial value v, from a fixed set V, and must reach
an irrevocable decision on one of the initial values. Thus each value v in V' corresponds to
an initial state s, of process p, signifying that p’s initial value is v:

Process p has also disjoint sets of decision states 37, one per value v in V. Then the
Consensus problem is defined as the conjunction of the following run predicates:

Irrevocability. Once a process decides a value, it remains decided on that value:

VWeILVweV,¥r>0: o) el =V >r : o) e ¥l

Agreement. No two processes decide differently:

Vp,q € IL,Yv,w € V,¥r,r' >0 : 01(,’1) €Y Nogm €N = v=w.

Integrity. Any decision value is the initial value of some process:

YWweVVpellLlvr>0: o) €Sl =3gell : og0=s..

Termination. All processes eventually decide:

Vpell,Ir,>0,IweV : o) exl

Note that as stated above, irrevocability is implied by agreement, and so we can only
consider the last three conditions for the Consensus specification.

Since there is no notion of faulty process in the HO model, a process is never exempted
from making a decision. Such a strong liveness requirement may seem unreasonable in two
respects. Firstly, it may make Consensus needlessly unsolvable in the sense that the result-
ing Consensus specification might be unsolvable under some communication predicate P
whereas the classical Consensus problem (with the non-uniform Termination condition) is



solvable in the type of systems corresponding to P ( see Table 1). The paper shows that
this objection does not hold.

Secondly, one may wonder whether an algorithm in which all processes decide can be
implemented in real systems with processors® that are prone to crash failures. The answer
is yes. Of course, a processor that has crashed takes no steps, and so can make no decision.
However, the corresponding HO process is not heard of any more, and so has no impact on
the rest of the computation. This is why there is no problem of transposing an HO machine
solving the entirely uniform Consensus specification in a real system with possible crash
failures: the capability of an HO process to make a decision is just not implemented if the
corresponding processor has crashed.

With such a completely uniform specification, the artefact of requirements that depend
on the way components are blamed for the failures disappears. Indeed, consider a real
system with no failure except for a processor p, that does not crash, but fails to send
a message to each of its neighbors just once. There are three component failure models
handling this scenario, namely the send omission, the receive omission, and the link failure
models. Then with the classical specification of the Consensus problem, either (a) all
processes except p, (b) only p, or (c) all processes must make a decision, accordingly.
Hence, the requirement for Consensus in the traditional approach highly depends on the
failure model, that is on the way components are blamed for failures. This illustrates how
the same syntactic specification may lead to various semantic requirements as soon as the
specification is referring to the failure model. We avoid this problem in the HO formalism by
considering completely uniform specifications with the same requirement for all processes.

Moreover, from a practical viewpoint, it is unreasonable to exempt a process from
making a decision on account of it being — rightly or wrongly — blamed for just one transient
failure. This explains why this specification of the Consensus problem requiring any process
to make a decision already appears in several fundamental papers dealing with benign
failures [23, 3, 19].

2.3 How to guarantee communication predicates

Obviously, an HO machine is implementable in a system as soon as the corresponding
communication predicate can be guaranteed by the system. In Table 1, we go over various
classical types of message-passing systems of interest, and we examine the communication
predicates that they can guarantee. For each type of system listed in Table 1 except
asynchronous systems with initial crash failures, we use several results previously established
in [9, 13, 16]. As for asynchronous systems with at most f initial crash failures, they clearly
support the communication predicate Pgum ¥ defined by:

Pg;um‘f :: Frg > 0,300, € 2T s.t. |Ilg| >n— f,¥pell,¥r > 1y : HO(p,r) = 1.

Moreover, the positive result by Fischer, Lynch, and Paterson [15] for initial crash failures
shows that in the case of a majority of correct processors (2f < n), space-time uniformity
of the heard-of sets can be achieved from the beginning.* That is, HO machines with the

predicate
Pl 3y € 2%st. Mg > n— £,¥p € ILYr > 0 : HO(p,r) = I

unif

can be implemented in any asynchronous system provided a majority of processors is correct.

3We use the term “processors” to designate the system entities that implement HO processes in a real
system, in order to make the two notions clearly distinguishable from each other in the discussion below.
“The algorithm in [15] ensures agreement on the membership of the initial clique.



SYSTEM TYPE

COMMUNICATION PREDICATE

Synchronous, reliable links

at most f faulty senders

Synchronous, at most f omission

transmission faults ([29])

Synchronous, a block of at most f omission

transmission faults ([29])

Synchronous, reliable links

at most f crash failures

K| >n—f
A
Vp € ILVr >0 : HO(p,r + 1) C K(r)

Synchronous, reliable links
asynchronous processes, atomic send to all
at most f crash failures ([9])

Vp € ILVr >0 : [HO(p,7)| >n— f
A
Vp,q € TI2,Vr >0 : HO(p,r) = HO(q,r)

Synchronous, reliable links
asynchronous processes,
at most 1 crash failure ([9])

Vp e ILVr >0 : 1< |HO(p,7)| <2
A
Vp,q € TI2,Vr >0 : HO(p,r) = HO(q,r)

Asynchronous, reliable links

at most f crash failures

VpeI,Vr >0 : |[HO(p,r)| >n—f

Asynchronous, reliable links

at most f initial crash failures

Vp eIl : |HO(p,1)| = n— f
A (Vp eIlL,Vr >0 : HO(p,7) C HO(p,r + 1))A
dIlg CII,3r9 > 0,Vp € II,Vr > rg : HO(p,r) =1lo

Same with f < n/2

dIlg C IIs.t. [IIp| > n — f,¥p € II,Vr >0 :

HO(p,r) = o

Partially synchronous ( [13] )
Eventual reliable links
at most f crash failures

Iy C IIs.t. |g| > n— f,3rg > 0,Vp € IL,Vr > g :

HO(p,r) =Tl

Table 1: System types and communication predicates
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3 Communication predicates to solve Consensus

In this section, we address the fundamental question of determining the computational
models in which Consensus is solvable. In terms of HO models, it consists in identifying
the communication predicates of HO machines that solve Consensus.

We partially answer the question by limiting us to the class of communication predicates
from which nek rounds can be emulated: in this class of HO models, we prove that per-
manent space uniformity is a necessary and sufficient condition for solving Consensus. In
other words, Consensus cannot be solved without an implicit and permanent consensus on
heard-of sets. We then compare our result with the one established by Chandra, Hadzilacos,
and Toueg [5] for asynchronous systems augmented with failure detector oracles.

We start by formalizing what it means for an HO machine M = (A, P) to emulate a
communication predicate P’. To do that, we first define the notion of a k round translation
from P to P’, and then its generalization to translations that take a non constant number
of rounds. Translations of the first type are called uniform translations.

3.1 Uniform translations

Let k be any positive integer, and let A be an algorithm that maintains a variable NewH O,
at every process p, which contains a subset of II. We call macro-round p the sequence of
the k consecutive rounds k(p — 1) +1,...,kp. The value of NewHO, at the end of macro-
round p is denoted NewH Oj(gp ). We say that the HO machine M = (A, P) emulates the
communication predicate P’ in k rounds if for any run of M, the following holds:

(p)

E1: If process ¢ belongs to NewHO,”’, then there exist an integer [ in {1,...,k}, a chain
of [ + 1 processes pg, p1,...,p; from pg = g to p; = p, and a subsequence of [ rounds
r1,...,7; in macro-round p such that for any index i, 1 < i <, we have

pi—1 € HO(p;, 1i).

E2: The collection (N ewH Oz(f) )> satisfies predicate P’.
pell,p>0

Condition E1 states that if ¢ is in NewHO,, at macro-round p, then p has actually heard
of ¢ during this macro-round through some intermediate processes p1,...,p;_1. Hence this
condition excludes trivial emulations of P’. Condition E2 states that the variables NewHO,,
simulate heard-of sets satisfying P’. If there exists an algorithm A such that the HO machine
M = (A,P) emulates P’ in k rounds, then we write P =5 P’, and we say that A is a k
round translation of P into P’.

Note that if P = P’, the trivial algorithm in which each process p writes the value of
HO(p,r) into NewHO, at the end of each round r is a one round translation of P into P,
and so P =1 P'.

3.2 General translations

Now we generalize the previous definition to translations that take a non-constant num-
ber of rounds in time and space. For that, each process p maintains an additional variable
MacroRound, initialized to 0. Upon updating NewH Oy, process p increments M acroRound,
by 1. When p sends a basic message m, it tags m with the current value of MacroRound,y,.
Moreover, p ignores any message tagged by an integer different to the current value of
MacroRound,. Then rephrasing the condition E1 as follows
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E1: If process g belongs to NewH O](Dp ), then there exist a chain of processes pg, p1, ...,
from pg = q to p; = p, and a subsequence of [ rounds r1, . .., r; such that for any index
i, 1 <1 <1, we have
7 < Titl, MacroRoundgi) =p, and p;—1 € HO(p;, 1) .
yields a general definition of translation.

If there exists an algorithm A such that the HO machine M = (A4, P) emulates P’, we
write P = P’, and we say that A translates P into P’. Obviously, the relation = contains
all the relations >.

Given an emulation of P’ by an HO machine (A, P), any problem that can be solved
with P’, can be solved with P instead. To see this, suppose the HO machine (B, P’) solves
a problem Y. We compose A and B in the following way: each process p executes B with
rounds that are “split” by A. More precisely, concurrently with B, every process p runs A,
and so (locally) determines A what we call “A macro-rounds” and maintains the variable
A.NewHQO,. The algorithm B at process p is then modified as follows: messages of A
during an A macro-round p piggyback messages sent by B at round p, and p computes its
new state at the end of macro-round p by applying B’s state-transition function at round
p to (1) its state (with respect to B) at the beginning of p and (2) the partial vector of B’s
messages indexed by A.NewH OI(;O ),

Proposition 3.1 If X is solvable under P’ and P = P’, then X is solvable under P.

The relation > is clearly transitive; thus it orders communication predicates with respect
to their ability to solve problems. If both P = P’ and P’ = P hold, then we say that P
and P’ are equivalent, and we denote P ~ P’.

As we shall see below, an important class of translations are those that preserve kernels.
More precisely, we introduce the notion of a kernel preserving translation from P to P’
which is defined as an emulation of P’ with an HO machine M = (A, P) such that for any
run of M, we have:

ﬂ HO(p,r) C ﬂ NewHOZ(,p),
pEll,repy pell

where p, denotes the set of rounds that together form the macro-round p on p.

3.3 Consensus and nek rounds

Let :p,um' f denote the communication predicate that guarantees any round to be uniform

and non-trivial, that is P* Pspunif NP* with

spunif —

P* 2 N¥r>0,Vpell : HO(p,r) # 0.

Proposition 3.2 Let P be a communication predicate such that P = P:p,um'f' Then there
exists an algorithm A such that the HO machine M = (A, P) solves Consensus.

Proof: Let Ay be an algorithm on II such that (Ag, P) emulates P* and let us fix

spunif?

an arbitrary order pi,...,p, on II. Let A be identical to Ay, except that
1. at each round, each process sends its knowledge about initial values to all;

2. at the end of the first macro-round, each process decides the initial value of the first
process in NewHO,,, according to the order p1,...,py.

12



Note that thanks to E2, every NewH O, is non-empty at the end of macro-round 1. More-
over, from E1 it follows that the decision rule is well-defined since each process knows the
initial values of all the processes in the set NewHO,,. Hence the decision rule is well-defined,
and termination is satisfied. Integrity is a straightforward consequence of item 2. Agree-
ment follows from E2. O

This result can be interestingly compared with the impossibility of Consensus with
the communication predicate P3¢ (cf. Section 2.3). It turns out that eventual space-
timeuniformity is not sufficient for Consensus, whereas space uniformity alone makes Con-
sensus solvable provided it holds from the beginning.

Conversely, the following proposition shows that in the class of HO machines with nek
rounds, space uniformity can be achieved permanently if Consensus is solvable. In other
words, Consensus is solvable only if there is an implicit permanent agreement on the first
heard-of sets.

Proposition 3.3 Let P be a communication predicate such that P > Prekrounds- 1f there
is an HO machine (A, P) that solves Consensus, then P = Py, .-
Proof:

Let B be an algorithm that emulates Pperrounds from P. From A and B, we design an
algorithm C' and prove that (C,P) emulates Py, ;-

To simulate a macro-round with C, every process p first executes one macro-round of
B and records the value of B.NewHO, at the end of the macro-round in some variable
Proposey. Then it executes n instances of A in parallel, where each solves Consensus (cf.
Proposition 2.1). The initial value of p for the i-th instance of A is the truth-value of

“p; € Propose),”. From the decision values, p sets
C.NewHO,, := {p; €Il : p decides “true” for the i-th Consensus}.

By the agreement condition of Consensus, the emulated macro-round is uniform. More-
over, since B emulates Ppekrounds, there is at least one process p; that belongs to all the
B.NewHO,’s, and so all the initial values for the i-th Consensus are equal to “true”. By
the integrity condition of Consensus, the only possible decision value is “true”. In other
words, we have

pi€ [ C.NewHO,.
pell

This shows that the emulated uniform macro-round is non-trivial, and so E2 is satisfied.
We now argue El1. Consider a C' macro-round (made up of a B macro-round and n
executions of A in parallele), and let p; in C.NewHO, at the end of the C' macro-round.
By the integrity condition of Consensus, there is some processes x such that p; € Propose,.
By the Knowledge Transfer theorem [7], for one of them, say z1, there is a finite sequence of
processes xo, ..., i = p such that during the execution of the i-th instance of A, x1 sends a
message m1 to xo, o sends a message mo to x3 after receiving my, ..., rp_1 sends a message
my_1 to xp = p after receiving my_s. Moreover, since E1 holds for B macro-rounds, there
is a communication path from p; to x1 during the first part of the C' macro-round. Hence
there is a connection from p; to p during the whole C' macro-round. O

Propositions 3.2 and 3.3 provide a characterization of the HO machines with nek rounds
that solves Consensus:

13



Theorem 3.4 In the class of communication predicates which are at least as strong as
Prekrounds, the following assertions are equivalent:

1. There is an algorithm A such that M = (A, P) solves Consensus;

2. P =P;

spunif -

Note that :p,um'f is the HO counterpart of one of the system types described in [9],
namely the one with asynchronous processes, synchronous and reliable links, atomic send-
to-all primitive, and at most n — 1 crashes. Consequently Theorem 3.4 shows that, among
those system types in which Consensus is solvable, this special one is the weakest; indeed

all of them can emulate nek rounds.

Remark: In [5], Chandra, Hadzilacos and Toueg characterize the failure detectors that
make Consensus solvable in a system with reliable links and a minority of crash failures.
Such a system can emulate the predicate P;?gj . In Section 4.1, we prove that P;?gj can
be translated into P ekroundss for which Theorem 3.4 applies. Therefore our result has the
same scope as the one in [5].

However the necessary (and actually sufficient) condition for solving Consensus in the
context of nek rounds in terms of Failure Detectors seems, at first sight, strictly stronger
than :p,um I with the Failure Detector €2, processes eventually reach an agreement on
some correct process (the leader) and then never change their mind. In contrast, with
the only communication predicate P;p,um f» Processes can easily determine a leader at each
round, but it is impossible to ensure that the leader does not change infinitely often. This
apparent contradiction between these two solvability results is explained by the fact that,
because of the basic asynchronous nature of Failure Detectors, only properties that hold
forever can be expressed in the latter formalism. In a sense, space uniformity is sufficient
in the HO formalism, whereas uniformity in both space and time is required in the Failure

Detector model, and more generally in any augmented asynchronous model.

4 Basic communication predicate translations

In this section, our aim is to establish some relationships among communication predicates,
and to outline a first (partial) map of various classes of these predicates that play a key role
for solving Consensus. To do so, we describe several fundamental translations that are all
uniform. Such translations simply handle union and intersection of heard-of sets. Interest-
ingly, some of them allow us to amplify our characterization of nek round communication
predicates that make Consensus solvable. We compare these translations with other ones
that have been given in the literature in the context of the classical taxonomy of system
types. Our main results are summarized in Figure 1 at the end of the section.

4.1 A two round translation for increasing kernels

First we present a two round translation and prove a lower bound on the membership of the
(new) kernels of macro-rounds: As a result, the translation increases kernels in some signifi-
cant cases. In particular, it transforms ngj into Ppekrounds, that is ngj > Prekrounds- Lhis
translation also provides a direct proof of a very interesting result established by Gafni [16]

relating synchronous and asynchronous models.
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(

The translation computes NewHO,’ ) from the collection of heard-of sets at rounds
2p — 1 and 2p as follows (see Algorithm 1):

NewHOY := | ) HO(g,2p—1).
q€HO(p,2p)

Algorithm 1 Translation for increasing kernels

: Initialization:
NewHO, € 2V, initially empty

1

2

3: Round r:

4:  Sp:

5: if r = 2p then
6 send ( HO(p,r — 1)) to all processes
7Ty

8 if r =2p then g

9 NewHOp :=  cyop,r HO(g; T — 1)

In this way, we emulate a macro-round p whose kernel satisfies the following key prop-
erty:

Proposition 4.1 If all heard-of sets at rounds 2p — 1 and 2p contain at least n — f1 and
n — fo processes respectively, then

K@) >n— f <1+ f2 >,
n — fo

where K(#) = NewHOI(,p).

Proof: Consider the directed graph G, whose vertices are the processes in II, and there
is an edge from p to ¢ if and only if p belongs to HO(q,2p —1). For any vertex x in G, let
nbIn(x) and nbOut(x) be the numbers of in-neighbors and out-neighbors of x, respectively.
The number of edges in G, is equal to

E(G,) = Z nbin(z) = Z nbOut(y),

z€ell yell

and since nbIn(x) = |HO(x,2p — 1)|, we have
E(Gp) = n(n— f1). (1)

Let us separate the summation }, .y nbOut(y) into those y’s in K and those not in K,
and let Ep denote the cardinality of K. Clearly, we have

Z nbOut(y) < nEp. (2)
yeg(l’)

For the other term in the sum, we show that for any y that is not in K (#) | we have
nbOut(y) < fa. (3)

This is true because if y is not in K (P), then there exists some process p such that

vé |J HO@G20-1),
q€HO(p,2p)
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that is for any ¢ in HO(p,2p), y is not in HO(q,2p — 1). In other words, none of the
out-neighbors of y in G, belongs to HO(p,2p). Since any heard-of set HO(p,2p) has at
least n — fo elements, nbOut(y) is at most fo. From (1), (2) and (3) it follows that

nn— fi) < n%p +(n— %p)fg,

%pzn—f1<1+nf2f2).

and so

O
: n—1
With the communication predicate P;{ngj = Pl[qf) ], Proposition 4.1 can be specialized
as follows:

Corollary 4.2 There is a two round translation of Pglgj nto Prekrounds, and so

maj
PHO = Pnekrounds-

Proof: Take f; = fo = [”7_11, which leads to %p > 1. O

Another interesting corollary of Proposition 4.1 is obtained with fo = 1: in this case,
Proposition 4.1 gives
= f1

k,>n— f1 — .
pzn=—h n—1

Therefore, if fi < n — 1, then we have %p > n — f1. In particular, in a system with at
least 3 processes and heard-of sets of cardinality n — 1 (f; = fo = 1), we can emulate
macro-rounds with kernels of size at least n — 1, and so the global kernel of f macro-rounds
has a membership of over n — f processes. Considering that the communication predicates
defined by:

Vr>0,Vpell : |[HO(p,r)|>n—1

and
|K|>n—f

are the HO counterparts of asynchronous systems with at most one crash failure and syn-
chronous systems with at most f send omission failures, respectively, we derive the following
result relating synchronous and asynchronous systems:

Corollary 4.3 Asynchronous message-passing systems with at most one crash failure can
implement the first f rounds of a synchronous system with at most f send omission failures.

A similar result is shown by Gafni [16] for asynchronous atomic-snapshot shared memory
systems with at most one crash failure. Note that the very elegant reduction of the omission
failure lower bound to the asynchronous impossibility result [15] that Gafni derives from
his result can also be span off from Corollary 4.3.

4.2 Translating no split rounds into nek rounds

We now show that Ppospiit and Prekrounds are actually equivalent. Clearly, Ppekrounds implies
Pnosplitv and so we have Ppeprounds = Pnosplit~ To prove that Pnosplit = Prekrounds, We present
a A(n) round translation, where A(n) is the integer defined by

A =1 < 9Am).
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which emulates nek macro-rounds from no split rounds. This translation, which appears in
Algorithm 2, is an extension from 2 to A(n) of Algorithm 1.

Each macro-round consists of A\(n) consecutive rounds. We fix such a macro-round p,
and we denote 71, -+ , 7)) the sequence of rounds that form p 5 Each process p maintains
a variable Listen,, which is contained in II and is equal to HO(p,r1) at the end of round
r1. At the following rounds, p sends the current value of Listen, to all and then computes
the new Listen, as the union of the Listen,’s it has just received. That is, at each round
T, Ty ST < Ta), P sets

Listen,, := U Listen,.
g€HO(p,r)

Algorithm 2 Translating no split rounds into nek rounds
1: Initialization:
Listenp € 2V initially empty
NewHO, € 2V, initially empty

2

3

4: Round r7:

5 Sp:

6 send ( Listen) ) to all processes
7T

8 if r =1 (mod A(n)) then
9: Listeny, := HO(p,r)
10: else

S
11: Listenp :=  c go(p,r) Listeng
12: if r =0 (mod A(n)) then
13: NewHO,, := Listen,,

Theorem 4.4 Algorithm 2 is a A(n) round translation of Pposplit 1t0 Prekrounds, and so
we have Pnosplit =~ Pnekrounds-

Proof: Condition E1 trivially follows from the code of Algorithm 2 (lines 9 and 11). We
now prove E2. For that, consider the directed graphs G; induced by the heard-of sets at
round r;. Let G denote the directed graph whose vertices are the processes in 1I, and there
is an edge from p to g iff there exists a chain of ¢ + 1 processes x1,--- ,x;4+1 from 1 = p to
;11 = q such that

13 € HO(w1,7)\(n)), 3 € HO(22,7)\(n)-1),---, and xi11 € HO(Ti, Tx(m)—it1)-
Clearly, GT = G)\(»), and Listen;, at the end of round ry(,) is the set of p’s in-neighbours
in G’/‘\(n):

Listenz(,m(")) ={q €1l : (g,p) is an edge of G, }-
Hence Condition E2 directly follows from the following lemma as the special case i = A\(n)

since n < 2A(n)

Lemma 4.5 For any index i € {1,...,\(n)}, there is at least one common in-neighbour to
any subset of 2 processes in the graph G7.

Proof: By induction on i.

Basis: i = 1. We have G] = G,,—1, and the lemma coincides with the no split predicate.
Inductive step: Suppose ¢ > 2 and the lemma holds in G}_;. Let {pi,...,psi} be any
subset of 2¢ processes. By inductive hypothesis, p1,...,pyi—1 have a common in-neighbour

®Precisely, we have r1 = A(n)(p — 1) + 1,..., 7\ = A(n)p.
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z1 in Gj_,, and pyi-1,4,...,p9i have a common in-neighbour zs in Gj_;. Since the no
split predicate holds at each round, z; and z2 have a common in-neighbour in Gy,)_it1,
no matter 1 = x2 or not; let x denote this node. By definition of G, z is a common
in-neighbour to pi,...,p;+1 in this graph. OLemma 4.5

By definition of the NewHO,’s, the translation preserves kernels, which completes the proof
that Algorithm 2 translates Pposprit iNt0 Prekrounds- O

Note that since P}{ngj implies Prospiit, Algorithm 2 is a A(n) round translation of P}{ngj

into Prekrounds- Lhus we get another proof of Corollary 4.2, but the translation requires
A(n) rounds instead of two rounds in Algorithm 1.

Combining Theorems 3.4 and 4.4, we get the following corollary:

Corollary 4.6 In the class of communication predicates which are at least as strong as
Prospiit, the following assertions are equivalent:

1. There is an algorithm A such that M = (A, P) solves Consensus;

2. P =P}

sp-unif*

4.3 A translation for achieving space uniformity

Our third translation achieves space uniformity under the condition of original non-empty
global kernels. More precisely, we give a f + 1 round translation of Plf( into Psp_unif N Pff(.

Processes propagate and collect the heard-of sets that they have ever seen during f + 1
consecutive rounds. At the end of the macro-round, the new p’s heard-of set is the intersec-
tion of the sets of process names that p has just collected at the last round. Formally, each
macro-round consists of f 4 1 consecutive rounds. Each process p maintains three variables
Listen,, Known,, and NewH O,, which are all contained in IT and are equal to II, {p}, and
() at the beginning of each macro-round, respectively. At each round, p listens to process ¢
only if it hears of ¢ at the previous rounds of the macro-round, and so p sets:

Listen,, :== Listen, N HO(p,r).

Moreover, during the f first rounds of any macro-round, each process p collects the names
of all the processes it hears of in its variable Knowny; for that, it sends Known, to all
processes and then sets:

Known,, := Knowny, U U Knownyg
q€Listeny

At the last round of any macro-round, p computes the intersection (instead of the union as
in the previous rounds of the macro-round) of the sets Known, it has just collected. The
code of the translation is given below (see Algorithm 3).

We fix a macro-round p and introduce some piece of notation relative to p. Let
1, 741 denote the sequence of the f+ 1 rounds that form p. Recall that K (p) denotes
the kernel of macro-round p, i.e.,

Tf+1

K(p)= [ K(r).

r=ri
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Algorithm 3 Translation for space uniformity

1: Initialization: 8: Ty :

2:  Listeny € 2V, initially II 9:  Listeny := Listen, N HO(p,r)

3:  NewHO, €2V, initially T 10:  if » Z0 (mod f + 1) then

4 Knowny € 2V, initially {p} 11: Knowny := Knowny U g€ Listen, Knowng
12:  else T

5: Round r: 13: NewHOp := ¢ Listen, Knowng

6: Sy 14: Listeny :=1I

7. send ( Knowny ) to all processes 15: Known,, := {p}

We say that process p knows process s at round r if s € Knownz(,r). If s € Knowng) \

Known,(f_l), q € Listen,,, and s € Knownér_l), then we say that p hears of s from q at
round r. Finally, process s is said to be good (at macro-round p) if s is known by all processes

at round 7y; otherwise s is bad. In other words, the set of good processes is defined by

Good = ﬂ Knownz(grf).
pell

Thus at line (13), every process computes a local approximation of the set of good processes.

We are going to prove that if K(p) contains at least n — f processes, then at the end
of any macro-round, all the NewHO’s are equal and contain K (p). For that, we start with
some preliminary assertions.

Lemma 4.7
K(p) C ﬂ Listen}(f).
pellre{ry, - rep1}

Proof: It is immediate from the definition of Listen,, that for any process p,
ﬂ;leListeng) =L, HO(p,r) and HO(p,rs11) C Listen,’ ™.

The result follows directly. ULemma 4.7

Lemma 4.8 Any process p in K(p) is a good process.

Proof: Let p be any process in K(p). By lines (15) and (11), it follows that all processes
know p at the end of round ry. This shows that p is a good process. O Lemma 4.8

Lemma 4.9 If process p hears of some process s at round ry, then there exist k—1 processes
P1, ,Pk_1, each different from p and s, such that p1 hears of s from s at round ri, ps
hears of s from p1 at round ro, ..., p_1 hears of s from pip_o at round rip_1, and p hears
of s from pr_1 at round ry. Moreover, processes pi,- -+ ,pr_2, and s are all in the cokernel

coK(p).

Proof: Since p hears of process s at round rg, there exists some process pi_1 such

that py_1 € Listenff’“) and s € Knowng’:l). Since Listen, is non-increasing, py_1 €

(re—1)

Listeny . This implies that pi_1 hears of s at round r;_; since p does not know s at
this round. In turn, there exists some process pip_o such that pp_o € Listenézk__ll), and
(k—2)

s € Knowny, ,’. From

s € Knownz(;'if) and s ¢ Knowngak*l),
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we deduce that pg_o ¢ Listen](grk’l). By Lemma 4.7, we have py_o € coK(p).

Step by step, we exhibit & — 1 processes p1,- -+ ,pr_1 such that for any index i, 1 < i <
k—1,

sé¢ K?”Lown](;;ifl)7 s € Knowng") , and p;_1 € Listengi).

For any index ¢ such that 2 < i < k — 2, we have both

seK nawnl(,:i:ll) and s ¢ K nowngfl.
)

7
+1°

Therefore, p;—1 ¢ Listenz(,:

Similarly, we have

By Lemma 4.7, we deduce that p;_; belongs to coK(p).

s ¢ Known(™)

p2
and so s belongs to coK(p), too. From pp_o € coK(p), it follows that all the processes
p1,-+ k-2, and s are in coK (p). OLemma 4.9

Lemma 4.10 If process p knows some bad process s at the end of round ry, 1, then p has
heard of s by the end of the round ry, i.e,

s € Knowngf“) N s ¢ Good = s € Knownz(;rf).

Proof: Let s be a bad process; so there exists some process ¢ such that s ¢ K nownérf ).
Suppose for contradiction that p hears of s at round 7;;. By Lemma 4.9, there are f
processes pi,---,py each different from both p and s such that p hears of s from p; at

round ry11, and processes pi,---,ps—1, and s are all in coK(p). Since s ¢ Knowngrf),
Listen, contains neither p nor py at this round. Therefore, p and py are also in coK(p),
which contradicts the fact that coK(p) is of size at most f. OLemma 4.10

Lemma 4.11 A process is good iff it is known by some process in the kernel, i.e,
s€ Good < 3pe K(p) : s€ Knownz(grf).

Proof: By definition, a good process is known by all processes at round ry.

Conversely, let s be any process known by some process p in K (p) at round ry. Assume,
for the sake of contradiction, that s is bad. Since p is in K(p), every process g receives a
message from p at round 7,1, and so Known, contains s at the end of round ry4. By
Lemma 4.10, we deduce that every process already knows s at round 7;. This contradicts
that s is a bad process. ULemma 4.11

Lemma 4.12 For any process p, at the end of round 11, NewHQO,, is composed of all
the good processes, i.e., NewHOI(,Tf“) = Good.

Proof: Obviously, we have Good C NewH Oz(,rf ),

Conversely, let s be any process in NewH O},rf 1

)

; s is known at round 7y by all the

processes in Listenz()rf “), and in particular by those in K(p). By Lemma 4.11, it follows
that s is a good process since K (p) is non-empty. Oremma 4.12

Lemma 4.12 says that all the NewHO,’s are equal after f + 1 rounds, and so the
collection of the NewHOQO’s satisfies Pgp, ynir at the end of each macro-round. Moreover,
Lemma 4.8 implies that the translation preserves kernels. Since E1 is clearly guaranteed,
we have proved the following theorem:
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Theorem 4.13 Algorithm 8 is a f 4+ 1 translation of P{( into 77{( A Pop_unif, and so we
have
Pl = Pl A Papuniy-

Combining the latter theorem with Proposition 3.2, we derive a f 4+ 1 round algorithm
A such that the HO machine (A,P{{) solves Consensus. Thus we check that at least
for nek machines, the strong termination requirement, namely “every process eventually
decides”, does not make the Consensus specification harder to solve. Note that the first
f rounds of A are identical to those of the FloodSet algorithm [21] which is a well-known
Consensus algorithm devised for synchronous systems with at most f crash failures. These
two algorithms only differ in round f + 1: Algorithm 3 computes the intersection of the
Knowny’s instead of union in FloodSet. Hence, substituting intersection for union just at
the last round is sufficient to guarantee a general agreement among all processes under the
only communication predicate Pff( (without regularity).

Interestingly, if we substitute

NewHO, := NewHO, N (ﬂqeListenpKnownq)

for
NewHOy := NyeListen, Knowny

at line (13) in Algorithm 3, the resulting algorithm translates P}; into P}; AN Pspunif N\ Preg-
Considering that the communication predicates 73{( and 73}; APreg are the HO counterparts
of synchronous systems with at most f send omission failures and with at most f crash
failures respectively, we get an automatic procedure which both guarantees space uniformity
and masks send omissions into crash failures.

4.4 A two round translation for increasing time uniformity

We now describe a two round translation that increases time uniformity in the sense that it
emulates regular runs. This translation can be viewed as a refinement of our first translation
(Algorithm 1), with in addition a mechanism for the transition from a macro-round to the
next one which guarantees regularity. The basic idea of this mechanism is at each macro-
round and for each process to compute an approximation of the kernel of the previous
macro-round.

More precisely, each process p maintains a variable Approx K, whose initial value is II.
At the end of round 2p, p sets

Approx K, := ﬂ (HO(q, 2p—1)N ApproxK(gpfl)> ,
q€HO(p,2p)

where Appro:z:Kép ~U denotes the value of ApproxK, at the end of the macro-round p — 1.
The heard-of set at macro-round p for process p is now defined by:

NewHQO,, := U (HO(q, 2p—1)N ApproxKépfl)) .
q€HO(p,2p)

The resulting algorithm is called Algorithm 4.
Theorem 4.14 Algorithm 4 translates Prosplit 1110 Preg, and so we have
Pnosplit = ’Preg‘

Moreover, it preserves global kernels.
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Algorithm 4 Translating no split rounds into regular rounds

1: Initialization:

2 ApprozK, € 2V, initially equal to TT

3 NewHO, € 2V, initially empty

4: Round r = 2p:

5 S

6 send ( ApproxK, N HO(p,r — 1)) to all processes
Ty .

8 Approx K, ::SAppropr n 4€HO(p,r) ApproxKq N HO(q,r — 1)
9 NewHO, = Q€ HO(p,r) ApprozKq N HO(gq,r — 1)

Proof: Condition E1 immediately follows from the code of Algorithm 4, line 9. For the
same reason, the algorithm preserves kernels. We now prove E2. According to the code of

the algorithm, if = ¢ NewHng), then for any s in HO(q,2p), we have
x ¢ HO(s,2p — 1) N ApprozKP~Y,

Because of the no split predicate, for any process y, HO(y, 2p) intersects HO(q,2p), and

so there exists s € HO(y,2p) such that © ¢ HO(s,2p — 1) N ApproxKép_l). Hence z ¢
ApproxK‘qu ). Tt follows that for any process p, © ¢ NewH O,(,p D In other words, we have
showed that

Vp eIl : NewHOY C (| NewHOY),

q€ell

i.e., regularity holds.
Moreover, by definition of ApproxK,, we easily get

p
Vpell : ﬂ K((2r—1)C AppromKl()p).

r=1
It follows that Algorithm 4 preserves global kernels. O

From the latter point, we derive the following corollary:

Corollary 4.15
Vie{l,--- ,n—1} : PL ~PL AP,

Since the communication predicates Plf( and 73{( A Preg are the HO counterparts of
synchronous systems with at most f send omission failures, and synchronous systems with
at most f crash failures, respectively (cf [16]), Algorithm 4 provides a general method to
convert synchronous algorithms tolerant of f crash failures into ones tolerant of f omission
senders.

Algorithm 4 is almost similar to the two round translation given by Neiger and Toueg [25]
to mask send omission into crash failures. The only difference between both lies in the
processes that are in charge of stopping information transmission: In Neiger and Toueg’s
algorithm, upon learning it is faulty at some point, process p self censors for the rest of the
computation whereas in Algorithm 4, p sends the same messages but the other processes
that detect p is faulty do not hear of p anymore.

Algorithms 1 and 4 can be combined into a three round translation that increases both
space and time uniformity. In this new translation, each process p inductively computes
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NewHO, and ApproxK, as follows:

NewHOZ(j’) = U (UseHO(%gp_l)HO(s, 3p—2)N ApproxKgp_l)) ,
q€HO(p,3p)
and
Approz K, :== m (UseHO(q,gp_l)HO(s, 3p—2)N ApproxKgp_l)) .
q€HO(p,3p)

In this way, the first f rounds of a synchronous system with at most f crash failures can be
implemented from an asynchronous message-passing system with at most one crash failure.
This three round simulation is identical to the one given by Gafni [16] from asynchronous
atomic-snapshot shared memory systems: the last two rounds of the simulation actually
correspond to the two round adopt-commit protocol in [16].

4.5 Comparing communication predicates

In the previous sections, we saw several interrelationships between some basic communica-
tion predicates. These relations and those that are directly derived from the implication
relations are illustrated in Figure 1 as follows: there is a direct edge from P to P"if P = P’.
: n—1
We adopt the following notation: Pr* = 7322 ], and P(nqjro)~ denotes the predicate
Plmajroye = Yr>0,3rg >r,Vp eIl : [HO(p,r0)| > n/2.

The dashed line represents the “Consensus line”: a communication predicate P is above the
line iff Consensus solvable under P. The figure is completed with the predicate Prastvotingre
defined in Section 5.5.

5 Consensus and general HO machines

We now examine general HO machines, some with empty kernel rounds, that solve Con-
sensus. To do so, we first revisit various classical Consensus algorithms devised for asyn-
chronous or partially synchronous systems. For coordinator-based algorithms, we introduce
a generalization of HO machines, the Coordinated HO machines (or CHO machines for
short).

HO and CHO machine formalisms enable us to express well-known Consensus algorithms
in a quite concise and elegant way, and so to extract the algorithmic schemes on which they
are based. This not only gives some new insights into these Consensus algorithms, but also
allows us to design new ones that are quite interesting in practice since they are correct
under very realistic conditions. Moreover, it is striking to see how easy it is to determine
simple conditions that ensure the correctness of these algorithms from their HO or CHO
counterparts.

5.1 A Consensus algorithm a la Ben-Or: the Uniform Voting algorithm

First, we present a Consensus algorithm that to the best of our knowledge, has not yet
been described in the literature. It can be viewed as a deterministic version of the Ben-Or
algorithm [1, 27]. We call it the UniformVoting algorithm, see Algorithm 5.
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Figure 1: Relationships among some basic communication predicates (we denote 73%7} by
77[";@] and we define Prqstvotingre in Section 5.5)
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As for all the other algorithms described in Section 5, Uniform Voting is organized into
phases.5 A UniformVoting phase consists of two rounds. Every process p maintains a
variable z,, containing a value in V', initially equal to p’s initial value. Process p broadcasts
xp, at the first round of each phase, and then adopts the smallest value it has just received.
Then, p votes for value v if it has not heard that some process has started the phase with
another value; otherwise, p does not cast a vote. At the second round, p sends v or “?”
to all, accordingly. In the same message, it sends again the current value of x,. If each
message that p receives at the second round contains a vote for v, then p decides v (this is
why we call this algorithm Uniform Voting). If p receives some values v different from “?”,
then it chooses one such value arbitrarily and adopts it for the next phase; otherwise, p
adopts the smallest value of the z,’s it has just received.

Algorithm 5 The UniformVoting algorithm
11: Round r =2¢:

1: Initialization: 12: S -
i ) o : b
2t wp:=wvp  {vp is the initial value of p} 13: send (z, , votey ) to all processes
31 wotep € V U{?}, initially ?
14: T
4: Rm:nd r=2¢—1: 15: if at least one (*, v) with v #7 is received then
5 S 16: Tp =
6 send (zp ) to all processes 17: else
7o T 18: xp = smallest w from (w, ?7) received
] 2, := smallest v received 19: if all the messages received are
9 if all the values received are equal to v then 20: equal to (*, v) with v #? then
10: votep := v 1: DECIDE(v)
22: votep := 7

We now argue that if no round is split, then no process can make a bad decision (agree-
ment). Then we prove that termination is enforced by just one uniform round, which is
guaranteed by the communication predicate:

Plunifye = Vr>0,3rg > 1, Vp,q € 1% : HO(p,m0) = HO(q,70).

Theorem 5.1 The HO machine consisting of the UniformVoting algorithm and the predi-
cate Prosplit N Plunif) solves Consensus.

Proof: Integrity is trivially satisfied.

The proof of the agreement condition relies on the fact that if two processes p and ¢
vote for v and v’ at the same phase, then predicate Prosplit ensures that v = v'. Moreover,
predicate Ppospiit also guarantees that if some process decides v at round r = 2¢, then all
the x,’s remain equal to v from round r.

For termination, let r¢ be the first uniform round. There are two cases to consider.

1. Round rq is the first round of some phase ¢, i.e., rg = 2¢9 — 1. Therefore at round
ro, either all processes vote for the same value v or no process votes.

2. Round rg is the second round of some phase ¢g, i.e., 79 = 2¢q.

In both cases, all the x,,’s are equal at the end of round 2¢g, and every process has decided
at the end of round 2¢¢ + 2. It follows that P(yp;f)ec, which is invariant by time translation
and guarantees one uniform round, enforces termination of the UniformVoting algorithm.
|

SA phase consists of a fixed number of consecutive rounds. Basically, there is no difference between a
phase and a macro-round. We have preferred the term “macro-round” for translations because it seems us
more suggestive in this context, but here we use the classical terminology of “phase”.
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5.2 Coordinated HO machines

Numerous algorithms for Consensus are coordinator-based algorithms (eg. the Consensus
algorithms proposed by Dwork, Lynch, and Stockmeyer [13], Chandra and Toueg’s algo-
rithm [6], Paxos [19]). The correctness of these algorithms is guaranteed by some properties
on coordinators: for example, termination in Paxos requires that during some phase, all
processes hear of the coordinator of the phase. For such algorithms, we introduce the Coor-
dinated HO machine (or CHO machine for short) for which algorithms refer to the notion
of coordinators, and predicates deal not only with heard-of sets, but also with coordinators.

A CHO machine is a pair M¢ = (A, P) much like the ordinary HO machine. Reflecting
the fact that the messages sent by a process p in a round of a CHO machine do not uniquely
depend on the current state, but also on the identity of a coordinator, the message-sending
function S is no longer a function from states, x Il to M U {null} but instead a function

S, I x states, x I — M U {null}.

Similarly, the state of process p at the end of a round does not only only depend on its
current state and the collection of the messages it has just received, but also on the identity
of its coordinator. So, the transition function 77 is a function

T}« states, x (MU {null})n)* x II — states,

where ((M U {null})n)* denotes the set of partial vectors, indexed by II, of elements of
M U {null}. The functions (S}),>0 and (T}))r>o define the coordinated process p, and the
collection of coordinated processes is called a coordinated algorithm.

As for HO machines, at every round r, each process p (1) applies the message-sending
function S to the current coordinator and the current state to generate the messages to be
sent, and (2) applies the state-transition T}, to the current state and the incoming messages.
The combination of the two steps is called a coordinated round, and p’s coordinator at r is
denoted Coord(p,r). Process p sets out to be the coordinator of round r if p = Coord(p,r).

We say that r is a uniformly coordinated round if

Vp,q € II = Coord(p,r) = Coord(q,r)
and r is well coordinated if
Vp eIl : Coord(p,r) € HO(p,r).

A computation of a CHO machine is uniformly coordinated from round ry if any round r
such that r > rg is uniformly coordinated; a computation is uniformly coordinated if it is
uniformly coordinated from the first round.

Usually, when algorithms are decomposed into phases, every process keeps the same
coordinator during each whole phase. The coordinator of process p during phase ¢ is
denoted by Coord(p, ¢).

Each run of a CHO machine does not uniquely determine the heard-of set collection, but
also the coordinator collection according to space and time, namely (Coord(p,r))petr>0- A
CHO machine for II consists of a coordinated algorithm A and a predicate over both heard-
of sets and coordinator collections, called a communication-coordinator predicate, which
is invariant by time translation. For example, we shall consider CHO machines with the
predicate:

Vr > 0,3rg > r,Vp,q € II? : Coord(p,r9) = Coord(q,ro) A Coord(p,ro) € HO(p, )
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or equivalently,
Vr > 0,3rg > r,Vp,q € I* : Coord(p,ro) = Coord(q, o) A Coord(p,ro) € K (ro).

As we shall see in the next sections, uniformly and well coordinated rounds play a key role
for guaranteeing correctness of coordinated Consensus algorithms.

Finally, the notion of what it means for a CHO machine to solve a problem is similar to
the one for an HO machine.

With CHO machine formalism, the way processes determine the name of their coor-
dinators is not specified: it may be the result of some computation (in other words, the
CHO machine is emulated by an ordinary HO machine), or processes may use some external
devices (physical devices or oracles) that are capable of reporting the name of coordinators
to every processes. Most of the CHO machines that we shall consider can be simulated by
ordinary HO machines, and so this generalization does not seem to lead to a more powerful
computational model (as explained above, the basic motivation for introducing CHO ma-
chines is just to devise Consensus algorithms and to state conditions for their correctness in
a more natural and elegant way). In particular, we can adopt an “off-line” strategy, usually
called the rotating coordinator strategy, which consists in selecting for every process p in II:

COO’I“d(p, T) = Pl4+r mod n

when II = {p1,...,pn}. Note that fixing the rotating coordinator strategy, any CHO
machine reduces to an HO machine.

With the rotating coordinator strategy, agreement on the name of a coordinator is for
free, that is every round is uniformly coordinated. On the other hand, the on-line strategy
that consists in selecting p’s coordinator in its heard-of set provides well coordinated rounds
for free (in the case heard-of sets do not vary too much in time). A critical point is to achieve
rounds which are both uniformly and well coordinated.

5.3 A first CHO machine for Consensus: the CoordUniform Voting ma-
chine

When looking closer at the Uniform Voting machine, we may think to ensure uniformity of
one round, and so termination, by the help of coordinators: at the beginning of each phase,
coordinators are in charge to make the z;’s values uniform. More precisely, to each phase ¢,
we add a preliminary round in which every process p that sets out to be coordinator of phase
¢ (i.e., p = Coord(p, ¢)) broadcasts the value of its variable x,. Upon receiving a message
with value v from Coord(q, ¢), process ¢ adopts this value for z,. Actually, the additional
round allows us to simplify the two rounds of Uniform Voting: each process p just sends its
vote instead of sending both its vote and the value of x,,. This yields an algorithm that we
call CoordUniformVoting (see Algorithm 6).

Since the decision of one process at some round 2¢ of Uniform Voting entails all the x,’s
to be equal, CoordUniform Voting still satisfies integrity and agreement. If at some phase ¢,
all processes agree on some coordinator’s name ¢, and this coordinator is in the kernel of
¢g, then every process hears of and adopts z.’s value. In that case, all processes decide on
this value at the end of phase ¢g. This proves the following theorem:

Theorem 5.2 The CHO machine consisting of the CoordUniformVoting algorithm and the
predicate that guarantees no split round and uniformly and well coordinated phases infinitely
often solves Consensus.
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This exemplifies how the use of coordinators transforms the requirement of a non-trivial
uniform round into the one of agreeing on the name of some process in the kernel. Note that
agreement on the coordinator of a phase ¢ may be achieved by a leader election algorithm.
At that point, the question is whether the elected process is actually in the kernel of round
3¢ — 2.

Instead of using a leader election algorithm, we can adopt the rotating coordinator strat-
egy. We denote by CoordUniform Voting ™ the resulting algorithm. With such a coordinator
strategy, having the leader in the kernel at some point in computation is ensured by

Ipo >0+ () K(¢o+1i) #0.

=1

Thus using the rotating coordinator strategy, we substitute uniformity of one round in
the UniformVoting machine for some “temporal stability” guaranteeing a sufficiently long
period with a non-empty kernel.

Algorithm 6 The CoordUniformVoting algorithm

1: Initialization:

20 xzp:=wvp  {vp is the initial value of p}
3:  wotep, € VU {?}, initially ? 18: Round r = 36
4: Round r = 3¢ — 2: 19: Sy
5 Sy 20: send (wvotep ) to all processes
6 if p = coordy(¢) then .
7 send (zp ) to all processes 2l Ty
22: if at least one (v) with v #7 is received then
8 Ty 23: Tpi=v
9 if some message (v) is received 24: if all the messages received are
10: from Coord(p, ¢) then 25: equal to (v) with v #? then
11: Tp =V 26: DECIDE(v)
12: Round r =3¢ — 1: 27 votep =1
13: Sy
14: send (xp ) to all processes
15: 17
16: if all the values received are equal to v then
17: votep := v

5.4 The DLS algorithm

The algorithms described up to now work correctly only if some invariant properties for
the HO’s are satisfied (e.g., Prekrounds OF Prospiit)- When having a closer look at these
algorithms, it turns out that the safety conditions of Consensus may be violated if there are
some “bad” periods during which these predicates do not hold. Thereby, such algorithms
cannot be used in systems with message losses (even very rare), which considerably limits
the scope of these Consensus algorithms.

In a seminal paper [13], Dwork, Lynch, and Stockmeyer showed how to cope with such
bad periods, and designed an algorithm, that we call DLS, which solves Consensus if a
“sufficiently long” good period occurs. The basic idea of this algorithm is to satisfy safety
conditions no matter how badly processes communicate, that is even if many failures occur
in the system.

The DLS algorithm has been originally described in an HO-like style [13]. Rounds are
grouped into phases, where each phase ¢ consists of four rounds. The algorithm includes
the rotating coordinator strategy, and so each phase ¢ is led by a unique coordinator. We
refer the reader to [13] for the complete description of DLS.
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Dwork, Lynch, and Stockmeyer [13] proved that their algorithm never violates integrity
and agreement. Moreover, they showed that it terminates if “there is a majority of correct
processes, and there exists some round GST, such that all messages sent from correct
processors at round GST or afterwards are delivered during the round at which they were
sent.” This corresponds to eventual space-time uniformity:

3 GST >0, 3y s.t. [IIp| >n/2 : Vpell, Vr > GST , HO(p,r) =1y

which in terms of failure detectors coincides with OP [6].

As already mentioned in [13], this termination requirement can be drastically weakened:
a single well coordinated phase without “too much” transmission failures entails termi-
nation. Formally, the DLS algorithm is still correct when replacing eventual space-time
uniformity by the following communication predicate:

Vo > 0,3¢pg > ¢, 31 s.t. |Ho‘ > n/2 :
(Vp ell, Vr € ¢g : HO(p,T) = HQ) A (p1+¢0 mod n € Ho) .

Variant of DLS: Interestingly, the safety conditions of Consensus, namely integrity and
agreement, still hold for any coordinator strategy, even when several processes lead the same
phase. In other words, the CHO extension of DLS, that we denote CoordDLS, also satisfies
integrity and agreement whatever the communication-coordinator predicate we consider.
For termination, we just have to substitute the condition

(Vp,q € 2 Coord(p, o) = Coord(q,¢o)) A (Vp € I1: Coord(p, ¢g) € Ip).

for the condition
Pl+¢o mod n € ITy

in the above communication predicate. Thus this variant of DLS solves Consensus under
the condition that there exists some uniform phase” ¢o whose kernel K(¢g) is a majority
set, and which is led by a single process (coordinator) in K (¢y).

5.5 A CHO algorithm “a la Paxos”: the LastVoting algorithm

The DLS algorithm is based on the rotating coordinator paradigm, which ensures perma-
nent agreement on the coordinator, but as mentioned above, it supports a more flexible
coordinator strategy. The idea of using various policies for determining coordinators has
been introduced by Lamport in the Pazos algorithm [19]. However, the idea is not followed
through to the end in the latter algorithm: the first round of Pazos enforces the choice of
a unique coordinator for the remaining rounds of the phase, and so the “Consensus core”
in Pazos actually manages a single coordinator per phase.

We have observed here that Pazos is still safe even in the presence of multiple coordina-
tors in the same phase. Indeed, multiple coordinators in the same phase can only prevent
casting a vote, since this requires a coordinator to get a majority of (non-null) messages. By
the majority condition, at most one coordinator per phase is able to cast a vote. Thus we
design a new CHO algorithm, called LastVoting (Algorithm 7), which follows the basic line
of Pazos, but manages possible multiple coordinators per phase. LastVoting is structured
as Paxos, except the first round that is removed. This is because LastVoting proceeds in
numerically consecutive phases, and so a phase automatically gets a chance to complete.

"By uniform phase, we mean that each round of this phase is uniform.
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Algorithm 7 The LastVoting algorithm
1: Initialization:
zp € V, initially v, {vp is the initial value of p}

22: Round r =4¢ — 1:

2: . T .

3: wotep € V U{?}, initially ? SZ Spif'. tsp = ¢ then

4:  commity, a Boolean, initially false 25: ) pd_( k) to Coord(p, )

5:  readyp a Boolean, initially false ’ send fack) to Looraip;

6:  tsp €N, initially 0 26: Ty
. Ao, 27: if p = Coord(p, ¢) and

g R?S}:I?d r=4¢—3: number of (ack) received > n/2 then
: [ . -

9: send (zp , tsp) to Coord(p, ¢) 28: readyp = true

10: 1 2o Round 7=
. * — . D -

1 if p = Coord(p, 9) ar}d 31: if p = Coord(p, ¢) and ready, then

number of (v, §) received > n/2 then 32: send (votep) to all processes

12: let 6 be the largest 6 from (v, 6) received ’ P

13: votey, := one v such that (v, ) is received 33: 17 -

14: commity := true 34: if received (v) from Coord(p, ¢) then
. o . 35: DECIDE(v)

12 R(;L:r?d r=4¢-2: 36: if p = Coord(p, ¢) then
: A . . —

17: if p = Coord(p, $) and commit, then gg 7eadypAtA .fai_sle

18: send (votep) to all processes ’ commaty 1= tatse

19: 17

20: if received (v) from Coord(p, ¢) then

21: Tp =0 ; tsp =

Note that the first two rounds of every phase in Pazos are needed only when the coordi-
nator changes. We always remove the first of these two rounds. The second of these two
rounds is needed in LastVoting only when the coordinator changes. Agreement on a single
coordinator (also called leader) is not achieved by the algorithm anymore, but is part of the
conditions that guarantee termination.

The Consensus core in Pazos share many common features with DLS: as for DLS, the
coordinator of a Pazros phase does not cast a vote and misses its turn if it does not receive
conclusive information from enough (namely a majority) processes. This is the basic reason
why DLS and Pazxos both tolerate link failures. On the other hand, the two algorithms
differ in the values of the coordinators’ votes. In DLS, the coordinator of a phase votes
for some value v if v is a majority value (i.e., it has heard that at least n/2 processes find
v acceptable) whereas the coordinator of a Pazos phase votes for the most recent value it
has heard of. This is why the coordinator of a Pazos phase can cast a vote (and so can
make a decision) even if the preceding round is not uniform. In that respect, our LastVoting
algorithm is similar to Pazxos.

In the following theorem, we show that LastVoting is always safe (even in the pres-
ence of multiple coordinators at some phases), and we exhibit a very simple condition that
enforces termination. Interestingly, the latter condition only involves one phase, and the
corresponding communication-coordinator predicate is non-stable, contrary to the “Q2 con-
dition” — classically supposed for Pazos termination — that requires uniformly and well
coordinated phases permanently from some point in the computation.

Theorem 5.3 The HO machine that consists of the LastVoting algorithm and the communi-
cation-coordinator predicate:

’HO(00,4¢0—3)‘ >n/2 AN ’HO(00,4¢0—1)‘ >n/2

V6> 03¢0 2 ¢, 3eo € ILVp €11 - { (Coord(p, é) = co) A (Coord(p, éo) € K (¢v))

solves Consensus.

30



Proof: The above communication-coordinator predicate clearly enforces termination of
the LastVoting algorithm.

Integrity is obvious. For agreement, let ¢; be the first phase at which some process
makes a decision. Let p be such a process and let v be its decision value. Lines (27)
and (31) imply that p’s coordinator at phase ¢, denoted ¢, has received more than n/2
acknowledgements at round 4¢; — 1 and vote((;wl*l) = v. Moreover, ¢ has received more
than n/2 non-null messages at round 4¢; — 3.

For any phase ¢ > ¢1, let II; denote the set of processes that have updated their

timestamp variables at least once since phase ¢q:
H¢> = {q ell : tS((1¢) > ¢1}

The heart of the proof is the following lemma, which says that from phase ¢, each process
g may barter the value of z, only for v.

Lemma 5.4 At any phase ¢ > ¢1, the following holds:

1. 11y is a majority set, i.e.,

|H¢’ > TL/2.
2. For any process q in Il,, we have
$¢(14¢_2) = .

Proof: By induction on ¢ — ¢;.

Basis: ¢ = ¢1. Any process ¢ in Iy, executes line (21), and so has received a vote from its
coordinator ¢ = Coord(q, ¢1). Hence ¢ casts a vote at round 4¢; — 3, and so ¢’ receives
more than n/2 non-null messages at this round. Since each process sends at most one
non-null message at round 4¢; — 3, we have ¢’ = c. It follows that

4h1—2 4¢1-3
x(gd’l ):vote((:gi’1 ) = .

Moreover, ¢ receives more than n/2 acknowledgements, and so more than n/2 processes
execute line (21) at phase ¢;. This shows that IIy, is a majority set.

Inductive step: Suppose ¢ > ¢1, |llp—1] > n/2, and for any ¢ € Iy_q, l’é4¢_5) = v. At
phase ¢, any process ¢ in II5_; either lets ¢s, unchanged or sets ts; to ¢. It follows that Il
contains II4_;, and so Il is a majority set.

Let g be any process in II;. We consider two cases.

1. Process g does not execute line (21) at phase ¢. Then tsgd’) = tsg,d)fl) and :cgd)) =
xé¢_1). It follows that g belongs also to II;_;. The inductive hypothesis implies that
(¢-1)
i =.

2. Process ¢ updates ts, and z, at phase ¢. Let ¢ = Coord(q, ¢). From lines (17), (18),

and (20), it follows that ¢’ has casted a vote and votegw_?’) = ZL'¢(14¢_2). Therefore ¢’ has
received more than n/2 non-null messages at round 4¢ — 3. Since each process sends
at most one non-null message at this round, one of them has been sent by a process
in the majority set II4_;. Line (12) implies that the largest timestamp received by ¢’
at round 4¢ — 3 is at least equal to ¢1. From the inductive hypothesis we derive that

(4¢1-3) (49—2)

vote,, = v. Hence x4 = v, as needed.
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I:\Lemma 5.4

Let p’ be a process that decides v at phase ¢, and let ¢’ denote the coordinator of p’ at
phase ¢. By definition of ¢, we have ¢ > ¢;. We are going to prove that v = v'. For that,
we proceed by induction on ¢ — ¢.

Basis: ¢ = ¢1. Process ¢’ has necessarily received more than n/2 acknowledgements at
phase ¢ = ¢;. Since each process sends at most one such message per phase, we have ¢ = ¢/,
and so

v = vote((;lm_g) = votel19173) =y,

Inductive step: Let ¢ > ¢1 and assume that any decision value at phases ¢1,--- ,¢ — 1 is
equal to v. Process ¢’ has definitely casted a vote for v' at round 4¢ — 1, and so more than
n/2 processes ¢ set x4 to v’ and ts, to ¢ at round 4¢ — 2. Such processes share the same
coordinator, namely ¢'. It follows that ¢’ has received more than n/2 non-null messages at
round 4¢—3. By point (1) in Lemma 5.4, at least one of them has been sent by some process
(4¢-3) O

o = .

in I14. From line (12) and point (2) in Lemma 5.4, it follows that vote

Rotating coordinator: Similarly to CoordUniformVoting, we can use the rotating co-
ordinator strategy to determine coordinators in LastVoting: we denote by LastVoting ™ the
resulting algorithm. With such a coordinator strategy, the existence of a uniformly and well
coordinated phase is ensured by the following communication predicate Prastvotingre:

7DLastVoting7”0 = EI¢O >0 : ﬂ K(d)o + fL) 7£ @
=1

Observe that when (i) choosing the off-line strategy of the rotating coordinator in
LastVoting, and (ii) requiring that the condition at line (11) always holds (which means
that the coordinator sends a vote in every phase, see line 18), the resulting algorithm, de-
noted CT, corresponds to the Rotating Coordinator algorithm described in [6] for solving
Consensus with the failure detector ©8.

Because of point (ii), it turns out that CT is safe only under some non-trivial invariant
property of the heard-of sets, namely the no split predicate Ppospiit. More precisely, agree-
ment may be violated if two coordinators receive messages from disjoint sets of processes
(i.e., there is no process heard by both). This point is not discussed in [6] because the
authors assume no link failure and a majority of correct processes, which guarantees Pglg] ,
and so Pposprit- If this assumption does not hold, then the Rotating Coordinator algorithm
blocks forever, which is translated in the HO model by the fact CT is not safe.® The fail-
ure detector S or the predicate Poner play a role only for the termination condition of
Consensus. Obviously, the notion of failure detectors makes no sense in the context of link
failures. However, our remark shows that basically, the Rotating Coordinator algorithm
does not tolerate link failures, and more generally dynamic failures. To make it safe in the
presence of such failures — which is a quite reasonable requirement —, it is sufficient just to
add the test “number of (v, ) received > n/2” at line (11).

8At two places in each phase, processes in the Rotating Coordinator algorithm wait for at least n/2
messages to advance to the next round. In the HO model, advancing from one round to the next is automatic,
and so is not under the control of processes. This is why executions of the Rotating Coordinator algorithm
that block (because some process does not eventually hear of a majority of processes) are translated in the
HO model into unsafe executions of the C'T algorithm.
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5.6 A non-coordinated algorithm without HO invariant

The DLS and the LastVoting algorithms have shown that Consensus can be solved without
invariant predicate if we resort to coordinators. This naturally leads us to question whether
Consensus is solvable without both invariant predicates and coordinators. As we shall show
below, the answer is yes if there exist rounds in which heard-of sets have a membership
larger than 2n/3 (Algorithm 8), and we leave the question open in the case heard-of sets
are only majority sets.

For that, we design an HO algorithm that we call OneThirdRule (Algorithm 8). A
similar algorithmical schema is used in the first round of [4], in [27], and in the fast rounds
of Fast Pazxos [20]. Each phase of the OneThirdRule algorithm consists of one single round.
Safety conditions of Consensus, namely integrity and agreement, are always satisfied: if
some process decides v at line 10 of round r, then in any round 7/ > 7, only v can be
assigned to any x,, and hence only v can be decided. Liveness is ensured by the following
condition:

drg > 0,3y s.t. [Ilp] > 2n/3,Vp e II : (HO(p,10) =) A(3rp > 10 : |[HO(p,rp)| > 2n/3).

The first part, namely the existence of some uniform round r¢ with an enough large kernel,
makes the system “space uniform” in the sense that at the end of round rg, all processes
adopt the same value for x,. The second part of the condition enforces every process p to
make a decision at the end of round r,. These observations establish the following result:

Theorem 5.5 The HO machine consisting of the OneThirdRule algorithm and the com-
munication predicate Pcy), where Co holds at round ro if

3o s.t. [To| > 2n/3,Vp € I1 : HO(p,r0) = I,

solves Consensus.

Algorithm 8 The OneThirdRule algorithm

Initialization:
Tp = vp { vp is the initial value of p }

send (zp ) to all processes

TT .
I
if |[HO(p,r)| > 2n/3 then
Zp := the smallest most often received value
if more than 2n/3 values received are equal to T then
0: DECIDE(T)

1
2
3
4:
5:
6
7
8
9

—_

Note that, contrary to all the algorithms we have described up to now, a decision is
possible in just one round: if all the initial values are identical® and few transmission failures
occur at the beginning (i.e., Cyp holds at round 1), then every process decides at the end of
the first round. Hence, the OneThirdRule algorithm which is a very simple algorithm that
does not require any coordinator election procedure, may be quite efficient. Furthermore,
the condition for its correctness is satisfied in many real systems. Indeed, one uniform round

9In the context of Atomic Broadcast, messages can sometimes be spontaneously ordered, which translates
into identical initial values for Consensus.
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and “not too many” transmission failures (i.e., heard-of sets with a cardinality greater than
2n/3) at some subsequent round is sufficient to entail decision. This may seem to be a strong
condition in the classical context of permanent and static failures, such as crash failures,
but it is a realistic assumption in systems with transient failures (eg., crash recovery). For
all these reasons, we think that it would be very interesting to develop this solution in many
real applications requiring Consensus among processes.

5.7 Summary

Table 2 summarizes the various HO and CHO Consensus algorithms described in this sec-
tion, with their correctness requirements. Because of time invariance (cf. Section 2.1), the
corresponding communication predicates guarantee conditions on rounds that must hold
infinitely often, but not necessarily permanently, at least for the last four algorithms. The
latter solutions are quite relevant in practice, since one can observe that real systems al-
ternate between “bad” and “good” periods. Note that some of these requirements capture
conditions that in the past have been expressed in terms of failure detectors, requiring
conditions to eventually hold forever, and thus suitable for permanent failures only.

ALGORITHM PREDICATE FOR SAFETY PREDICATE FOR LIVENESS
Uniform Voting No split rounds Vr > 0,3rg > r : ro is uniform
CoordUniform Voting No split rounds V¢ > 0,3pg > ¢ : ¢ is uniformly and well coordinated
CoordUniformVoting”“ No split rounds Vo > 0,390 > ¢ = jq K(po +1i) #0

g ¢o is uniform
CoordDLS none V¢ > 0,3¢pg > ¢ : = K(¢p) is a majority set

¢ is uniformly and well coordinated

8
< Vp €Il : |[HO(p, $0)| > n/2
LastVoting none V¢ > 0,3¢pg > ¢ :

¢ is uniformly and well coordinated

8
< Vp €I, Vr,4¢g<r<4(¢o+n) : |[HO(p,7)|>n/2

LastVoting™© none V¢ > 0,3pg > ¢ : T
T o1 K(do+i) £ 0

Vr > 0,3rg > r : rg is uniform and |K(rg)| > 2n/3
OneThirdRule none N
Vp elIl, 3ry, >rg: |[HO(p,7mp)| > 2n/3

Table 2: HO and CHO Consensus algorithms and correctness conditions

6 Conclusion

The paper proposes a new computational model for fault-tolerant distributed systems, which
is suitable for describing benign failures in a unified framework. Apart from allowing concise
expressions of Consensus algorithms, the model overcomes the limitations of the traditional
approaches by getting rid of two basic principles — independence of synchrony degree and
failure model; notion of faulty component — on which previous models are all based. In
particular, our approach allows us to handle (1) transient failures and (2) failures that hit
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all the components of the system (links and processes). By contrast, classical models are
limited to static failures both in time and space.

As we have observed, a second key point of the HO model is to allow the expression
of sporadic conditions, in contrast to the classical models obtained by “augmenting” asyn-
chronous systems with external devices (like failure detectors [6], or other oracles). Indeed,
in such augmented asynchronous systems, only stable properties — i.e., properties that once
they hold, hold forever — can be formulated. In the HO formalism, we can give a precise
meaning to the statement “the system works correctly for long enough”, and we prove that
such sporadic conditions are sufficient to make Consensus solvable whereas in augmented
asynchronous models, Consensus requires stable properties of the type “eventually and for-
ever the system behaves correctly”.

Besides, it is striking to see how, by removing the barrier between synchrony degree
and failure model, the HO formalism enables us to give direct proofs of important results
in fault-tolerant distributed computing. In this way, we can unify results for synchronous
and asynchronous systems, and give a simple proof of the weakest predicate that makes
Consensus solvable under some failure bounds.

In this paper, we dealt with benign failures only, but the HO model can be extended
to handle more severe failures. Indeed, we pursue our approach in a sequel paper [2] where
we show how to cope with wvalue failures: messages may be corrupted, i.e., at any round
r, the message received by process ¢ from p may be different of the message that p ought
to send to g. This novel framework covers the classical Byzantine failures [26] as well as
the dynamic transmission faults studied in [29]. Thus, we derive new Consensus algorithms
tolerating both benign failures and value failures, be they static or dynamic, permanent or
transient.
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